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a b s t r a c t

This paper proposes a new approach to estimating high dimensional time varying
parameter structural vector autoregressive models (TVP-SVARs) by taking advantage
of an empirical feature of TVP-(S)VARs. TVP-(S)VAR models are rarely used with more
than 4–5 variables. However recent work has shown the advantages of modelling VARs
with large numbers of variables and interest has naturally increased in modelling large
dimensional TVP-VARs. A feature that has not yet been utilized is that the covariance
matrix for the state equation, when estimated freely, is often near singular. We propose
a specification that uses this singularity to develop a factor-like structure to estimate
a TVP-SVAR for many variables. Using a generalization of the recentering approach, a
rank reduced state covariance matrix and judicious parameter expansions, we obtain
efficient and simple computation of a high dimensional TVP-SVAR. An advantage of our
approach is that we retain a formal inferential framework such that we can propose
formal inference on impulse responses, variance decompositions and, important for our
model, the rank of the state equation covariance matrix. In a system with 15 variables,
we show clear empirical evidence in favour of our model and improvements in estimates
of impulse responses.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Vector autoregressive models (VARs) have provided many valuable insights in applied macroeconometrics. The past
decade has seen considerable interest in VARs with parameters that evolve over time – time varying parameter VARs (TVP-
VARs) – particularly with heteroscedasticity, to better capture the evolving dynamics of the underlying variables. More
recently researchers have been developing methods to estimate larger systems of variables in VARs to avoid limitations
that arise when too few variables are modelled. The problems that motivate using both TVP-VARs and large VARs are
compelling, but addressing both problems in one model leads to significant computational challenges. This paper proposes
an approach to address these challenges.

Bańbura et al. (2010) argue for modelling many variables in a large VAR to avoid a number of problems that arise
from modelling too few variables. They (and other authors such as Carriero et al. (2011), Giannone et al. (2014), Koop
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(2013) and Koop and Korobilis (2013)), point out that forecasts, policy advice and analysis of structure suffer problems
resulting from omitted variable bias from using too few variables in the VAR. Typical sample sizes in the VAR literature,
however, are not large and using large VARs leads to significant parameter proliferation making estimation and more
general inference either difficult or infeasible. Bańbura et al. (2010) address this problem by employing the so-called
Litterman prior to impose sufficient shrinkage to permit inference.

The time varying parameter vector autoregressive model (TVP-VAR) allows for the processes generating macroeco-
nomic variables to evolve over time. These models, which are most commonly given a state space representation, have
informed us on a range of questions of interest to policymakers with perhaps the most notable area of application being on
the transmission of monetary policy (see, for example, Cogley and Sargent (2001, 2005), Primiceri (2005), and Koop et al.
(2009)). Although the number of variables modelled using TVP-VARs has tended not to be very large, the arguments for
using large VARs have quite naturally led to efforts to develop large TVP-VARs. As the number of states grows polynomially
in the number of variables and time then, as in the large VARs, computational difficulties are encountered in these models
when there are many variables. These difficulties tended to limit the number of variables modelled using the TVP-VAR.2

A range of approaches have been developed to estimating large TVP-VAR models to address the computational
challenges. Some approaches aim to achieve parsimony by shrinking parameters towards zero (e.g., Belmonte et al.
(2014)), others use time-varying FAVAR to incorporate the information from many sources. Since Bernanke et al. (2005),
there has been a growing body of research on the use of factor-augmented VAR models as an alternative specification
to TVP-VAR to modelling and forecasting with large systems. The factors and observables are given a VAR structure and,
typically in these models, only a few factors drive the common variation in the system. More recently, these models have
been extended to permit time-varying parameters. An interesting recent extension is Eickmeier et al. (2015) in which
the states are observed and their dynamics are allowed to evolve over time. Such an approach allows a large amount
of information to feed into the model and this information can also influence the variance. Eickmeier et al. (2015), for
example, allow the factors to drive the volatility process as well as the mean. Unlike the factor structure, the approach
in this paper preserves the original VAR structure and permits a full covariance matrix for all state shocks.

Koop and Korobilis (2013) (hereafter KK2013)) present an approach to estimating large TVP-VARs by altering the
specification and reporting estimates that avoid an expensive exploration of the full posterior distribution. Using forgetting
factors they replace the state equation covariance matrix with a matrix proportional to a filtered estimate of the posterior
covariance matrix. They avoid running an MCMC investigation of the full posterior distribution by reporting estimates from
the Kalman filter. As these estimates only use data up to the time of the forecast, t , and avoid a full MCMC investigation
of the posterior, the approach in KK2013 is ideally suited to forecasting as demonstrated in that paper. The filter is
appropriate as this approximates the information available to agents producing the forecasts at that time.3 Using the
new specification with the filter delivers impressive computational speed in estimating a TVP-VAR for the purpose of
forecasting.

Our paper, by contrast, undertakes an ex-post study of economic behaviour which is a very different purpose to
replicating historical forecasts. The Kalman filter is not appropriate in this case (see Sims (2001) critique of Cogley and
Sargent (2001) along these lines) as learning about the model at time t happens both before and after t . The Kalman
smoother is better suited to our purpose as the resulting estimates use all available data. The model in this paper differs in
that we preserve the full probability model and the dimension reducing restrictions imposed are suggested by empirical
evidence. Coupling this specification with an MCMC approach to estimation, we are able to explore the full posterior
distribution and so permit the full range of formal inferential opportunities.4

An issue that has been bubbling away in the background in the literature on TVP-VARs is the treatment of the state
equation covariance matrix. This matrix is often specified as diagonal, although there is good reason to specify this as a
full matrix. Primiceri (2005, p. 830) provides an argument that a full covariance matrix for the vector of all mean equation
and structural parameter states would be most appropriate as the states are, and are expected to be, highly correlated.
However, he does not adopt such a specification in order to avoid parameter proliferation and the attendant computational
issues. Primiceri (2005) does maintain a full covariance matrix for the reduced form mean equation states and more
papers are doing so (see for example, Eisenstat et al. (2016)). A full state equation covariance matrix poses significant
computational challenges for large TVP-VARs. As the number of variables n grows, the number of mean parameters grows
at order n2 and the number of parameters in the state equation covariance matrix grows at n4. In this paper we present an
reduced rank restriction on the state equation covariance matrix that results in a reduced number of state errors driving
the time-varying parameters.

The first contribution of this paper is to present an alternative approach to estimating large TVP-VARs. We increase
the number of variables we can model in a TVP-VAR by taking advantage of the strong correlations among the states. We

2 A few papers, such as Carriero et al. (2016a,b) and Chan (2020), have developed large VARs with stochastic volatility. But these papers all
restrict the VAR coefficients to be constant.
3 This does not account for the fact that the data are revised. However real-time forecasts could be readily incorporated.
4 There are a number of other differences with KK2013. In that paper they use a deterministic model for the evolution of the measurement error

covariance matrix (an exponentially weighted moving average specification) whereas we use a stochastic specification. Further, KK2013 propose
a model for a time-varying parameter VAR that allows the dimension of the model to change over time and this feature is shown to produce
improvements in forecasting.
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preserve the exact state space model but achieve parsimony by imposing a restriction suggested by the data; that the state
equation covariance matrix has reduced rank. An early observation by Cogley and Sargent (2005) shows, using principal
component analysis, that the posterior estimate of the covariance matrix for the state equation appears to have a very low
rank. We formalize this observation into a model specification. Primiceri (2005) points out that small state equation error
variances cause problems for frequentist computation. Our approach, by contrast, uses this feature to improve Bayesian
estimation.

While the usual TVP-VAR will have the same number of time-varying parameters as states (and the terms time-varying
parameters and states are interchangeable in this case), in our model the time-varying parameters are driven by a much
smaller number of states (and the distinction between time-varying parameters and states becomes important). Note that
no matter by how much we reduce the number of states, the number of time-varying parameters in the VAR does not
change. This statement will become clearer when we develop the model in Section 2. Reducing the number of states
driving the time varying parameters results in estimates of the time varying parameters that are far more precise.

We employ a range of strategies, in addition to the reduced rank structure, to mitigate the computational issues. Each
makes a small contribution on their own, but collectively they allow us to estimate larger models. First, by estimating the
structural form of the TVP-VAR directly, we remove one sampling step in the Gibbs sampler. This is particularly important
as estimating the reduced form TVP-VAR involves drawing two blocks of parameters that are naturally highly correlated.
We collapse these two blocks into one and draw that block in one step. Next, to achieve a readily computable specification
we generalize the scalar non-centred specification of the state space model by Frühwirth-Schnatter and Wagner (2010)
to the matrix non-centred specification. This removes another step from the sampler as we draw the initial states and
the state covariance matrix together in a single step. Further, we avoid the Kalman filter and smoother and, instead,
use the precision sampler of Chan and Jeliazkov (2009). This precision sampler uses a lower order of computations to
draw from the same posterior as the Kalman smoother. McCausland et al. (2011) provide a useful discussion on the
computational advantages of this approach and, in particular, point out that the gain is more significant for larger n.
The main contributions to improving computational speed, however, are due to the dimension reduction (over 95%) that
comes from the rank reduction of the state covariance matrix and the use of the precision sampler rather than the more
computationally intensive Kalman filter and smoother.

The specification of the reduced rank model requires semi-orthogonal matrices and ordered positive elements. This
specification induces nonstandard supports for the parameters and Bayesian computation on such supports is difficult.
Another contribution of this paper, then, is to use a judicious selection of parameter expansions and priors for the
expanding parameters to develop a specification that is fast, efficient and easy to compute. This expansion is part of the
generalization of the recentering method of Frühwirth-Schnatter and Wagner (2010) to a multivariate setting mentioned
above.

We apply the new specification and computation techniques to a study of the evolution of responses of a range of real
and nominal macroeconometric variables to surprise productivity (non-news) and news shocks. Increasing the number of
variables modelled in a TVP-VAR could also prove useful in many other settings. In a study of network spillovers among
financial institutions, Geraci and Gnabo (2018) demonstrate the utility of TVP-VAR models for a system of four sectors.
The approach in this paper permits the analysis of many more sectors or possibly disaggregated data. Similarly, Ciccarelli
and Rebucci (2007) propose using a TVP-VAR to address simultaneity issues in studying contagion and interdependence
among exchange rates. The approach could find uses outside of economics. In psychology, for example, the TVP-VAR is
used to model emotion dynamics and has been proposed for the study of networks in psychopathology (see Bringmann
et al. (2018) and references therein).

The structure of the paper is as follows. In Section 2 we present the idea with a general state space model. We outline
the model specifications that result from different assumptions about the rank of the state equation covariance matrix.
This section also contains a technical derivation of the reduced sources of errors model that results from a reduced rank
state equation covariance matrix. In Section 3 we outline posterior computation. Section 4 presents an application using
a TVP-VAR with 15 variables to demonstrate the proposed methodology. Section 5 concludes and gives some indication
of directions for future research.

2. Reducing the sources of variation

2.1. Overview

We will apply the reduced sources of error approach to a structural form TVP-VAR (TVP-SVAR). In VAR analysis, the
measurement equation is often specified on the reduced form parameters, although we can readily transform between
the reduced form and structural form. We prefer the structural form as it reduces the number of blocks of parameters to
be estimated and makes the dependence among the structural and reduced form parameters simpler (i.e., linear).

For the n × 1 vector yt for t = 1, . . . , T , the TVP-SVAR can be written as

B0,tyt = µt + B1,tyt−1 + · · · + Bp,tyt−p + εt , εt ∼ N(0, Σt ), (1)

where B0,t , . . . , Bp,t are n × n and Σt = diag(exp(h1,t ), . . . , exp(hn,t )). The first matrix B0,t is n × n with ones on the
diagonal and is commonly specified as lower triangular.
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Given the structure of B0,t , we may write B0,t = I − Bt so that the matrix Bt has zeros on the diagonal. The TVP-SVAR
can now be written as:

yt = µt + Btyt + B1,tyt−1 + · · · + Bp,tyt−p + εt

= µt +
(
y′

t ⊗ In
)
Dbt +

(
y′

t−1 ⊗ In
)
b1,t + · · · +

(
y′

t−p ⊗ In
)
bp,t + εt ,

where bl,t = vec
(
Bl,t

)
, l = 1, . . . , p and Dbt = vec (Bt) where bt contains all the n(n−1)

2 non-zero elements of Bt in a
vector and D is an appropriately defined n2

×
n(n−1)

2 selection matrix. If we define the n × k matrix

xt =
[
In

(
y′

t ⊗ In
)
D

(
y′

t−1 ⊗ In
)

· · ·
(
y′

t−p ⊗ In
)]

such that k =
(
np + 1 +

n−1
2

)
n and the (k × 1) vector αt =

(
µ′

t b′
t b′

1,t · · · b′
p,t

)′, we can write the above model
using a standard but reasonably general specification of the state space model for an observed n×1 vector of observations
yt with n × k matrix of regressors xt :

yt = xtαt + εt , εt ∼ N (0, Σt) , (2)
αt = αt−1 + ηt , ηt ∼ N (0,Qα) , α0 = α ∼ N

(
α, V

)
. (3)

In the application in Section 4, it will be more convenient to transform from the VAR to the VECM form, but this again
can be written in the general form in (2) and (3). We therefore continue with the general form of the model and delay
giving specific details on the prior we use until Section 4. We can now present the idea of reducing the sources of errors
in a general linear Gaussian state space model.

We have not imposed any restrictions on the above model at this point and all of the parameters in the VAR are able
to vary over time. The dimension reduction occurs by applying a rank reduction to the covariance matrix for the state
equation, Qα . If we set the rank of Qα to rα = rank (Qα) ≤ k, then after applying the appropriate transformations (detailed
in the next subsection below) we can write the model in (2) and (3) as follows:

yt = xtα + xtAα fα,t + εt , εt ∼ N (0, Σt) , (4)

fαt = fα,t−1 + zα,t , zα,t ∼ N
(
0, Irα

)
, fα,0 = 0, (5)

where Aα is a (k × rα) matrix, fα,t and zα,t are (rα × 1) vectors and the errors εt and zt are independent of one another.
As rα is generally much smaller than k, we call the model in (4) and (5) the reduced sources of error model.

The technical details on the link between the general form of the state space model in (2) and (3) and the final form
in (4) and (5), including centring and parameter expansions, are presented in the following subsection for the interested
reader. There are a number of choices in modelling the state space model and the correlation structure. In this paper we
extend the above to reducing the rank of the covariance matrix for the volatility states, Qh. We present two specifications,
the second encompasses the first but there are significant differences in computation between the two specifications.

In the transformation from (2) to (3) we use αt = α + Aα fα,t where AαA′
α = Qα . This function implies that the k time

varying parameters in αt are driven by rα ≤ k states, fα,t , in a factor-like structure for the states. The elements of Aα

and fα,t are not identified and this results from the use of parameter expansions. These expansions relax the form of the
model to improve estimation. In fact, we derive the above form starting from identified parameters but then introduce
the parameter expansions that take away this identification.

To give an impression of the extent of dimension reduction that is typically achieved, consider our empirical
application. We have n = 15 variables and T = 250 observations for a VAR with 2 lags. The dimension of the states
αt and the covariance matrix Qα in the unrestricted model in (2) and (3) has dimension 305,805 (here we ignore the
volatility). With rank of Qα set to rα = 4, which is preferred in this application, then Specification 1 in (4) and (5) has
dimension 3,844 representing a 98.7% reduction in model dimension. It is worth noting that the larger is n the greater is
the dimension reduction.

Recall that with the full covariance matrix Qα the dimension of this matrix grows at rate n4. Instead of using the
specification of the state space model with a full covariance matrix Qα , one might therefore use a diagonal specification
of Qα in the hope of reducing the dimension of the model. However, this does not result in as great a dimension reduction
as using a reduced rank Qα . In the case considered in our application, for example, the states αt and the diagonal covariance
matrix Qα in the unrestricted model in (2) and (3) would have dimension 143,640. Thus the model in (4) and (5) with
rank of Qa being rα = 4 still has a dimension 97.3% smaller than if a diagonal form were chosen for Qα .

2.2. Mapping to the reduced sources of errors model

In this subsection, we present the details of the transformations from (2) and (3) to (4) and (5). Important features
of the transformed model are that there are no unknown parameters in the state equations and that the parameters to
be estimated all appear in the mean equation. Further, all of the parameters in α, Aα and fα,t have conditionally normal
posteriors.

Frühwirth-Schnatter and Wagner (2010) develop a computationally efficient specification of the state space model
that permits the time variation in individual parameters to be ‘turned off’. This approach involves two transformations:
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recentering (or non-centring) and parameter expansion. We leave for a subsequent paper consideration of turning off
time variation. Rather we use the non-centred specification to develop a reduced rank model from which it is simpler to
obtain draws of the parameters.

In recentering, the initial value is subtracted from all states and this is divided by the standard deviation of the state
equation error. This transformation moves the initial state and the standard deviation into the mean equation leaving no
unknown parameters in the state equation.

The Frühwirth-Schnatter and Wagner (2010) approach is developed for scalar or independent states. That is, Qα is
assumed to be scalar or a diagonal matrix. In our model the covariance matrix Qα is a full symmetric matrix allowing
correlation among the elements of ηt . We denote the initial state by α. Generalizing to this case, the recentering transforms
from αt to α̃t via

αt = α + Q 1/2
α α̃t , (6)

and the model subsequently becomes

yt = xtα + xtQ 1/2
α α̃t + εt , εt ∼ N (0, Σt) , (7)

α̃t = α̃t−1 + z̃t , z̃t ∼ N (0, Ik) , α̃0 = 0. (8)

This more general specification requires a useful definition for Q 1/2
α , the square root of the covariance matrix Qα . There

are several ways to define the square root of a full symmetric matrix, but for our purposes the definition must allow
for Qα to have reduced rank. Our preferred definition, which can readily accommodate rank reduction, uses the singular
value decomposition.

The singular value decomposition of Qα can be written as Qα = UΛU ′ where Λ = diag {λ1, λ2, . . . , λk}, λi ≥ λi+1 ≥ 0
and U ∈ O (k) ≡

{
U (k × k) : U ′U = Ik

}
is an orthonormal matrix: U ′U = Ik. Given Qα , the elements of U are identified

up to sign (which is trivially resolved). The matrix Q 1/2
α is defined simply as Q 1/2

α = UΛ1/2U ′. In this paper we impose
parsimony by letting the k − rα smallest singular values of Λ to be zero. That is, we allow λrα+1 = λrα+2 = · · · =

λk−1 = λk = 0 and collect the nonzero singular values into Λ1 = diag
{
λ1, λ2, . . . , λrα

}
. In this case, we can conformably

decompose U = [U1 U2] such that U1 ∈ Vrα ,k ≡
{
U (k × rα) : U ′U = Irα

}
and U ′

1U2 = 0 an rα × (k − rα) matrix of zeros.
Under this restriction

Q 1/2
α = UΛ1/2U ′

= U1Λ
1/2
1 U ′

1.

We introduce the square root of the reduced rank covariance matrix into the specification (6) to obtain the expression

αt = α + U1Λ
1/2
1 U ′

1α̃t

= α + U1Λ
1/2
1 f

t
, (9)

where in the second line we have taken the linear combination f
t
= U ′

1α̃t . The rank reduction implies a reduction in the
number of states from k (in αt ) to rα (in f

t
). Taking the linear combination f

t
in the state equation implies also taking the

linear combinations of the zt = U ′

1̃zt . Here we have used the result that a linear combination of standard normal random
variables (̃zt ) in which the linear combinations are formed using a set of orthogonal unit vectors (U1 in our case) results
in a vector of standard normal variables (zt ). Thus the resulting state equation vector of errors, zt , is an rα− vector of
standard normal variables. That is, the state equation is now

f
t
= f

t−1
+ zt , zt ∼ N

(
0, Irα

)
, f

0
= 0.

The specification in (9) involves the parameters U1 and Λ1 which have nonstandard supports. These nonstandard
supports significantly complicate computation and it is difficult to obtain an efficient and simple algorithm. This issue is
addressed by mapping to a less restrictive form by introducing unidentified parameters.

The second step in the approach of Frühwirth-Schnatter and Wagner (2010) is to introduce an unidentified parameter
via an approach called parameter expansion, to map the parameters to more standard forms and supports. Used judiciously,
transformation via parameter expansion can make computation much simpler and more efficient. This is achieved by the
mapping to standard supports and employing standard distributions thereby simplifying computation and breaking down
the dependency in the parameters (see discussion in, for example, Liu et al. (1998) and Liu and Wu (1999)). Importantly,
this approach has proven useful in reduced rank models such as cointegrating vector error correction models (see Koop
et al. (2010)), factor models (Chan et al., 2018), and simultaneous equations models (Koop et al., 2012).

Working in the scalar case, Frühwirth-Schnatter and Wagner (2010) introduce an indicator ι that randomly takes the
values −1 or +1. The support for ι is therefore a one-dimensional orthogonal group, O (1). Generalizing this, we expand
the set of parameters by introducing the orthonormal matrix C ∈ O (rα) where O (rα) is the rα-dimensional orthogonal
group. Define the matrix Aα = U1Λ

1/2
1 C ′. Note that the definition of Aα is just a standard singular value decomposition

of a real matrix with singular values on the diagonal of Λ
1/2
1 . Introducing this expanding parameter C into the model

through (9) we obtain

αt = α + U1Λ
1/2
1 C ′Cf

t
= α + Aα fα,t ,

fα,t = fα,t−1 + zα,t , zα,t ∼ N
(
0, Irα

)
, fα,0 = 0
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in which fα,t = Cf
t
and zα,t = Czt . Introducing the above transformation into the measurement equation in (7) and

replacing the state equation in (8) by the one above, we obtain the final form of the full state space model as that given
in (4) and (5).

2.3. Two specifications for the variance

The standard model assumed in the literature specifies αt and ht =
(
h1,t , . . . , hn,t

)′ as a priori independent and that
the covariance matrix in the state equation for ht is full rank. For example, a standard specification is a random walk
log-volatility

ht = ht−1 + ηh,t ηh,t ∼ N (0,Qh)

where Qh = diag
(
σ 2
h1, . . . , σ

2
hn

)
and the random walk is initialized with h0.

In this section we apply the dimension reduction to the log variances, ht , in (1). That is, we generalize to permit Qh
to be a full, possibly reduced rank symmetric matrix. Much of the parameter proliferation in the TVP-SVAR occurs in the
mean equations but we could just as reasonably wish to reduce the number of states driving the stochastic volatility.
The volatility component of the models we propose here resembles that of Carriero et al. (2016a). Expanding upon the
specification in Section 2.1, we consider two specifications of the log volatility ht for reducing the dimensions of the
TVP-SVAR. The first, Specification 1, assumes the mean equation and volatilities share common states while Specification
2 specifies them to be a priori independent. The rationale for the first specification is that structural change in the mean
and variance could come from a common source. That is, structural change is driven by a common factor. Specification 2
adopts the more standard assumption that the mean and variance states are independent. Specification 1 of the process
for αt and ht encompasses Specification 2.

It is not difficult to imagine that shocks can drive changes in the whole structure of the model such that changes in
the mean and variance parameters are driven by the same states. To allow for this possibility, we allow for the mean
equation and volatility to influence each other in the most general model specification. In this model, the most general
form, we allow the mean equation states, αt , to be correlated with the log volatilities in ht . To permit this we specify a
state equation for αt and ht jointly as:

θt =

(
αt
ht

)
.

Specification 1 has state equation

θt = θt−1 + ηθ,t , ηθ,t ∼ N (0,Qθ ) , (10)

such that the mean and variance states are correlated. After applying the rank reduction to the above specification, the
time varying parameters in the model are

θt = θ + Afθ,t , A =

(
Aα

Ah

)
,

fθ,t = fθ,t−1 + zt , zt ∼ N (0, Ir) , fθ,0 = 0,

where r = rα + rh, A is (n + k) × r and fθ,t is r × 1.
It is more common to impose, usually for computational convenience, that the errors in the state equations for αt and

ht are independent. However, we wish to retain dependence among the volatilities. The second model, Specification 2,
assumes that αt and ht are independent such that

A =

(
Aα

Ah

)
=

(
Aα,11 0
0 Ah,12

)
.

In this case, we could rewrite the model for ht as

ht = h + Ah,11fh,t ,
fh,t = fh,t−1 + zh,t , zh,t ∼ N

(
0, Irh

)
, zh,0 = 0,

where Ah,11 is n× rh, fh,t is rh × 1 and, as we might reasonably expect that the volatilities can be modelled with common
factors, then rh ≤ n.

3. Posterior estimation

The state space structure specifies the priors for the states – fα,t , fh,t and fθ,t – so we now describe the priors for the
initial conditions θ =

(
α′, h′

)′ and covariance matrices a = vec (A).
Frühwirth-Schnatter and Wagner (2010) provide evidence in support of using the Gamma prior, rather than the

inverted Gamma prior, for their scalar state equation variance. In the generalization presented in this paper, this equates
to using a Wishart prior for Qθ . For the full rank (r = k) case, a zero mean normal prior for A implies a Wishart prior for
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Qθ (see, for example, Zellner (1971, pp. 389–392) and Muirhead (1982)). We therefore give the matrix A a normal prior
distribution, a = vec (A) ∼ N

(
0, cI(n+k)r

)
for all three specifications. Through some experimentation, we find c = 10−3 to

be reasonable in a wide variety of settings.
For the initial state θ =

{
θj
}
(which contains the elements of α and h), we note that in large models the dimension may

be substantial, and hence, shrinkage priors may be desirable. This implies a choice of structure on the prior covariance
matrix V θ =

{
V θj

}
. A number of options explored in the large Bayesian VAR literature may be applied here. We consider

the stochastic search variable selection (SSVS) (e.g., George and McCulloch, 1993) prior of the form:

θj | δj ∼ N (θ j, cδjV θj
), (11)

δj ∼ qδj (1 − q)1−δj ,

where δj ∈ {0, 1}, c1 = 1 and c0 is some small constant. Of course, this will collapse to a typical normal prior if either q = 1
or c0 = 1. Further, we combine SSVS with Minnesota priors as suggested in Korobilis (2013). Having normal conjugate
priors for the initial conditions (α, h), the covariances (a = vec (A)) and the states (the ft ), the resulting conditional
posteriors are normal for Specifications 1 and 2.

For the purposes of this section, we collect the T states into the vectors fm =
(
f ′

m,1, f
′

m,2, . . . , f
′

m,T

)′ for m = α, h or
θ . Further, let aα =

(
vec (α)′ , vec (Aα)′

)′ and ah =
(
h′

0, vec (Ah)
′
)
. The description of the priors above implies that the

vectors aα , fα , ah and fh have a normal form such as N
(
µ

m
, Vm

)
for µ = a or f . Volatility Specification 2 leads to a

straightforward sampler. For Specification 2, MCMC involves five blocks:

1. (aα|sh, fα, ah, fh, y) ∼ N
(
aα, V α

)
;

2. (fα|sh, aα, ah, fh, y) ∼ N
(
f α, V f ,α

)
;

3. (sh|aα, fα, ah, fh, y) ;

4. (ah|sh, aα, fα, fh, y) ∼ N
(
ah, V h

)
;

5. (fh|sh, aα, fα, ah, y) ∼ N
(
f h, V f ,h

)
;

of which Steps 1, 2, 4 and 5 involve only analytically tractable conditional distributions, all of which are straightforward
to sample from. The states, sh, drawn in Step 3 are the states determining the normal mixture components when drawing
the stochastic volatilities using the algorithm of Kim et al. (1998).

For Specification 1 the MCMC consists of sampling recursively from:

1. (aα|fθ , h0, Ah, y) ∼ N
(
aα, V α

)
;

2. (fθ |aα, h0, Ah, y) ;

3. (ah|aα, fθ , y) ∼ N
(
ah, V α

)
.

Under this specification, the measurement equation is nonlinear in fθ (since it enters both the conditional mean and
the volatility simultaneously), and therefore, (fθ |α, Aα, h0, Ah, y) is not analytically tractable. We therefore sample it using
an accept–reject Metropolis–Hastings (ARMH) algorithm as described in Chan and Strachan (2012). Specifically, we use
a normal proposal centred on the conditional posterior mode f̂θ with the variance V̂θ set to the negative inverse Hessian
evaluated at the mode of ln p (fθ |., y). The derivation of f̂θ and V̂θ is given in Section 1 of the Online Appendix.

Once the mode f̂θ is obtained, the proposal precision V̂−1
θ is given by a by-product of the scoring algorithm and a matrix

that can be easily evaluated at the mode upon convergence (See Online Appendix, Section 1). We then generate proposals
as f cθ ∼ N

(̂
fθ , V̂θ

)
for the ARMH step as detailed in Chan and Strachan (2012). The use of ARMH as opposed to standard

M–H appears to provide substantial gains in terms of acceptance rates (and hence sampling efficiency), particularly for
larger models (i.e. as the size of fθ increases). Intuitively, the normal proposal is symmetric, while p (fθ |., y) will typically
be skewed. This mismatch in shape will lead to higher rejection rates for a standard M–H approach as the dimension of fθ
increases. ARMH mitigates this by adjusting the shape of the proposal to better fit the skewness of the target distribution.
As a result, acceptance rates are substantially increased. For example, in the macroeconomic application discussed below,
the model with n = 15 and rα = 10 yields an acceptance rate of about 89.9%.

4. Application

4.1. Implementation

We use a data set containing a total of 15 variable to estimate the time-varying effects of surprise productivity (non-
news) and news shocks. To understand the effects of dimension upon the results, we estimate the model with n = 8
variables and again with all n = 15 variables for contrast. The data consists of quarterly macroeconomic series covering
the period 1954Q3–2008Q3, with each variable described in Table 1.5 Given a subset of these variables, we assume the

5 Following standard practice in the news shock literature, all series are de-meaned.
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Table 1
Variables used in each estimated model.
Core variables Additional variables for the n = 15 model

1 Log TFP 9 Log RPI
2 FED funds rate 10 Log real SEP500
3 GDP deflator inflation 11 Unemployment Rate
4 Log hours per capita 12 Vacancy rate
5 Log real GDP per capita 13 TB3MS Spread
6 Log real consumption per capita 14 GS10 Spread
7 Log real investment per capita 15 Log real dividends
8 GS5 Spread

system admits a structural TVP-VAR representation of the form

yt = B−1
0,tµt + Π1,tyt−1 + · · · + Πp,tyt−p + At ε̃t , ε̃t ∼ N (0, In) , (12)

where At = B−1
0,tΣ

1/2
t ,

Σt = diag
(
exp

(
h1,t

)
, . . . , exp

(
hn,t

))
and

Σ
1/2
t = diag

(
exp

(
h1,t/2

)
, . . . , exp

(
hn,t/2

))
.

Following Barsky and Sims (2011), non-news and news shocks in ε̃t are identified by the restrictions:

1. non-news is the only shock affecting TFP on impact;
2. news is the shock that, among all of the remaining shocks, explains the maximum fraction of the forecast error

variance (FEV) of TFP at a long horizon (set to 20 years in our application).

To implement the methodology outlined in the previous sections in estimating (12), we begin with the structural form
in (1)

yt = µt + Btyt + B1,tyt−1 + · · · + Bp,tyt−p + εt , εt ∼ N (0, Σt)

where ε̃t = Σ
−1/2
t εt . To more simply apply a prior that is more useful in large models, we respecify the model in VECM

form

∆yt = µt + Btyt + Πtyt−1 + Γ1,t∆yt−1 + · · · + Γp−1,t∆yt−p+1 + εt (13)

where Bt is the same lower triangular matrix defined in (12). Next, define

xt =
(
In

(
y′

t ⊗ In
)
D

(
y′

t−1 ⊗ In
) (

∆y′

t−1 ⊗ In
)

· · ·
(
∆y′

t−p+1 ⊗ In
))

such that k =
(
np + 1 +

n−1
2

)
n and αt is the (k × 1) vector

αt =
(
µ′

t b′

t π ′

t γ ′

1,t · · · γ ′

p−1,t

)′
,

where µt and bt are defined in Section 2 and γl,t = vec
(
Γl,t

)
l = 1, . . . , p − 1 and πt = vec (Πt). Consequently, we can

now write (13) in the form of (2) and (3) as:

∆yt = xtαt + εt εt ∼ N (0, Σt) ,

αt = αt−1 + ηt ηt ∼ N (0,Qα) α = α0 ∼ N
(
α, V

)
.

The advantage of this VECM specification is that it facilitates specifying more flexible shrinkage priors for

α =
(
µ′

0 b′

0 π ′

0 γ ′

1,0 · · · γ ′

p−1,0

)′
,

which is useful in large dimensional settings.
In addition to the SSVS specification in (11) combined with the Minnesota prior for θ =

(
α′, h′

)′
=

{
θj
}
, we also

implement “inexact differencing” as advocated by Doan et al. (1984), Bańbura et al. (2010), and others. This is done by
setting the prior mean to θ j = 0 for all j and the prior variance as

V θj
=

⎧⎪⎨⎪⎩
1 if θj ∈ h0, θj ∈ µ0, or θj ∈ b0,
102
2n if θj ∈ π0,

0.3
2nl2

if θj ∈ γl,0 for l = 1, . . . , p − 1.

For SSVS, we set c0 = 0.01 and q = 0.5. Finally, we scale each ∆yi to have sample standard deviation one before
commencing sampling, which facilitates the use of generic prior settings like the ones given above. However, the effect
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Table 2
DICs for models specified with n = 15 and various combinations of rα and rh . All values are relative to the DIC of the constant
coefficient model (i.e. rα = rh = 0).
3 states 5 states 7 states 10 states 12 states

rα rh DIC rα rh DIC rα rh DIC rα rh DIC rα rh DIC

3 0 −764 5 0 −766 7 0 −742 10 0 −366 12 0 −140
2 1 −771 4 1 −816 6 1 −688 8 2 −486 8 4 −573
1 2 −711 3 2 −887 4 3 −892 6 4 −697 7 5 −655
0 3 −562 2 3 −851 3 4 −888 5 5 −854 6 6 −800

1 4 −756 1 6 −698 4 6 −876 5 7 −792
0 5 −583 0 7 −565 2 8 −800 4 8 −840

0 10 −545 0 12 −577

shared −770 shared −835 shared −719 shared −418 shared 199

of this scaling is reversed in the post-processing of draws such that all outputs such as impulse response functions are
reported on the originally scaled data.

Once draws of Bt , Πt , Γ1,t , . . . , Γp−1,t , and Σt are obtained, they are transformed to draws of Π1,t , . . . , Πp,t from (12) as

B0,t = In − Bt

Π1,t = In + B−1
0,t

(
Πt + Γ1,t

)
,

Πl,t = B−1
0,t

(
Γl,t − Γl−1,t

)
, l = 2, . . . , p − 1,

Πp,t = −B−1
0,tΓp−1,t .

To recover At , we begin with Ãt = B−1
0,tΣ

−
1
2

t . Note that by construction Ãt is lower triangular and therefore the non-news
shock is identified in accordance with restriction 1 above. However, the news shock generally does not satisfy Restriction
2. Following Barsky and Sims (2011), the desired restriction is implemented by constructing an orthogonal matrix Qt using
a spectral decomposition of impulse response functions.

Specifically, for each period t we compute the impulse responses of log TFP to all shocks excluding non-news for the
periods t, t + 1, . . . , t + 80. Let Rs be the (n − 1) × 1 vector of impulse responses at time t + s and take the spectral
decomposition

Q̃tD′

t Q̃t =

80∑
s=0

RsR′

s,

where the eigenvalues in Dt are in descending order. Setting

Qt =

[
1 0
0 Q̃t

]
and At = ÃtQt achieves the desired identifying restriction, which is sufficient for computing forecast error variance
decompositions. To derive impulse response functions, we further identify the sign of the news shock by requiring that
the maximum impact of news on log TFP across all horizons is positive.6

4.2. Results

We begin by conducting an extensive empirical analysis on the choice of rα (number of mean equation states) and rh
(number of states driving the volatility) using the Deviance Information Criterion (DIC) as the model comparison criterion.
The DIC is based on the integrated likelihood – i.e., the joint density of the data marginal of all the latent states – and is
computed using the method in Chan and Eisenstat (2018). The relative DICs for x are presented in Table 2. For the model
with n = 15, the DIC selects Specification 2 with seven states: four states driving the mean equation coefficients in αt
and, again, three states driving the volatilities ht . Specification 2 is also preferred by the DIC, with five states in total, for
the n = 8 model (full results are provided in Table 1 of the Online Appendix).

In Figs. 1 to 4 we present short and long-run impulse response functions for models with n = 8 and n = 15
variables and the number of states selected by the smallest DIC in each case. Section 3 of the Online Appendix contains
supplementary results, including a range of impulse response functions and variance decompositions quantifying the
effects of news and non-news shocks on economic variables.

The impact shocks in Figs. 1 and 3 show significant variation over time in the impact of non-news shocks upon log
TFP. Figs. 2 and 4 show that the long run effect of a news shock on the real variables – log TFP, log real per capita GDP, log
real per capita consumption and log real per capita investment – has declined over time with the density of the response
moving towards zero. This effect is particularly clear for the larger model with n = 15.
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Fig. 1. Time-varying responses to non-news and news shocks on impact (mean, and 16–84 percentiles of the posterior distribution) for the n = 8
variables model.

Fig. 2. Time-varying responses to non-news and news shocks at 40 quarters after impact (mean, and 16–84 percentiles of the posterior distribution)
for the n = 8 variables model.
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Fig. 3. Time-varying responses to non-news and news shocks on impact (mean, and 16–84 percentiles of the posterior distribution) for the n = 15
variables model.

Fig. 4. Time-varying responses to non-news and news shocks at 40 quarters after impact (mean, and 16–84 percentiles of the posterior distribution)
for the n = 15 variables model.
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Table 3
Estimated distances d

(
Qrα ,Qr∗α

)
.

r∗
α rα

2 3 4 5

3 0.21
4 0.31 0.10
5 0.37 0.14 0.08
6 0.41 0.18 0.10 0.08

There is a noticeable second order effect upon the estimated posterior impulse responses in both the n = 8 and the
n = 15 models. Specifically, we see that the error bands suggest that there was a very large increase in uncertainty about
the immediate effect of news shocks upon the Fed funds rate, the spread and to a lesser extent upon inflation around 1980.
It is also in these second order effects upon the posterior that we see the effect of estimating a smaller model. Looking at
Figs. 2 and 4, the error bands are much tighter for the larger model despite this model having many more parameters to
be estimated. We also see that estimating the smaller model we have the impression that the posteriors for a number of
impacts, particularly to non-news shocks, are skewed at particular points in time and have higher probability of producing
outliers from one tail at these times. These effects largely disappear when we estimate the larger, less restricted model.

We have used DIC to select the rank rα . DIC may not select the correct rank and so it is important to know how
the variance–covariance matrix for the states, e.g., Qα , differs for different dimensions rα and r∗

α say. We end the Results
section by investigating the effect on Qα of changing the rank rα .

Changing rα changes the column dimension of Aα and thereby the rank of Qα . We introduce a slight notation change to
distinguish between results from different rα . Denote the covariance matrix with rank rα by Qα = Qrα = AαA′

α where Aα

is of dimension k× rα . There are many norms that we could use to measure the distance between Qrα and Qr∗α but to help
discern whether the distance between Qrα and Qr∗α is large, we choose a measure that is bounded on [0, 1]. A distance of
0 results if the matrices are the same and a distance of 1 occurs if they are orthogonal to each other. The measure from
Herdin et al. (2005) is

d
(
Qrα ,Qr∗α

)
= 1 −

trQrαQr∗αQrα


F

Qr∗α


F

where
Qr∗α


F is the Frobenius norm. For our application with n = 15, the DIC chose rα equal to 4. We estimated

models with a range of different ranks and Table 3 reports the various d
(
Qrα ,Qr∗α

)
for rα, r∗

α = 2, 3, 4, 5, 6. For example,
d (Q4,Q5) = 0.08 which we take to indicate that overestimating rα does not change Qrα much (see Table 3).

The evidence suggests that estimating Qrα with rα below the value chosen by DIC (say at 2) does have a noticeable
effect on Qrα while overestimating the rank (say at 6) has less of an impact. We take these results to suggest that the DIC
is doing a good job of estimating rα small enough to reduce the dimension without greatly impacting upon the estimated
Qα .

5. Conclusion

This paper presents an approach to reducing the dimension of the TVP-SVAR. We achieve this by reducing the number
of states driving the time varying parameters, while preserving the full number of time varying parameters. The aim is
to permit more efficient estimation of larger systems while preserving a full probability model and all formal inferential
opportunities. The specification we employ is new and has a number of advantages. The dimension reduction is achieved
by choosing a reduced rank of the state equation covariance matrix using empirical evidence. We employ DIC to select the
rank of the covariance matrix. The specification is an exact one, allowing estimation of outputs, such as impulse responses
and variance decompositions, and their full posterior distributions.

Computation remains a challenge in any large dimensional model, including the one presented in this paper. To
mitigate this issue in this model we present a number of techniques that improve computation. These include careful
specification of the model, judicious choice of computation algorithm, SSVS with a Minnesota prior to reduce the number
of parameters, and use of parameter expansions to attain more readily computable forms for the final model. As a result,
we present an approach that increases the range of models available to macroeconomists.

The application to a large system of 15 variables in a time varying VAR suggests that the estimates remain precise
with sensible error bands. We find evidence of time variation in the impulse responses and differences between smaller
and larger models. There are many directions in which this model could be extended. Subsequent work will consider
automated selection of the rank of the state equation covariance matrix and inference on whether specific states vary
over time or not (as per Frühwirth-Schnatter and Wagner (2010)).

6 In computing Q̃t for t > T − 80 we set Πl,t+s = Πl,T for all t + s ≥ T .
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Referees suggested a number of interesting extensions. One would be to allow the number of states to vary over time
and change at unknown points such that this change is data driven. Such a model implies a time-varying dimension of
the state space and covariance matrix and this extension could accommodate periods in which new latent factors appear
in different economic environments. In a study of financial variables and estimating on sub-samples, Ando and Bai (2017)
find more factors during the GFE than at other times using pre-selected periods among which the number of factors
may change. Koop and Korobilis (2013) demonstrate the significant advantage in forecasting of allowing for the model
dimension to evolve over time, not by changing the number of states but rather by changing the number of variables in
the system. We are not aware of a model in which automatic or data driven changes in the number of factors at unknown
points have been estimated, although one possible approach could follow the approach of Chan et al. (2012) and specify
a time-varying dimension model using a dynamic mixture model. This would constitute an important advance but, as
discussed in that paper, even that approach faces significant computational limitations.

A number of papers such as Cogley et al. (2010) (with n = 3) and Baumeister and Benati (2013) (with n = 4) allow for
time variation in the state equation covariance matrix. This feature was important to allow for a change in the random-
walk drift of macro variables. In each paper, the diagonal elements of the covariance matrix evolve while the off-diagonals
are fixed. Unfortunately such a specification would not adapt for the model in this paper due to the dimension of the
system and the reduced rank of the covariance matrix. Introducing stochastic volatility for the states in our model would
imply letting the matrix A evolve over time as At . Stochastic volatility in factors (the states in our model may be seen as
factors) and the challenges of estimation of such a model is discussed in Kastner et al. (2017) and references therein. The
interweaving strategies discussed in their paper offer a potential approach to computing such a model.

Appendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2019.11.006.
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