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Abstract

Moving average and stochastic volatility are two important components for mod-
eling and forecasting macroeconomic and financial time series. The former aims
to capture short-run dynamics, whereas the latter allows for volatility clustering
and time-varying volatility. We introduce a new class of models that includes both
of these useful features. The new models allow the conditional mean process to
have a state space form. As such, this general framework includes a wide variety of
popular specifications, including the unobserved components and time-varying pa-
rameter models. Having a moving average process, however, means that the errors
in the measurement equation are no longer serially independent, and estimation
becomes more difficult. We develop a posterior simulator that builds upon recent
advances in precision-based algorithms for estimating this new class of models. In
an empirical application involving U.S. inflation we find that these moving aver-
age stochastic volatility models provide better in-sample fitness and out-of-sample
forecast performance than the standard variants with only stochastic volatility.

Keywords: state space, unobserved components model, precision, sparse, density
forecast
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1 Introduction

Since the pioneering works of Box and Jenkins, autoregressive moving average (ARMA)
models have become standard tools for modeling and forecasting time series. The theo-
retical justification of these ARMA models, as is well-known, is the Wold decomposition
theorem, which states that any zero mean covariance-stationary time series has an in-
finite moving average representation. One implication is that any such process can be
approximated arbitrarily well by a sufficiently high order ARMA model. In practice, it
is found that simple univariate ARMA models often outperform complex multivariate
models in forecasting.

However, despite the theoretical justification and empirical success of this class of mod-
els, a voluminous literature has highlighted the importance of allowing for time-varying
volatility in macroeconomic and financial data for estimation and forecasting. Standard
ARMA models that assume constant variance are seemingly not flexible enough. One
way to accommodate this time-variation in variance is via the GARCH model (Boller-
slev, 1986). For example, Nakatsuma (2000) considers a linear regression model with
ARMA-GARCH errors. Another popular way to allow for time-varying volatility is via
the stochastic volatility (SV) model (e.g., Taylor, 1994; Kim, Shepherd, and Chib, 1998).
The popularity of this approach can be seen through the numerous extensions of the
basic SV setup in recent years, such as the SV models with jump and Student’s t error
(Chib, Nardari, and Shephard, 2002), SV with leverage (Jacquier, Polson, and Rossi,
2004; Omori, Chib, Shephard, and Nakajima, 2007), SV with asymmetric, heavy-tailed
error (Nakajima and Omori, 2012), semiparametric SV models via the Dirichlet process
mixture (Jensen and Maheu, 2010), etc., to name but a few examples.

Several recent studies have attempted to bridge these two literatures on ARMA and
SV models, and have considered various flexible autoregressive models with stochastic
volatility (e.g., Cogley and Sargent, 2005; Primiceri, 2005; Cogley, Primiceri, and Sargent,
2010). But there are few papers that investigate moving average models with SV. The
purpose of this article is to fill this gap: we introduce a class of models that include both
the moving average and stochastic volatility components, where the conditional mean
process has a flexible state space representation. As such, the setup includes a wide variety
of popular specifications as special cases, including the unobserved components and time-
varying parameter models. Of course, any invertible MA process can be approximated
by a sufficiently high order AR model. In practice, however, forecasts based on these
AR models—since they have many parameters to estimate—often compare poorly to
parsimonious ARMA models (e.g., Stock and Watson, 2007; Athanasopoulos and Vahid,
2008). In our empirical work that involves quarterly inflation, we find that there is
substantial support for the proposed models against their counterparts with only SV.
The forecasting results suggest that addition of the MA component further improves the
forecast performance of standard SV models, particularly at short forecast horizons.

A second contribution of this paper is to develop an efficient Markov chain Monte Carlo
(MCMC) sampler for estimating this class of models. Since the conditional mean process
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has a state space form, estimation might appear to be straightforward. However, under
our models the errors in the measurement equation are no longer serially independent
due to the presence of the MA component. As such, application of Kalman filter-based
methods would first require a suitable transformation of the data to make the errors
serially independent. Instead of using the Kalman filter, we take a different approach: we
extend previous work on precision-based algorithms for state space models in Chan and
Jeliazkov (2009) and McCausland, Miller, and Pelletier (2011), which are shown to be
more efficient than Kalman filter-based methods. The idea of exploiting banded precision
matrix can be traced back to Fahrmeir and Kaufmann (1991); see also Rue, Martino, and
Chopin (2009) and Ruiz-Cardenas, Krainski, and Rue (2012). By exploiting the sparse
structure of the covariance matrix of the observations, we develop an easy and fast method
for estimating these new models.

A third contribution involves a substantive empirical application on modeling and fore-
casting U.S. quarterly consumer price index (CPI) inflation. A vast literature on this topic
has emerged over the last two decades; recent studies include Koop and Potter (2007),
Stock and Watson (2007, 2010), Cogley and Sbordone (2008), Cogley et al. (2010), Clark
and Doh (2011), Korobilis (2012), Koop and Korobilis (2012), among many others. One
key finding in this literature is that both persistence and volatility in the inflation process
have changed considerably over time. In particular, inflation volatility decreased gradu-
ally from the great inflation of the 1970s and throughout the great moderation, until it
increased again and peaked at the aftermath of the global financial crisis. Empirically,
it is often found that models with stochastic volatility provide substantially better point
and density forecasts than those obtained from constant error variance models (e.g., Clark
and Doh, 2011; Chan, Koop, Leon-Gonzalez, and Strachan, 2012a).

Another key finding in this literature is that for forecasting inflation, both at short and
long horizons, it is often difficult to improve upon univariate models using only informa-
tion in observed inflation (e.g., Stock and Watson, 2007, 2010; Chan et al., 2012a). One
reason for this lack of predictive power of a wide range of seemingly relevant variables—
such as unemployment rate and GDP growth—might be because variables useful for
forecasting change over time (e.g., oil price might be an important predictor for inflation
in the 1970s but is less important in the 2000s) and/or over business cycle (e.g., some
variables may predict well in expansions but not in recessions). In fact, Koop and Ko-
robilis (2012) find evidence that the set of relevant predictors for inflation does change
over time. Given these findings, we consider univariate time series models using only
information in observed inflation. Additional explanatory variables, of course, can be
incorporated if desired.

We focus on univariate MA-SV models in this paper, partly because for our empirical
work these models are sufficient. We note that the univariate framework developed here
can be used to construct multivariate models in a straightforward manner. For example,
in the multivariate SV models of Chib, Nardari, and Shephard (2006), SV is induced by
a number of latent factors, each of which follows an independent univariate SV process.
In this setup, we can, for example, replace the SV process with the univariate MA-SV
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process introduced in this paper to construct a multivariate SV model with autocorrelated
errors. We leave the multivariate case for future research.

The rest of this article is organized as follows. In Section 2 we introduce the general
framework, and discuss how this state space form includes a variety of popular specifi-
cations as special cases. Section 3 develops an efficient posterior simulator to estimate
this new class of models. Section 4 presents empirical results for modeling and forecast-
ing U.S. CPI inflation. In the last section we conclude our findings and discuss future
research direction.

2 Moving Average Stochastic Volatility Models

The general framework we consider is the following q-th-order moving average model with
stochastic volatility:

yt = µt + εyt , (1)

εyt = ut + ψ1ut−1 + · · ·+ ψqut−q, ut ∼ N (0, eht), (2)

ht = µh + φh(ht−1 − µh) + εht , εht ∼ N (0, σ2
h), (3)

where we assume |φh| < 1. The errors ut and εht are independent of each other for all
leads and lags. We further assume that u0 = u−1 = · · · = u−q+1 = 0. One can, of course,
treat these initial error terms as parameters if desired, and the estimation procedures
discussed in the next section can be easily extended to allow for this possibility. For
typical situations where T ≫ q, whether these errors are modeled explicitly or not makes
little difference in practice.

Let µ = (µ1, . . . , µT )
′, h = (h1, . . . , hT )

′ and ψ = (ψ1, . . . , ψq)
′. Then, it is easy to see

that the conditional variance of yt is given by

Var(yt |µ,ψ,h) = eht + ψ2
1e
ht−1 + · · ·+ ψ2

qe
ht−q .

In other words, the variance of yt is time-varying through two channels: it is a moving
average of the q + 1 most recent variances eht , . . . , eht−q , and the log-volatility ht in turn
evolves according to the stationary AR(1) process in (3). Unlike the standard SV models,
yt is serially correlated even after conditioning on the states. In fact, its conditional
autocovariances are given by

Cov(yt, yt−j |µ,ψ,h) =

{ ∑q−j

i=0 ψi+jψie
ht−i, for j = 1, . . . , q,

0, for j > q,

where ψ0 = 1. It is interesting to note that due to the presence of the log-volatility ht,
the autocovariances of yt are also time-varying.

Now, by choosing a suitable conditional mean process µt, the model in (1)–(3) includes
a variety of popular specifications, such as:
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1. the autoregressive model:

µt = φ0 + φ1yt−1 + · · ·+ φpyt−p;

2. the linear regression model:

µt = β0 + β1x1t + · · ·+ βkxkt,

where xt = (x1t, . . . , xkt) is a vector of explanatory variables;

3. the unobserved components model:

µt = τt,

τt = τt−1 + ετt , ετt ∼ N (0, σ2
τ );

4. the time-varying parameter model:

µt = β0t + β1tx1t + · · ·+ βktxkt,

βt = βt−1 + ε
β
t , ε

β
t ∼ N (0,Σβ),

where βt = (β0t, β1t, . . . , βkt)
′.

Some other flexible time-varying models recently introduced also fall within this general
framework. Examples include an autoregressive unobserved components model discussed
in Clark and Doh (2011), as well as various bounded trend inflation models proposed
in Chan, Koop, and Potter (2012b). The framework in (1)–(3) is a natural extension of
the standard stochastic volatility setting. In particular, the latter is a special case of this
general framework with ψ1 = · · · = ψq = 0. For identification purposes, we assume the
usual invertiblilty conditions, i.e., the roots of the characteristic polynomial associated
with the MA coefficients are all outside the unit circle.

It is well known that moving average models have a state space representation, and
the likelihood function can be evaluated using the Kalman filter (Harvey, 1985). This
approach can be slow, however, especially when we need to make tens of thousands
functional evaluations of the likelihood in the MCMC algorithm. We therefore introduce
in the next section a direct way to evaluate the likelihood function. By utilizing fast sparse
matrix routines, the new approach is simple and easy to program. Another complication
in our setting is that the MA component induces serial dependence in observations.
Consequently, in order to apply conventional Kalman filter-based methods to simulate
the states, one would first need to transform the data so that the errors in the new
measurement equation are serially independent (e.g., one such transformation is suggested
in Chib and Greenberg, 1994). Instead of using Kalman filter, we introduce a direct
approach that builds upon previous work on precision-based algorithms in Chan and
Jeliazkov (2009) for fitting this new class of models. McCausland et al. (2011) provide
a careful comparison between Kalman-filter based and precision-based algorithms, and
show that the latter algorithms are substantially more efficient.
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3 Estimation

We introduce a direct approach for estimating the class of models in (1)–(3) that exploits
the special structure of the problem, particularly that the covariance matrix of the joint
distribution for y = (y1, . . . , yT )

′ is sparse, i.e., it contains only a few non-zero elements.
We first introduce a fast and simple way to evaluate the likelihood function that is useful
for both maximum likelihood and Bayesian estimation. It is followed by a detailed discus-
sion on a new posterior simulator for estimating the log-volatilities and the parameters
in the conditional mean process.

3.1 Likelihood Evaluation

To obtain the likelihood function, we first derive the joint distribution of the observations
y = (y1, . . . , yT )

′. To this end, we rewrite (1)–(2) in matrix notations:

y = µ+Hψu, (4)

where µ = (µ1, . . . , µT )
′, u = (u1, . . . , uT )

′ ∼ N (0,Sy), Sy = diag(eh1, . . . , ehT ), and Hψ

is a T × T lower triangular matrix with ones on the main diagonal, ψ1 on first lower
diagonal, ψ2 on second lower diagonal, and so forth. For example, for q = 2, we have

Hψ =




1 0 0 0 · · · 0
ψ1 1 0 0 · · · 0
ψ2 ψ1 1 0 · · · 0
0 ψ2 ψ1 1 · · · 0
...

. . .
. . .

. . .
...

0 0 · · · ψ2 ψ1 1




.

It is important to note that in general Hψ is a banded T × T matrix that contains
only (T − q/2)(q + 1) < T (q + 1) non-zero elements, which is substantially less than
T 2 for typical applications where T ≫ q. This special structure can be exploited to
speed up computation. For instance, obtaining the Cholesky decomposition of a banded
T × T matrix with fixed bandwidth involves only O(T ) operations (e.g., Golub and
van Loan, 1983, p.156) as opposed to O(T 3) for a full matrix of the same size. Similar
computational savings can be generated in operations such as multiplication, forward and
backward substitution by using block-banded or sparse matrix algorithms. These banded
and sparse matrix algorithms are implemented in standard packages such as Matlab,
Gauss and R.

Now, by a simple change of variable, it follows from (4) that

(y |ψ,µ,h) ∼ N (µ,Ωy),

where h = (h1, . . . , hT )
′, Ωy = Hψ Sy H

′

ψ. Since Sy = diag(eh1 , . . . , ehT ) is a diagonal
matrix, and Hψ is a lower triangular sparse matrix, the product Ωy is sparse. In fact,
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it is a banded matrix with only a narrow band of non-zero elements around the main
diagonal. Moreover, since |Hψ| = 1 for any ψ = (ψ1, . . . , ψq)

′, we have |Ωy| = |Sy| =

exp
(∑T

t=1 ht

)
. The log joint density of y is therefore given by

log p(y |ψ,µ,h) = −
T

2
log(2π)−

1

2

T∑

t=1

ht −
1

2
(y − µ)′Ω−1

y
(y− µ). (5)

It is important to realize that one need not obtain the T ×T inverse matrix Ω−1
y

in order
to evaluate the log density in (5)—it would involve O(T 3) operations. Instead, it can be
computed in three steps, each of which requires only O(T ) operations. To this end, we
introduce the following notations: given a lower (upper) triangular T × T non-singular
matrixA and a T×1 vector c, letA\c denote the unique solution to the triangular system
Ax = c obtained by forward (backward) substitution, i.e., A\c = A−1c. Now, we first
obtain the Cholesky decomposition Cy of the banded matrix Ωy such that CyC

′

y
= Ωy,

which involves only O(T ) operations. Then compute

x1 = C′

y
\(Cy\(y− µ))

by forward followed by backward substitution, each of which requires O(T ) operations
since Cy is also banded. By definition,

x1 = C−1′

y
(C−1

y
(y − µ)) = (CyC

′

y
)−1(y − µ) = Ω−1

y
(y − µ).

Finally, compute

x2 = −
1

2
(y − µ)′x1 = −

1

2
(y − µ)′Ω−1

y
(y − µ),

which gives the quadratic term in (5). Thus, given µ, ψ and h, one can efficiently evaluate
the likelihood function without the need of the Kalman filter.

3.2 Posterior Analysis

Now, we discuss an efficient posterior sampler for estimating the MA-SV model in (1)–(3).
To keep the discussion concrete, we consider in particular the unobserved components
specification; estimation for other conditional mean processes follows similarly. Specifi-
cally, the measurement equation is given by (4) with µ = τ = (τ1, . . . , τT )

′, whereas the
transition equations are

τt = τt−1 + ετt , ετt ∼ N (0, σ2
τ ),

ht = µh + φh(ht−1 − µh) + εht , εht ∼ N (0, σ2
h),

with |φh| < 1. The transition equation for τt is initialized with τ1 ∼ N (τ0, σ
2
0τ ), where τ0

and σ2
0τ are some known constants. In particular, we set τ0 = 0. Moreover, the transition

equation for ht is initialized with h1 ∼ N (µh, σ
2
h/(1− φ2

h)).
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We assume independent priors for ψ, σ2
τ , µh, φh and σ2

h, i.e., p(ψ, σ2
τ , µh, φh, σ

2
h) =

p(ψ)p(σ2
τ )p(µh)p(φh)p(σ

2
h). For ψ, we consider a multivariate normal prior with sup-

port in the region where the invertibility conditions on ψ hold. As for other parameters,
we assume the following independent priors:

σ2
τ ∼ IG(ντ , Sτ), µh ∼ N (µh0, Vµh), φh ∼ N (φh0, Vφh)1l(|φh| < 1), σ2

h ∼ IG(νh, Sh),

where IG denotes the inverse-gamma distribution. Note that we impose the stationarity
condition |φh| < 1 through the prior on φh. Then posterior draws can be obtained by
sequentially sampling from:1

1. p(τ |y,h,ψ, σ2
τ );

2. p(h |y, τ ,ψ, σ2
h, µh, φh);

3. p(ψ, σ2
h, σ

2
τ |y, τ ,h, µh, φh) = p(ψ |y, τ ,h) p(σ2

h |h, µh, φh) p(σ
2
τ | τ );

4. p(µh |h, σ2
h, φh);

5. p(φh |h, µh, σ2
h).

We first discuss an efficient way to sample from p(τ |y,h,ψ, σ2
τ ). First note that by

pre-multiplying (4) by H−1
ψ , we have

ỹ = τ̃ + u,

where ỹ = H−1
ψ y and τ̃ = H−1

ψ τ . In other words, the log density for ỹ is

log p(ỹ |ψ, τ̃ ,h) ∝ −
1

2

T∑

t=1

ht −
1

2
(ỹ− τ̃ )′S−1

y
(ỹ − τ̃ ), (6)

where Sy = diag(eh1, . . . , ehT ). Hence it is more convenient to work with τ̃ instead of the
original parameterization τ . Once we have a draw for τ̃ , we simply pre-multiply it by
Hψ to get a draw for τ .

Next, we derive the prior density for τ̃ . To this end, we first obtain the prior density for
τ . Rewrite the transition equation for τt in matrix notations:

Hτ = ετ ,

where ετ = (ετ1, . . . , ε
τ
T )

′ ∼ N (0,Sτ ), Sτ = diag(σ2
0τ , σ

2
τ , . . . , σ

2
τ ), and H is the first

difference matrix

H =




1 0 0 · · · 0
−1 1 0 · · · 0
0 −1 1 · · · 0
...

. . .
...

0 0 · · · −1 1



.

1Matlab codes for estimating this unobserved components MA-SV model are available at
http://people.anu.edu.au/joshua.chan/.
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That is, (τ | σ2
τ ) ∼ N (0,Ωτ ), where Ω−1

τ = H′S−1
τ H. Recall that σ2

0τ is the variance for
the initial underlying trend τ1, and is assumed to be a fixed hyper-parameter (although
it is straightforward to treat it as a parameter).

It is important to realize that in this case the precision matrix Ω−1
τ is sparse. Now,

by a simple change of variable, we have (τ̃ | σ2
τ ) ∼ N (0,H−1

ψ ΩτH
−1′

ψ ). Noting that

|H| = |Hψ| = 1 and |Ωτ | = σ2
0τ (σ

2
τ )
T−1, the log prior density for τ̃ is therefore given by

log p(τ̃ | σ2
τ ) ∝ −

T − 1

2
log σ2

τ −
1

2
τ̃
′H′

ψΩ
−1
τ Hψτ̃ , (7)

Combining (6) and (7), and using standard results from linear regression (see, e.g., Koop,
2003), we obtain the log conditional density log p(τ̃ | ỹ,h,ψ, σ2

τ ) as follows:

log p(τ̃ | ỹ,h,ψ, σ2
τ ) ∝−

1

2
(ỹ − τ̃ )′S−1

y
(ỹ− τ̃ )−

1

2
τ̃
′H′

ψΩ
−1
τ Hψτ̃

∝−
1

2
(τ̃ ′(S−1

y
+H′

ψΩ
−1
τ Hψ)τ̃ − 2τ̃ ′S−1

y
y)

∝−
1

2
(τ̃ − τ̂ )′D−1

τ̃
(τ̃ − τ̂ ),

where Dτ̃ = (S−1
y

+H′

ψΩ
−1
τ Hψ)

−1, and τ̂ = Dτ̃S
−1
y
ỹ. That is,

(τ̃ | ỹ,h,ψ, σ2
τ ) ∼ N (τ̂ ,Dτ̃ ).

Since N (τ̂ ,Dτ̃ ) is typically high dimensional, sampling from it using a brute-force ap-
proach is time-consuming. Here we adopt the precision-based sampling method in Chan
and Jeliazkov (2009) to obtain draws from N (τ̂ ,Dτ̃ ) efficiently. To proceed, first note
that the precision matrix D−1

τ̃ = (S−1
y

+H′

ψΩ
−1
τ Hψ) is sparse. Thus τ̂ can be computed

quickly using the same approach for evaluating the likelihood function discussed earlier:
obtain the Cholesky decomposition Cτ̃ of D−1

τ̃ , and compute

τ̂ = C′

τ̃\(Cτ̃\(S
−1
y
ỹ))

by forward and backward substitution. A draw from N (τ̂ ,Dτ̃ ) can now be obtained as
follows: sample T independent standard normal draws z ∼ N (0, I) and return

τ̃ = τ̂ +C′

τ̃\z.

Since τ̃ is an affine transformation of a normal random vector, it is also a normal random
vector. It is easy to check that its expectation is τ̂ and its covariance matrix is

C−1′

τ̃ C−1
τ̃ = (Cτ̃C

′

τ̃ )
−1 = Dτ̃

as desired. Finally, given the draw τ̃ ∼ N (τ̂ ,Dτ̃ ), return τ = Hψτ̃ .

In Step 2 of the MCMC sampler, we sample from p(h |y, τ ,ψ, σ2
h, µh, φh). To proceed,

first define y∗ = H−1
ψ (y − τ ). It follows from (4) that y∗ = u ∼ N (0,Sy), where Sy =

diag(eh1 , . . . , ehT ). With this transformation, the auxiliary mixture sampling approach in
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Kim, Shepherd, and Chib (1998) can be applied to draw h efficiently; see also Koop and
Korobilis (2010), p. 308–310, for a textbook treatment.

For Step 3, note that ψ, σ2
h, and σ2

τ are conditionally independent given y, τ , and h.
Hence, we can sample each sequentially. Given the prior p(ψ), it follows from (5) that

log p(ψ |y, τ ,h) ∝ log p(ψ) + log p(y |ψ, τ ,h)

∝ log p(ψ)−
1

2
y∗

′

S−1
y
y∗,

where we use the transformation y∗ = H−1
ψ (y − τ ). Hence, log p(ψ |y, τ ,h) can be

quickly evaluated for any ψ given y, τ and h using the method discussed in the previous
section. Since in typical applications ψ is low dimensional—only a few moving average
terms are needed—one can maximize log p(ψ |y, τ ,h) numerically and obtain the mode

and the negative Hessian evaluated at the mode, denoted as ψ̂ andK, respectively. Then,
draws from p(ψ |y, τ ,h) are obtained using an independence-chain Metropolis-Hastings

step with proposal density N (ψ̂,K−1), for example. When ψ is high dimensional, one
can avoid the high-dimensional numerical maximization by implementing, e.g., various
adaptive MCMC samplers discussed in Andrieu and Thoms (2008).

Next, both p(σ2
h |h, µh, φh) and p(σ

2
τ | τ ) are inverse-gamma densities, and can therefore

be sampled using standard methods. In fact, we have

(σ2
τ | τ ) ∼ IG

(
ντ + (T − 1)/2, S̃τ

)
, (σ2

h |h, µh, φh) ∼ IG
(
νh + T/2, S̃h

)
,

where S̃τ = Sτ +
∑T

t=2(τt − τt−1)
2/2 and S̃h = Sh + [(1− φ2

h)(h1 − µh)
2 +

∑T

t=2(ht − µh−
φh(ht−1 − µh))

2]/2. Lastly, Steps 4 and 5 are standard and can be performed, e.g., as
described in Kim et al. (1998) by simply changing the priors.

We note that the estimation for other conditional mean processes can be implemented
analogously; we provide the estimation details for the autoregressive MA-SV model in
the appendix.

3.3 Computation Efficiency

In this section we briefly discuss some computation issues and the scalability of the
algorithm introduced in the previous section. In a typical finance application, for example,
one might have time series with thousands of observations. It is therefore important that
the estimation method can handle data with large T . In what follows, we discuss the
computational complexity of the proposed posterior sampler as T gets large. Again, for
concreteness we consider in particular the unobserved components model.

First, the conditional distribution p(τ |y,h,ψ, σ2
τ ) is Gaussian, and draws from this distri-

bution can be obtained exactly using the precision-based method. In particular, obtaining
a draw requires the Cholesky decomposition of the banded precision matrix, as well as a
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few forward/backward substitutions. Each of these operations involves only O(T ) oper-
ations. In Step 2 of the posterior sampler, we first transform the data y∗ = H−1

ψ (y− τ ),
which involves O(T ) operations as Hψ is a banded matrix. Then, we directly apply the
auxiliary mixture sampling of Kim et al. (1998). Hence, this step is as efficient as the
corresponding step in standard SV models.

Next, in Step 3 of the posterior sampler, the conditional distribution p(ψ |y, τ ,h) is non-

standard, and we numerically maximize log p(ψ |y, τ ,h) to obtain the mode ψ̂ and K,
the negative Hessian evaluated at the mode. We then implement a Metropolis-Hastings
step with the proposal density N (ψ̂,K−1). Evaluation of p(ψ |y, τ ,h) is done using the
method described in Section 3.1, which again requires O(T ) operations. This step is
sufficiently efficient in typical applications where ψ is low dimensional. When ψ is high
dimensional, one can avoid the high-dimensional numerical maximization by implement-
ing, e.g., adaptive MCMC samplers such as those discussed in Andrieu and Thoms (2008).
Lastly, the remaining steps—drawing from p(σ2

h |h, µh, φh), p(σ
2
τ | τ ), p(µh |h, σ

2
h, φh) and

p(φh |h, µh, σ
2
h)—require trivial computation efforts and can be done quickly even when

T is large.

2006 2007 2008 2009 2010 2011
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Figure 1: AUD/USD daily returns from January 2006 to December 2010.

To get a sense of how long it takes to estimate the unobserved components MA-SV model,
we fit the model using daily returns on AUD/USD from January 2006 to December 2010
with a total of T = 1, 303 observations (see Figure 1). The algorithm is implemented
using Matlab on a desktop with an Intel Core i7-870 @2.93 GHz processor. It takes
about 132 seconds to obtain every 10,000 posterior draws.
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4 Modeling and Forecasting U.S. Inflation Rate

Now we use the proposed MA-SV models to analyze the behavior of U.S. quarterly CPI
inflation, and contrast the results with those obtained from the standard variants with
only stochastic volatility. In addition, we also compare the forecast performance of the
two classes of models at various forecast horizons. Since allowing for stochastic volatility
is found to be empirically important, unless stated otherwise, models considered in this
section all have stochastic volatility in the measurement equation.

4.1 Competing Models

We consider four popular specifications for modeling inflation, and for each we have two
versions: with and without the MA component. The primary goal of this exercise is not
to find the best model per se. Rather, our objective is to investigate if the addition of
the MA component improves model-fit and forecast performance, and how it affects the
estimates of the states and other parameters of interest. The first specification is the
unobserved components model, which we reproduce here for convenience:

yt = τt + ut, ut ∼ N (0, eht),

τt = τt−1 + ετt , ετt ∼ N (0, σ2
τ),

ht = µh + φh(ht−1 − µh) + εht , εht ∼ N (0, σ2
h).

We refer this version of unobserved components model as the UC model. Stock and
Watson (2007) extend this specification to include stochastic volatility in the transition
equation for the underlying trend τt. Specifically, the variance for ετt—instead of being
fixed to be a constant—is allowed to be time-varying: ετt ∼ N (0, egt). The log-volatility
gt, in turn, evolves as a stationary AR(1) process:2

gt = µg + φg(gt−1 − µg) + εgt , εgt ∼ N (0, σ2
g),

where |φg| < 1. This version of unobserved components model, where both the mea-
surement and transition equations have stochastic volatility, is referred to as the UCSV
model. The final two specifications are autoregressive models:

yt = φ0 + φ1yt−1 + · · ·+ φpyt−p + ut,

where ut has the same stochastic volatility specification as before. In addition, we impose
the conditions that the roots of the characteristic polynomial associated with the AR
coefficients all lie outside the unit circle, so that the AR process is stationary. We consider
two lag lengths p = 1 and p = 2, and we refer them as AR(1) and AR(2) respectively.

For each of the four models—UC, UCSV, AR(1) and AR(2)—we include the MA-SV
variants as specified in (1)–(2), and we refer them asUC-MA,UCSV-MA,AR(1)-MA

2In Stock and Watson (2007) the stochastic volatilities ht and gt evolve as random walks, which may
be viewed as a limiting case considered here with φg = φh = 1.
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and AR(2)-MA respectively. For these models with the moving average components, we
set q, the number of moving average terms, to be one. Empirical evidence supporting this
choice will be presented in Section 4.3. We summarize all eight specifications in Table 1.

Table 1: A list of competing models.

Model Description
UC unobserved components model
UC-MA same as UC but with an MA(1) component
UCSV same as UC but the state equation for τt has SV
UCSV-MA same as UCSV but with an MA(1) component
AR(1) autoregressive model with 1 lag
AR(1)-MA same as AR(1) but with an MA(1) component
AR(2) autoregressive model with 2 lags
AR(2)-MA same as AR(2) but with an MA(1) component
UC-MA-NoSV same as UC-MA but without SV
AR(1)-MA-NoSV same as AR(1)-MA but without SV
AR(2)-MA-NoSV same as AR(2)-MA but without SV

In the forecasting exercise, we also include three additional models without stochastic
volatility for comparison. Specifically, UC-MA-NoSV is the same as UC-MA, but the
error term in the measurement equation ut now has constant variance: ut ∼ N (0, σ2

y).
The models AR(1)-MA-NoSV and AR(2)-MA-NoSV are defined similarly.

4.2 Data and Priors

The data consist of U.S. quarterly CPI inflation from 1947Q1 to 2011Q3. More specifi-
cally, given the quarterly CPI figures zt, we use yt = 400 log(zt/zt−1) as the CPI inflation.
A plot of the data is given in Figure 2. For easy comparison, we choose broadly simi-
lar priors across models. In particular, we use exactly the same priors for the common
model parameters in each pair of models with and without the MA component. For the
MA coefficient ψ1, we assume the truncated normal prior ψ1 ∼ N (ψ0, Vψ)1l(|ψ1| < 1) so
that the MA process is invertible. We set ψ0 = 0 and Vψ = 1. The prior distribution
thus centers around 0 and has support within the interval (−1, 1). Given the large prior
variance, it is also relatively non-informative.

As discussed in Section 3.2, we assume independent inverse-gamma priors for σ2
τ and σ2

h:
σ2
τ ∼ IG(ντ , Sτ) and σ2

h ∼ IG(νh, Sh). We choose relatively small—hence relatively non-
informative—values for the degrees of freedom parameters: ντ = νh = 10. For the scale
parameters, we set Sτ = 0.18 and Sh = 0.45. These values imply E σ2

τ = 0.1412 and E σ2
h =

0.2242. The chosen prior means reflect the desired smoothness of the corresponding state
transition, and are comparable to those used in previous studies, such as Chan et al.
(2012b) and Stock and Watson (2007). As for µh and φh, their priors are respectively
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normal and truncated normal: µh ∼ N (µh0, Vµh) and φh ∼ N (φh0, Vφh)1l(|φh| < 1), with
µh0 = 0, Vµh = 5, φh0 = 0.9 and Vφh = 1.
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Figure 2: U.S. quarterly CPI inflation from 1947Q1 to 2011Q3.

For the models UCSV and UCSV-MA where both the measurement and state equa-
tions have stochastic volatility, we follow Stock and Watson (2007) and fix σ2

h and σ2
g .

In particular, we set σ2
h = σ2

g = 0.2242. For the autoregressive models, we assume a
truncated normal prior for the AR coefficients restricted to the stationary region Aφ:
φ ∼ N (φ0,Vφ)1l(φ ∈ Aφ), where φ = (φ0, φ1)

′ under the AR(1) and AR(1)-MA
models, and φ = (φ0, φ1, φ2)

′ under the AR(2) and AR(2)-MA models. Further we set
φ0 = 0 and Vφ = 5× I. Finally, for the three models without stochastic volatility—UC-
MA-NoSV, AR(1)-MA-NoSV and AR(2)-MA-NoSV—the error variance of the
measurement equation σ2

y is assumed to have an inverse-gamma prior σ2
y ∼ IG(νy, Sy)

with νy = 10 and Sy = 9. This implies E σ2
y = 1, which is comparable to the stochas-

tic volatility specifications where the prior mean for µh, the unconditional mean of the
log-volatility ht, is µh0 = 0 (and hence exp(µh0) = 1).

4.3 Full Sample Estimation Results

We present in this section the empirical results for the first eight models listed in Table 1,
obtained using the full sample from 1947Q1 to 2011Q3. All the posterior moments and
quantiles are based on 50,000 draws from the MCMC algorithm introduced in Section 3.2
after a burnin period of 5,000.

Figure 3 presents point estimates (posterior means) of the underlying inflation τt for four
models, as well as credible intervals obtained under the MA variants. It is clear from
the figure that there are large differences between estimates under the UC and UC-MA
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models. In particular, by allowing for an extra channel for persistence through the moving
average errors, the latter model produces much smoother estimates, which are more in
line with the notion of a smooth, gradually changing underlying inflation. This finding is
broadly consistent with those reported in earlier studies, such as Clark and Doh (2011)
and Chan et al. (2012b), who also find that by explicitly modeling short-run dynamics
one often obtains smoother, more reasonable, underlying inflation estimates.

1950 1960 1970 1980 1990 2000 2010
0

2

4

6

8

10

 

 

1950 1960 1970 1980 1990 2000 2010
−5

0

5

10

15

 

 

UCSV−MA
UCSV
5%−tile
95%−tile

UC−MA
UC
5%−tile
95%−tile

Figure 3: Posterior estimates and quantiles for τt under the UC, UC-MA, UCSV and
UCSV-MA models. The posterior quantiles are obtained under the MA variants.

On the other hand, the underlying inflation estimates for the UCSV and UCSV-MA
models are very similar, except for the early sample where those for the former appear
to be more erratic. By allowing the volatility in the transition equation for τt to be time-
varying, the model attributes much of the variation in observed inflation to variation in
τt, with the consequence that it traces closely the actual inflation. As such, the moving
average errors in the measurement equation play a lesser role in channeling the short-run
dynamics of the series. The erratic underlying inflation estimates, which change rapidly in
short periods, cast doubt on the overall appropriateness of theUCSV model. Regardless,
for our purpose it suffices to note that the MA component does help to obtain smoother
estimates for the underlying inflation, though to a lesser extent than in the UC model.

In Figure 4 we report the estimates for exp(ht/2). Under all specifications we find substan-
tial variation in the inflation volatility estimates, highlighting the importance of allowing
for stochastic volatility in the measurement equation. In addition, these results also
suggest that estimates for exp(ht/2) are somewhat sensitive to modeling assumptions,
especially the treatment of the error process in the UCSV model.
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Figure 4: Posterior estimates for exp(ht/2) under the eight models.

A key parameter of interest is the MA coefficient ψ1—if the posterior density for ψ1 is
concentrated around 0, it would indicate that the MA component might not be necessary.
Table 2 reports the posterior means and standard deviations for ψ1, as well as the proba-
bilities that ψ1 is positive, under the four MA-SV models. It is clear from the table that
the posterior means for ψ1 are all quite large in absolute value. For instance, the MA co-
efficient is estimated to be about 0.463 in the UC-MA model, indicating that even after
controlling for the underlying inflation and stochastic volatility, there is still considerable
positive autocorrelation in the observed inflation. In fact, the posterior probability that
ψ1 is positive is estimated to be 1, i.e., out of the 50,000 posterior draws for ψ1 obtained,
none are less than zero.

Table 2: Posterior means, standard deviations, and the probabilities of being positive for
ψ1 under the four MA-SV models.

UC-MA UCSV-MA AR(1)-MA AR(2)-MA
E(ψ1 |y) 0.463 0.307 -0.374 -0.378√

Var(ψ1 |y) 0.068 0.107 0.074 0.138
P(ψ1 > 0 |y) 1.00 0.993 0.000 0.007

Another interesting point to note is that under both versions of unobserved components
models, ψ1 is estimated to be positive, whereas its estimates are negative under both the
autoregressive models. This difference is perhaps not surprising: in the former two models
the autocorrelation of the observed inflation is modeled only through the random walk
underlying trend, which is seemingly not sufficient to capture all the observed positive
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autocorrelation. In contrast, past observed inflation rates enter directly the conditional
mean process in both the autoregressive models. The result appears to suggest that the
AR components, based on actual inflation rates with one or two lags, “over-capture” the
observed positive autocorrelation, which in turn induce a negative autocorrelation in the
residual.

Next, we compute the marginal density p(ψ1 |y) for the four moving average models.
Since the conditional density p(ψ1 |y,h,µ) has support in (−1, 1) and is known up to
a normalizing constant, it can be evaluated on a grid (and normalized so that the area
under the curve is one). Then, we estimate p(ψ1 |y) using the Monte Carlo average

̂p(ψ1 |y) =
1

M

M∑

i=1

p(ψ1 |y,h
(i),µ(i))

by summing over the M posterior draws h(i) and µ(i).
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Figure 5: Density estimates for p(ψ1 |y) under the four MA-SV models.

We report in Figure 5 the estimates under the four models. For example, most of the
mass for ψ1 is concentrated between 0.2 and 0.7 in UC-MA and between −0.6 and −0.1
in AR(1)-MA. The posterior densities under the remaining two models tell a similar
story: ψ1 is unlikely to be a small value around zero. Taken together, these results suggest
the relevance of extending the standard stochastic volatility models to include an MA
component.

The results in Table 2 and Figure 5 may be viewed as suggestive evidence showing the
relevance of the proposed MA component in the stochastic volatility models. In what
follows, we perform a formal Bayesian model comparison exercise to compare each pair
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of stochastic volatility models (i.e., with and without the MA component) using Bayes
factors (see, e.g., Koop, 2003, p. 3–4). Since we are comparing nested models, the Bayes
factor in favor of the model that has the MA component against the standard variant can
be computed using the Savage-Dickey density ratio (Verdinelli and Wasserman, 1995):

BF =
p(ψ1 = 0)

p(ψ1 = 0 |y)
.

In other words, we simply need to evaluate the marginal prior and posterior densities for
ψ1 at 0. The ratio of the two values then gives the relevant Bayes factor. The numerator
density is a univariate truncated normal, and can be easily evaluated. The denominator

density is not of standard form, but we can estimate it using ̂p(ψ1 = 0 |y).

The results are reported in Table 3. For each of the four pairwise comparisons—UC-MA
against UC, UCSV-MA against UCSV, AR(1)-MA against AR(1), and AR(2)-
MA against AR(2)—there is strong to overwhelming evidence that the data prefer the
variant with the MA component. Remember that each pair of the models only differs in
an extra parameter ψ1, and the stochastic volatility models are standard in the literature.
Given the context, these full sample estimation results present strong evidence in favor
of the proposed models against their counterparts without the MA component. Not only
do the former models fit the data better, they also give more sensible underlying inflation
estimates. In the next section, we present forecasting results that show the proposed
models also provide more accurate point and density forecasts.

Table 3: Bayes factors in favor of the proposed models against the standard variants with
only stochastic volatility.

UC-MA UCSV-MA AR(1)-MA AR(2)-MA
1.78× 107 5.41 1.75× 103 6.47

So far we have fixed q, the number of MA terms, to be one. We now briefly discuss the
choice of q in general. One natural way to proceed is to view the problem as a model
comparison exercise. For example, to compare models with q and q + 1 MA terms, we
simply need to compute the relevant Bayes factor. Specifically, since we have nested
models, the Bayes factor in favor of the MA(q) model can be obtained using the Savage-
Dickey density ratio p(ψq+1 = 0 |y)/p(ψq+1 = 0), which can be estimated using the
method described previously.

As an illustration, we investigate if there is empirical support for models with two MA
terms. First, we plot the density estimates for p(ψ2 |y) under the four MA-SV models
in Figure 6. It is clear that for each of the density, there is substantial mass around 0,
indicating that ψ2 is quite likely to be a small value. This can be viewed as evidence
supporting models with only one MA term.
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Figure 6: Density estimates for p(ψ2 |y) under the four MA-SV models.

Then, to formally compare the models with one and two MA terms, we calculate the Bayes
factors in favor of the MA(1) specifications against the corresponding MA(2) models.
The results are presented in Table 4. In each pairwise comparison, there is substantial to
strong evidence that the data prefer the model with one MA term only.

Table 4: Bayes factors in favor of the MA(1) specifications against the corresponding
MA(2) models.

UC-MA UCSV-MA AR(1)-MA AR(2)-MA
12.78 3.04 8.62 12.52

4.4 Forecasting Results

We now perform a recursive out-of-sample forecasting exercise to evaluate the perfor-
mance of the models listed in Table 1 for forecasting U.S. quarterly CPI inflation at
various horizons. In addition to the four pairs of models—UC, UCSV, AR(1), AR(2),
and their variants with an MA component—we also include three versions that have only
constant variance for comparison. We use each of the eleven models to produce both point
and density k-step-ahead iterated forecasts with k = 1, 4, 8, 12 and 16. Specifically, given
the data up to time t, denoted as y1:t, we implement the MCMC sampler in Section 3.2
to obtain posterior draws given y1:t. Then, we compute the predictive mean E(yt+k |y1:t)
as the point forecast and the predictive density p(yt+k |y1:t) as the density forecast. Next,
we move one period ahead and repeat the whole exercise with data y1:t+1, and so forth.
These forecasts are then evaluated for t = t0, . . . , T − k, where t0 is 1975Q1.

In practice, neither the predictive mean nor the predictive density of yt+k can be computed
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analytically. Instead, they are obtained using predictive simulation. More precisely, at
every MCMC iteration, given the model parameters and states (up to time t), we simulate
future states from time t + 1 to t + k using the relevant transition equations. We also
simulate future errors us ∼ N (0, ehs) or us ∼ N (0, σ2

y) for s = t + 1, . . . , t + k − 1.
Given these draws, yt+k is a normal random variable as specified in (1), and one can
easily produce the point and density forecasts for yt+k. Hence, we have a pair of forecasts
(point and density) at every MCMC iteration. These forecasts are then averaged over all
the posterior draws to produce estimates for E(yt+k |y1:t) and p(yt+k |y1:t). The whole
exercise is then repeated using data up to time t + 1 to produce E(yt+k+1 |y1:t+1) and
p(yt+k+1 |y1:t+1), and so forth.

Let yot+k denote the observed value of yt+k that is known at time t+ k. The metric used
to evaluate the point forecasts is the root mean squared forecast error (RMSFE) defined
as

RMSFE =

√∑T−k

t=t0
(yot+k − E(yt+k |y1:t))2

T − k − t0 + 1
.

To evaluate the density forecast p(yt+k |y1:t), one natural measure is the predictive like-
lihood p(yt+k = yot+k |y1:t), i.e., the predictive density of yt+k evaluated at the observed
value yot+k. Clearly, if the actual outcome yot+k is unlikely under the density forecast,
the value of the predictive likelihood will be small, and vise versa; see, e.g., Geweke and
Amisano (2011) for a more detailed discussion of the predictive likelihood and its con-
nection to the marginal likelihood. We evaluate the density forecasts using the sum of
log predictive likelihoods:

T−k∑

t=t0

log p(yt+k = yot+k |y1:t).

For this metric, a larger value indicates better forecast performance.

Table 5 presents the point forecast results for the eleven models. For easy comparison,
we report the ratios of RMSFEs of a given model to those of UC. Hence, values smaller
than unity indicate better forecast performance than UC. A few broad observations can
be drawn from these forecasting results. First, except for UCSV, there is clear evidence
that the proposed models perform better than the standard variants for short-horizon
forecasts. For instance, in comparing one-quarter-ahead forecasts, the RMSFE for UC-
MA is 92% of the value for UC. Remember that the latter is among the best forecasting
models in the literature. Clearly, these results provide strong evidence that the addition
of the MA component gives substantial benefits. Second, for medium-horizon forecasts
(e.g., k > 8), each of the three pairs—UCSV and UCSV-MA, AR(1) and AR(1)-
MA, AR(2) and AR(2)-MA—give almost identical RMSFEs. For UC-MA, however,
it consistently gives better point forecasts compared to UC, even at four-year forecast
horizon. This might seem surprising at first glance, as the MA component only models
short-run dynamics. However, the results in Section 4.3, especially Figure 3, suggest one
explanation: by including the MA component, one obtains smoother and more reasonable
estimates for the underlying inflation, which in turn help produce better forecasts at
longer horizons.
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Table 5: Relative RMSFEs for forecasting quarterly CPI inflation relative to UC.

h = 1 h = 4 h = 8 h = 12 h = 16
UC 1.00 1.00 1.00 1.00 1.00
UC-MA 0.92 0.98 0.94 0.92 0.93
UCSV 0.94 1.00 1.06 1.08 1.08
UCSV-MA 0.94 1.00 1.06 1.09 1.07
AR(1) 0.96 0.95 0.96 0.96 0.96
AR(1)-MA 0.93 0.95 0.97 0.97 0.96
AR(2) 0.96 0.96 0.97 0.96 0.95
AR(2)-MA 0.94 0.95 0.97 0.97 0.95
UC-MA-NoSV 0.96 1.03 0.97 0.95 0.96
AR(1)-MA-NoSV 0.94 0.99 1.00 0.99 0.99
AR(2)-MA-NoSV 0.94 1.00 1.01 0.99 1.00

The results also show the importance of allowing for stochastic volatility. For example,
UC-MA dominates the version without stochastic volatility—UC-MA-NoSV—at all
forecast horizons. Comparing AR(1)-MA and AR(2)-MA with the corresponding
variants without stochastic volatility tells a similar story. Lastly, it is also of interest
to note that UCSV performs better than UC at short-horizon forecasts but worse at
longer horizons. This is consistent with the estimation results presented in Figure 3:
by including stochastic volatility in the transition for τt, the estimates for underlying
inflation under UCSV traces closely the actual inflation, which is good for short-horizon
forecasts but not for longer horizons. However, by including an MA component, UC-MA
outperforms UCSV-MA at all horizons.

Table 6: Sum of log predictive likelihoods for forecasting quarterly CPI inflation relative
to UC.

k = 1 k = 4 k = 8 k = 12 k = 16
UC 0.0 0.0 0.0 0.0 0.0
UC-MA 6.5 6.3 15.0 20.5 20.9
UCSV 0.0 -4.4 -7.7 -12.1 -16.4
UCSV-MA 1.7 -2.1 -6.5 -11.2 -13.2
AR(1) 1.2 2.8 5.5 6.3 8.0
AR(1)-MA 6.9 8.1 10.4 11.4 12.1
AR(2) 3.2 5.6 8.5 8.9 10.2
AR(2)-MA 5.9 7.5 9.9 11.1 11.7
UC-MA-NoSV -22.3 -16.5 -6.1 -4.5 -4.2
AR(1)-MA-NoSV -18.8 -13.7 -11.2 -12.5 -9.8
AR(2)-MA-NoSV -19.1 -18.9 -14.3 -14.2 -11.6

We present the results for the density forecasts in Table 6. For easy comparison, we
first compute the sum of log predictive likelihoods of a given model, and from which we
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subtract the corresponding value of UC. Hence, positive values indicate better forecast
performance than UC. These results indicate that the addition of the MA component
provides substantial benefits not only for short-horizon density forecasts, but also for
longer horizons. Moreover, models which do not allow for time-varying variance per-
form quite badly compared to similar models with stochastic volatility, indicating the
important role of stochastic volatility in producing good density forecasts.

5 Concluding Remarks and Future Research

With the aim of expanding the toolkit for analyzing time series data, we have introduced
a new class of models that generalizes the standard stochastic volatility specification
to include a moving average component. The addition of the MA component leads to
models that are more robust to misspecification, which often translates into better forecast
performance in practice. A drawback of the new models is that the estimation is more
difficult, as the MA component induces serial dependence in the observations. In view of
this, we introduce a novel algorithm that exploits the special structure of the models —
that the covariance matrix for the observations is sparse, and therefore fast routines for
sparse matrices can be used.

We illustrate the relevance of the new class of models with an empirical application in-
volving U.S. CPI inflation. Our empirical results show that the data strongly favor the
new models over the standard variants with only SV. In a recursive forecasting exercise,
there is clear evidence that the new models deliver improvements in out-of-sample fore-
casts. A second finding is that by allowing for SV in the error variance and imposing
stationary conditions on the conditional mean process, parsimonious ARMA models can
be competitive against more complex models such as the unobserved components models.
In this paper we have only considered univariate models. For future research it would
be interesting to formulate multivariate versions of the proposed MA-SV models, using,
e.g., factors with SV, and extend the new estimation methods to those settings.

Appendix

In this appendix we outline a posterior simulator for estimating the AR-MA model:

yt = φ0 + φ1yt−1 + · · ·+ φpyt−p + ut + ψ1ut−1 + · · ·+ ψqut−q,

ht = µh + φh(ht−1 − µh) + εht ,

with |φh| < 1, where ut ∼ N (0, eht) and εht ∼ N (0, σ2
h). The transition equation for ht is

initialized with h1 ∼ N (µh, σ
2
h/(1− φ2

h)).

Let φ = (φ0, φ1, . . . , φp)
′, and we assume independent priors for φ, ψ, φh, µh and σ2

h.
The priors for ψ, φh, µh and σ2

h are given in Section 3.2. As for φ, we take the following
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truncated multivariate normal prior

φ ∼ N (φ0,Vφ)1l(φ ∈ Aφ),

where φ0 = 0,Vφ = 5×I and Aφ is the set where the roots of the autoregressive polyno-
mial associated with φ are all outside the unit circle. The posterior simulator sequentially
draws from: (1) p(φ |y,h,ψ); (2) p(h |y,φ,ψ, µh, φh, σ2

h); (3) p(ψ, σ
2
h |y,φ,h, µh, φh) =

p(ψ |y,φ,h) p(σ2
h |h, µh, φh); (4) p(µh |h, σ

2
h, φh); and (5)p(φh |h, µh, σ2

h).

Steps 2-5 can be implemented as in the sampler given in Section 3.2, and here we focus
on Step 1. To this end, we first write the observation equation in matrix form:

y = Xφ+Hψu,

where X is a T × (p + 1) matrix of intercepts and lagged observations appropriately

defined. Now let ỹ = H−1
ψ y and X̃ = H−1

ψ X, both of which can be computed quickly as
Hψ is banded. Then,

(ỹ |ψ,φ,h) ∼ N (X̃φ,Sy),

where Sy = diag(eh1, . . . , ehT ). It follows that

(φ |y,h,ψ) ∼ N (φ̂,Dφ)1l(φ ∈ Aφ),

where Dφ = (X̃′S−1
y
X̃+V−1

φ )−1 and φ̂ = DφX̃
′S−1

y
ỹ. A draw from the truncated density

can then be obtained via the acceptance-rejection sampling (e.g., Kroese, Taimre, and

Botev, 2011, chapter 3) with proposal density N (φ̂,Dφ). This step is efficient when φ is
low-dimensional, as is often the case.
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