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Abstract

It is well-known that the marginal likelihood, the gold standard for Bayesian model
comparison, can be sensitive to prior hyperparameter choices. However, most mod-
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ically high-dimensional integral of the marginal likelihood expression. Hence, de-
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rarely done in practice. We develop efficient and feasible methods to compute the
sensitivities of the marginal likelihood, obtained via two common simulation-based
methods, with respect to any prior hyperparameter, alongside the MCMC estima-
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applications in the context of widely used multivariate time series models.
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1 Introduction

The marginal likelihood is central to Bayesian model comparison and Bayesian model

averaging. Since analytical computation is only possible for a few simple models, most

models require computationally intense simulation-based methods to evaluate the typi-

cally high-dimensional integral of the marginal likelihood expression. Consequently, there

is a vast literature devoted to its estimation using Monte Carlo methods.1 Despite its

prominence, one well-known drawback of the marginal likelihood is that it is relatively

sensitive to the choice of prior—a small change in the prior that keeps inference of the

model parameters the same could have a large impact on the value of the marginal like-

lihood (see, e.g., Aitkin, 1991; O’Hagan, 1995).2 As such, the importance of sensitivity

analysis for marginal likelihood has long been recognized (e.g., Kass, 1993), but it is not

routinely done in empirical work due to the computation complexity given the intensity

of marginal likelihood estimation.3

In practice, when an informal prior sensitivity analysis is conducted, it is typically imple-

mented with a limited scope due to computational costs. For example, researchers might

assess a specific aspect of marginal likelihood sensitivities by re-computing its value using

a different set of hyperparameters. However, this approach is ad hoc and cumbersome.

We take the first step to address this issue by introducing a computationally feasible

and systematic approach to assess marginal likelihood sensitivities with respect to prior

hyperparameters. More specifically, we develop methods based on Automatic Differen-

tiation (AD) to compute partial derivatives of the marginal likelihood—estimated using

Monte Carlo—with respect to various hyperparameters. These partial derivatives are

useful in a number of situations.

Firstly, one can use them to identify key hyperparameters that impact the marginal

likelihood values. A further analysis focusing on those influential hyperparameters is then

feasible, for example, eliciting those prior hyperparameters more carefully or choosing

their values optimally. Secondly, these partial derivatives can be used to analyze whether

1Popular approaches include Gelfand and Dey (1994), Newton and Raftery (1994), Frühwirth-
Schnatter (1995), Chib (1995), Gelman and Meng (1998), Chib and Jeliazkov (2001), Frühwirth-Schnatter
and Wagner (2008) and Friel and Pettitt (2008).

2In the case of hypothesis testing, Lindley (1957) shows that a point null hypothesis will always be
rejected if the variance of a conjugate prior goes to infinity. This observation can be traced back to
Jeffreys (1939).

3Furthermore, to communicate the results of the analysis to other researchers who might have different
prior information or to demonstrate the robustness of the results with respect to prior information, a
prior sensitivity analysis becomes necessary (e.g., Poirier, 1988; Liu and Aitkin, 2008).
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small changes in any hyperparameter would impact the ranking of a set of competing

models. This gives the user a convenient way to assess prior sensitivities without re-

estimating all the models and re-computing the corresponding marginal likelihoods.4

Finally, it is common in many applications to adopt an empirical Bayes approach that

selects hyperparameters values by maximizing the marginal likelihood. For example,

in the context of a standard vector autoregression with the natural conjugate prior,

Del Negro and Schorfheide (2004), Schorfheide and Song (2015) and Carriero, Clark,

and Marcellino (2015) obtain the optimal hyperparameters by maximizing the marginal

likelihood over a grid of possible values. However, this grid-search approach is typically

time-consuming and is only possible for models where the marginal likelihood is available

analytically. For most models in which the marginal likelihood needs to be estimated using

Monte Carlo methods, this brute-force approach is simply computationally infeasible. In

those cases, the partial derivatives of the marginal likelihood become necessary in order

to speed up the marginal likelihood maximization problem (e.g., using gradient-ascent

methods).5

Due to the complexity of MCMC and the marginal likelihood computation, our approach

is based on AD to obtain the complete set of prior hyperparameter sensitivities of the

marginal likelihood alongside the model estimation. It is “automatic” in the sense that

for an algorithm that maps inputs into any posterior output, there is an automatic way

of deriving its complementary algorithm of computing the sensitivities. Importantly for

our purpose, the AD-based approach would only require running the original algorithm

once with derivatives computed alongside the estimation algorithm. While AD methods

are now commonly used in classical simulation settings Financial Mathematics and in

Machine Learning, the approach is yet to be widely adopted in Econometrics or Statistics.

Jacobi, Joshi, and Zhu (2018) have developed the first AD-based approach for input

sensitivity analysis of output from high-dimensional mappings based on Markov chain

4It is possible to generate a new MCMC sample given an alternative prior without re-running the
MCMC. Specifically, one can implement an importance re-weighing of the old sample with respect to
weights proportional to the new and old prior ratio. However, the quality of the sample depends on the
tail behaviors of the two priors, and it is often infeasible to guarantee that the variance of the weights is
finite (e.g., Robert and Casella, 2013, pp.94-99).

5An alternative approach to obtain partial derivatives is to approximate them using the finite-
difference method. However, the finite differencing approach to robustness analysis has theoretical
limitations as it generates biased derivative estimates. In addition, the choice of step size is crucial
because it involves a critical bias-variance trade-off (e.g., decreasing the step size can reduce bias but
increase variance); see, e.g., Section 7.1, Glasserman (2003). This issue is also illustrated in a simple
example on page 6 in Berger, Insua, and Ruggeri (2000).
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Monte Carlo (MCMC) methods. Chan, Jacobi, and Zhu (2019) extends this framework

further to predictive simulation—in particular, to analyze the sensitivities of point and

interval forecasts based on vector autoregressions on prior hyperparameters.

This paper further extends the AD-based approach to the more computationally inten-

sive settings of computing the marginal likelihood using MCMC output and adaptive

importance sampling. There is by now an extensive literature on marginal likelihood

estimation using MCMC output; for a recent review, see Friel and Wyse (2012) and Ar-

dia, Baştürk, Hoogerheide, and van Dijk (2012). Here we focus on two popular methods:

Chib’s method (Chib, 1995; Chib and Jeliazkov, 2001) and the improved cross-entropy

method (Chan and Eisenstat, 2015, 2018). One of the paper’s key innovations is to study

the derivative of the cross-entropy parameter with respect to the prior hyperparameters,

such that the cross-entropy parameters are obtained via a numerical search of optimum.

One can readily apply a regular AD to differentiate the optimization algorithm. Un-

fortunately, if the number of steps required to reach convergence is high, the algorithm

produces a large expression graph with substantive computation costs. Hence, instead

of standard AD, we use its implicit derivatives and estimates based on the simulated

samples.6

We illustrate our new methodology with two empirical applications in the context of

multivariate time series analysis using vector autoregressions (VARs) and factor models.

In each case, we use AD to compute the partial derivatives of each marginal likelihood

estimator with respect to a variety of hyperparameters and assess various aspects of the

marginal likelihood sensitivity. The first application compares two VARs for modeling a

US macroeconomic dataset that involves GDP inflation and real output growth. In the

second application, we fit daily returns on ten foreign exchange rates using factor models

with a different number of latent factors. While the conclusion in the first application—

that the VAR with t errors is more favored by the data over the benchmark Gaussian

VAR—is robust over a wide range of hyperparameter values, the preferred number of

factors in the second application is more uncertain—the weight of evidence can change

noticeably if we alter some hyperparameter values. Our findings, therefore, not only

illustrate the feasibility of the proposed methods but also highlight the importance of

systematically performing a prior sensitivity analysis in Bayesian model comparison.

The rest of this paper is organized as follows. Section 2 first gives an overview of the

6To reduce the memory requirements, we further improve the implementation of the standard AD by
storing only absolutely necessary quantities. We specify the exact quantities stored in the application
section.
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marginal likelihood and its estimation using Chib’s and the cross-entropy methods. We

then develop an AD-based framework to analyze the sensitivity of the two marginal

likelihood estimators with respect to a set of prior hyperparameters in Section 3. It is

followed by two empirical applications to illustrate the AD-based prior robustness analysis

in Section 4. We further study the empirical computational complexity of the proposed

method via a series of simulations in Section 5. Lastly, Section 6 concludes and briefly

discusses some future research directions.

2 Marginal Likelihood Estimation

To set the stage, suppose we wish to compare the set of models {M1, . . . ,MK}, where

each model Mk is formally defined by a likelihood function p(y |ψk,Mk)
7 and a prior on

the model-specific parameter vector ψk denoted by p(ψk |Mk). The gold standard for

Bayesian model comparison is the Bayes factor. Specifically, the Bayes factor in favor of

Mi against Mj is defined as

BFij =
p(y |Mi)

p(y |Mj)
,

where

p(y |Mk) =

∫
p(y |ψk,Mk)p(ψk |Mk)dψk (1)

is the marginal likelihood under model Mk, k = i, j. It therefore follows that if the Bayes

factor BFij is larger than 1, observed data are more likely under model Mi than model

Mj. This can be viewed as evidence in favor of Mi. For a more detailed discussion of the

Bayes factor and its role in Bayesian model comparison, see Koop (2003), Kroese and

Chan (2014) and Amisano and Giacomini (2007).

The marginal likelihood of a particular model can be interpreted as a joint density forecast

from that model evaluated at the observed data y—hence, if the observed data are likely

under the model, the corresponding marginal likelihood would be “large” and vice versa.

To see this, let y1:t = (y1, . . . ,yt) denote all the data up to time t with y1:T = y. Then,

we can factor the marginal likelihood as follows:

p(y |Mk) = p(y1 |Mk)
T−1∏
t=1

p(yt+1 |y1:t,Mk), (2)

7More precisely, for latent variable models, it is the observed-data or integrated likelihood function
that is unconditional on the latent variables.
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where p(yt+1 |y1:t,Mk) is the predictive likelihood under model Mk, which can be inter-

preted as a one-step-ahead density forecast for yt+1.

The factorization of the marginal likelihood in (2) also reveals that its value is likely to be

sensitive to the choice of prior. For instance, the predictive likelihood p(y1 |Mk) depends

entirely on the prior distribution and not on the data. More generally, the component

p(yt+1 |y1:t,Mk) is likely to be heavily influenced by the prior distribution when t is

small. This highlights the relevance of performing sensitivity analysis when computing

the marginal likelihood.

Analytical computation of the marginal likelihood in (1) is only possible for a few simple

models. More complex models require simulation-based methods to evaluate the typically

high-dimensional integral in (1). In what follows, we discuss two such methods. From

here onwards we suppress the model indicator for clarity. For example, we denote the

likelihood function simply by p(y |ψ). For the marginal likelihood estimators in this

section, we are interested in their sensitivities with respect to the prior hyperparameters.

More generally, let θ0 denote the vector of all inputs that are of interest. We will then

make the dependence on θ0 explicit. For example, we write the prior density as p(ψ;θ0)

and the marginal likelihood as p(y;θ0).

2.1 Chib’s Method

Chib’s method (Chib, 1995; Chib and Jeliazkov, 2001) is based on the observation that

the marginal likelihood is the normalizing constant of the posterior distribution. By

rearranging the definition of the posterior distribution, we have

p(y;θ0) =
p(y |ψ)p(ψ;θ0)

p(ψ |y;θ0)
.

Hence, a natural estimator of p(y) (written in log scale) is

log ̂p(y;θ0)Chib = log p(y |ψ∗) + log p(ψ∗;θ0)− log ̂p(ψ∗ |y;θ0). (3)

The posterior ordinate ψ∗ can, in principle, be any point in the posterior support, but

for computational efficiency, it is typically chosen to be some “high density” point such

as the posterior mean or mode.

In many situations, we can evaluate both the likelihood and the prior distribution ana-
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lytically. The only unknown quantity is the posterior ordinate p(ψ∗ |y;θ0), which can be

estimated using Monte Carlo methods. In particular, if all the full conditional distribu-

tions are known, then p(ψ∗ |y;θ0) can be estimated using posterior draws and additional

draws from a series of suitably designed Gibbs samplers, the so-called reduced runs.

To give a concrete example, suppose we have a model with three parameter blocks ψ =

(ψ1,ψ2,ψ3) for which the posterior distribution p(ψ |y;θ0) can be obtained using a 3-

block Gibbs sampler by drawing from the full-conditional posterior distributions of each

parameter block. The posterior ordinate can be expressed as

p(ψ∗ |y;θ0) ≡ p(ψ∗1,ψ
∗
2,ψ

∗
3 |y;θ0) = p(ψ∗1 |y;θ0)p(ψ

∗
2 |y,ψ∗1;θ0)p(ψ∗3 |y,ψ∗1,ψ∗2;θ0).

The first quantity p(ψ∗1 |y;θ0) can be estimated using posterior draws from the Gibbs

sampler, while the last quantity p(ψ∗3 |y,ψ∗1,ψ∗2) can be evaluated exactly at the posterior

means of the draws. The middle term p(ψ∗2 |y,ψ∗1;θ0) can be estimated using draws from

two-block reduced Gibbs sampler from p(ψ2 |y,ψ∗1,ψ3;θ0) and p(ψ3 |y,ψ∗1,ψ2;θ0) with

ψ1 fixed at ψ∗1. The posterior ordinate of models with more blocks can be estimated

similarly, albeit additional reduced runs are required.

2.2 The Cross-Entropy Method

The cross-entropy method was originally developed for rare-event simulation by Rubin-

stein (1997, 1999) using a multi-level procedure to construct the optimal importance

sampling density. Chan and Kroese (2012) later show that the optimal importance sam-

pling density can be obtained more accurately in one step using MCMC. This new variant

is applied in Chan and Eisenstat (2015, 2018) for marginal likelihood estimation. Below

we outline the main ideas.

For estimating the marginal likelihood in (1), the theoretical zero-variance importance

sampling density is the posterior density p(ψ |y). Unfortunately, this density is only

known up to a constant and cannot be used directly in practice. However, it provides

a good benchmark to obtain a suitable importance sampling density. The key idea is

to locate a density that is “close” to this ideal importance sampling density, denoted as

f ∗ = f ∗(ψ) = p(ψ |y). Operationally, we consider a parametric family F = {f(ψ; v)}
indexed by the parameter vector v ∈ Rdimv , and then find the density f(ψ; v∗) ∈ F such

that it is the “closest” to f ∗.
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One convenient measure of closeness between densities is the Kullback-Leibler divergence

or the cross-entropy distance. Specifically, the cross-entropy distance from f1 to f2 is

defined as: D(f1, f2) =
∫
f1(x) log(f1(x)/f2(x))dx. Given this measure, we locate the

density f(·; v) ∈ F such that D(f ∗, f(·; v)) is minimized. This minimization problem

can be shown to be equivalent to finding

v∗ce = argmax
v

∫
p(y |ψ)p(ψ) log f(ψ; v)dψ.

This maximization problem is difficult to solve analytically, but v∗ce can be estimated by

v̂∗ce = argmax
v

1

R

R∑
r=1

log f(ψr; v), (4)

where ψ1, . . . ,ψR are posterior draws. This is analogous to finding the maximum likeli-

hood estimate for v if we treat f(ψ; v) as the likelihood function with parameter vector

v and ψ1, . . . ,ψR as an observed sample. Since finding the maximum likelihood estimate

is a standard problem, solving (4) is typically easy. For instance, analytical solutions are

available for the exponential family (e.g., Rubinstein and Kroese, 2004, p. 70). Finally,

once the optimal density f(·; v̂∗ce) is obtained, it is used to construct the importance

sampling estimator:

̂p(y;θ0)ce =
1

N

N∑
j=1

p(y |ψj)p(ψj;θ0)

f(ψj; v̂∗ce)
,

where ψ1, . . . ,ψN are independent draws from the optimal importance sampling density

f(ψ; v̂∗ce).
8 One main advantage of this importance sampling approach is that it is easy

to implement, and the numerical standard error of the estimator is readily available. We

refer the readers to Chan and Eisenstat (2015) for a more thorough discussion.

3 Automatic Differentiation for Marginal Likelihood

In this section, we introduce a general framework to analyze the sensitivity of two marginal

likelihood estimators with respect to a set of prior parameter hyperparameters, θ0 ∈ Rp.

This builds on recent work by Jacobi, Joshi, and Zhu (2018) that has introduced prior

sensitivity analysis for MCMC output based on Automatic Differentiation (AD), which

8See also Frühwirth-Schnatter (1995), which constructs a different importance sampling density by
using a mixture of full conditional distributions given the latent states.
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is designed to compute sensitivities with respect to the full set of input parameters.

3.1 AD Implementation

Bayesian MCMC algorithms are complicated high-dimensional mappings that take inputs

such as hyperparameters of the prior distribution, the chain’s starting values, and the

data. For many applications, we are typically interested in the effect of a subset of these

inputs, say the set of hyperparameters θ0, on posterior outcomes. Formally, MCMC is a

function that maps

θ = (θ0,η0) ∈ Rp × Rl → G(θ0,η0),

where η0 refers to the set of inputs such as starting values that in combination with θ0

are mapped via some MCMC algorithm G into posterior quantities.

AD is an efficient means of computing derivatives, i.e., the local sensitivity of the outputs

with respect to the inputs of interest. In a nutshell, for a function G, AD maps G into

its vector of first-order partial derivatives automatically, ∂
∂θ0

G, i.e. a function operator

AD : G→ ∂

∂θ0
G.

Technically, the complementary AD is able to compute the derivatives of the posterior

output G with respect to the complete set of inputs, both θ0 and η0. In practice, however,

it is up to the analyst to choose which subset of inputs are included in θ0.

Like symbolic differentiation, implemented in many widely used software packages, AD

computes exact partial derivatives of the original mapping up to floating-point errors.

However, while symbolic differentiation operates by first deriving and then evaluating

the analytical expression of ∂
∂θ0

G, AD evaluates the derivatives alongside the algorithm

G without any analytical derivations. This alleviates the issue of expression overloading

and hence typically maintains a relative fast computation. More importantly, it avoids

the infeasible derivation of symbolic expressions and focuses on the actual evaluation of

derivative values.

AD is “automatic” in the sense that for an algorithm that maps the input vector θ0

into the posterior output vector, there is an automatic way of evaluating its comple-

mentary sensitivities without manually deriving the symbolic formula of the derivatives.

Instead, it is derived by first decomposing the original algorithm G into simpler opera-
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tions G1, . . . ,Gk:

G = Gk ◦Gk−1 ◦ · · · ◦G1,

where

Gi : (xi,θ)→ xi+1

and xi is the intermediary values at step i. Then, the derivative of G can be obtained

via the chain-rule (that is implemented automatically in the computer program)

∂G(θ0,η0)

∂θ0
=

k∑
i=1

∂

∂xk
Gk

∂

∂xk−1
Gk−1 · · ·

∂

∂xi+1

Gi+1
∂

∂θ0
Gi,

where ∂Gi

∂xi
, i = 1, . . . , k are the intermediate Jacobians of the simpler operations. While

the end result ∂G(θ0,η0)
∂θ0

is a dense matrix, the ∂Gi

∂xi
’s are typically very sparse matrices

because each operation Gi typically only updates one or two variables.

Since AD computes the derivatives of the algorithm G, its computational requirements

naturally depend on the computational complexity of G. In fact, one can establish upper

bounds for the computational complexity and memory requirement of AD relative to the

original algorithm. These results are summarized in the following proposition.

Proposition 1. Consider computing the Jacobian of a function F : Rn → Rm with n

input variables and m output variables. Suppose the base algorithm for evaluating F can

be computed with L elementary operations. In that case, its gradient with respect to l of

its inputs can be computed with 3lL elementary operations and with no more than twice

the memory required for the original computation.

We refer the reader to Griewank and Walther (2008) for the proof and a more detailed

exposition on AD. Note that in the classical simulation context, finite differencing offers

an attractive alternative, however with well-document theoretical limitations, such as

biased derivative estimates (Glasserman, 2003). In comparison, AD requires additional

model analysis and programming, but this additional effort is justified by the improve-

ment in the quality and computational efficiency expanding the scope of calculated local

sensitivities. Due to the additional computation burden in MCMC settings, typically,

only a very limited and mostly less formal numerical prior parameter sensitivity analysis

is implemented.

While AD methods have been widely used to undertake input sensitivity analysis in the

context of less computationally intensive classical simulation methods, particularly in
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Financial Mathematics, it has only been recently introduced in the context of MCMC

simulation by Jacobi, Joshi, and Zhu (2018). The paper develops an AD approach and

AD based methods for a comprehensive prior parameters sensitivity analysis of MCMC

output and shows how the forward mode of differentiation can be applied to compute

Jacobian matrices of first order derivatives for MCMC based statistic based on prior input

sensitivities of the parameter draws in Gibbs MCMC settings. In particular, sensitivities

can often be derived using information about model dynamics in simulation,i.e., the

dependence of the posterior distribution on the set of prior assumptions, as AD proceeds

by differentiating the evolution of the underlying state variables along each path.

Since both Chib’s and the cross-entropy methods require posterior draws of the model

parameters, we apply the AD approach for MCMC Gibbs settings to obtain the first-

order partial derivatives of the model parameters with respect to θ0. In order to extend

the approach to prior parameter sensitivities of marginal likelihood estimation, we in-

troduce additional steps needed to compute the complete set of first-order derivatives

of log ̂p(y;θ0)Chib and log ̂p(y;θ0)ce with respect to θ0. We provide Matlab code to

implement the AD-based prior sensitivity analysis of marginal likelihood estimators.9 It

is important to stress that while most AD packages act as a black box supporting a

particular statistical application, our AD implementation emphasizes transparency and

flexibility to allow for extensions, such as computing the marginal likelihood as a post

MCMC procedure considered in this paper. In what follows we focus on the key points

in passing the AD operator through Chib’s and the cross-entropy methods.

3.2 Gradient of Chib’s Estimator

Chib’s estimator for the log-marginal likelihood consists of three components: the log-

likelihood, the log-prior and the log-posterior, all evaluated at some posterior ordinate

ψ∗, such as the posterior mean or mode. Furthermore, let ψr, r = 1, 2, . . . , R denote the

posterior draws obtained using MCMC.

Assuming that we have already obtained the Jacobian of the posterior ordinate ∂ψ∗

∂θ0
as

well as the draws of the model parameters ∂ψr

∂θ0
for r = 1, 2, . . . , R, the Jacobian of the

9The code associated with this paper can be downloaded at
http://joshuachan.org/research.html.
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first two components can be obtained via:

∂ log p(y |ψ∗)
∂θ0

=
1

p(y |ψ∗)
∂p(y |ψ)

∂ψ

∣∣∣∣
ψ=ψ∗

∂ψ∗

∂θ0

∂ log p(ψ∗;θ0)

∂θ0
=

1

p(y |ψ∗)

[
∂p(ψ;θ0)

∂ψ

∣∣∣∣
ψ=ψ∗

∂ψ∗

∂θ0
+
∂p(ψ∗;θ0)

∂θ0
p(ψ∗;θ0)

]
.

Here we assume that both the likelihood and the prior distribution functions are contin-

uously differentiable in ψ.10

For the log-posterior term estimated from reduced runs, the derivative operator needs to

be applied through the additional Monte Carlo simulation as well. For example, for a

three-block Gibbs sampler with ψ = (ψ′1,ψ
′
2,ψ

′
3)
′, we have

∂

∂θ0
log ̂p(ψ∗ |y;θ0) =

∂p(ψ∗
1 |y;θ0)
∂θ0

p(ψ∗1 |y;θ0)
+

∂p(ψ∗
2 |y,ψ∗

1;θ0)

∂θ0

p(ψ∗2 |y,ψ∗1;θ0)
+

∂p(ψ∗
3 |y,ψ∗

1,ψ
∗
2;θ0)

∂θ0

p(ψ∗3 |y,ψ∗1,ψ∗2;θ0)
.

We can estimate the derivative of the first term via the original MCMC11

∂p(ψ∗1 |y;θ0)

∂θ0
=

1

R

R∑
r=1

∂p(ψ∗1 |ψr
2,ψ

r
3,y;θ0)

∂θ0
+
∂p(ψ∗1|ψr

2,ψ
r
3,y;θ0)

∂ψ


∂ψ∗

1

∂θ0
∂ψr

2

∂θ0
∂ψr

3

∂θ0

 ,

where
∂p(ψ∗1 |ψr

2,ψ
r
3,y;θ0)

∂ψ
denotes the partial derivative of p(ψ1 |ψ2,ψ3,y;θ0) with

respect to ψ evaluated at ψ = (ψ∗1,ψ
r
2,ψ

r
3)
′.

The second term can be estimated via a reduced run of N sample by fixing ψ∗1

∂p(ψ∗2 |y,ψ∗1;θ0)
∂θ0

=
1

N

N∑
n=1

∂p(ψ∗2 |ψn
3 ,ψ

∗
1,y;θ0)

∂θ0
+
∂p(ψ∗2 |ψn

3 ,ψ
∗
1,y;θ0)

∂ψ


∂ψ∗

1

∂θ0
∂ψ∗

2

∂θ0
∂ψn

3

∂θ0
+ ∂ψn

3

∂ψ∗
1

∂ψ∗
1

∂θ0


10Since AD builds on an algorithm and evaluates its derivatives alongside the original algorithm, the

applicability of our proposed method depends on the applicability of the original algorithm. In particular,
since Chib’s method requires the value of the likelihood at the posterior ordinate ψ∗, the proposed
method does so as well. This might limit the applicability of the proposed method as the evaluation of
the likelihood can be time-consuming in some latent variable models. However, since Chib’s method has
been successfully applied to a wide range of high-dimensional latent variables models and is one of the
dominant approaches to computing the marginal likelihood, we choose it as one of our examples.

11This amounts to changing the order of differentiation and integration, which is permissible if the
posterior has continuous partial derivatives.
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such that the sensitivities of ψn
3 is obtained in the reduced run through its direct depen-

dence on the hyperparameters and indirect dependence via ψ∗1.

Finally, the last term can be computed exactly as:

∂p(ψ∗3 |y,ψ∗1,ψ∗2;θ0)
∂θ0

=
∂p(ψ∗3 |y,ψ∗1,ψ∗2;θ0)

∂ψ


∂ψ∗

1

∂θ0
∂ψ∗

2

∂θ0
∂ψ∗

3

∂θ0

 ,

where
∂p(ψ∗3 |ψ∗1,ψ∗2,y;θ0)

∂ψ
denotes the partial derivative of p(ψ3 |ψ1,ψ2,y;θ0) with

respect to ψ evaluated at ψ = (ψ∗1,ψ
∗
2,ψ

∗
3)
′.

In terms of memory budget of the original MCMC, the computer needs to store: 1) ψ∗

and its associated derivatives; 2) ψr
2 and ψr

3 and their associated derivatives. To reduce

the memory requirement, the blocking should be chosen in a way that ψ1 is the of the

largest dimension.

Due to the construction of the marginal likelihood in Chib’s method, in principle its

derivative is independent of ψ as it is an integral over the prior space. More specifically,

assuming ψ∗, the ordinate at which to evaluate the densities, is fixed, we have

∂

∂θ0
log p(y;θ0) =

∂

∂θ0
log p(ψ∗;θ0)−

∂

∂θ0
log p(ψ∗|y;θ0)

as the likelihood drops out from the derivative expression above. This could reduce the

algorithm’s computational complexity, especially for models under which the likelihoods

are expensive to evaluate. However, the above argument relies on fixing ψ∗. In many

practical situations where Chib’s method is applied, the numerical stability of the estima-

tor is sensitive to the choice of ψ∗ (which is why ψ∗ is often recommended to be chosen in

some ‘high-density’ area such as the posterior mean). Hence, proceeding with the above

expression might lead to an unstable estimator if ψ∗ is sensitive to changes in θ0.

3.3 Gradient of the Cross-Entropy Estimator

To calculate the gradient of the cross-entropy marginal likelihood estimator, we need

to first obtain ∂v∗
ce

∂θ0
. For cases where analytical expressions of v∗ce is available, e.g., for

a Gaussian importance sampling density, the derivatives can be obtained directly via

AD by passing through the analytical evaluation. The associated memory cost is then
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negligible, i.e. v∗ce is an analytical expression of ψr’s, and the value and its derivative of

v∗ce are accumulated in the original MCMC algorithm.

When obtaining v∗ce requires numerical search such the Newton-Raphson method, we can

compute the derivative via the implicit function theorem.

Proposition 2. Assuming that the importance sampling density f(ψ; v) is twice con-

tinuously differentiable in both v and ψ with

Eπ
[∣∣∣∣∣∣∣∣∂2 log f(ψ; v∗ce)

∂v2

∣∣∣∣∣∣∣∣] <∞, Eπ
[∣∣∣∣∣∣∣∣∂2 log f(ψ; v∗ce)

∂v∂ψ

∣∣∣∣∣∣∣∣] <∞
and

Eπ
[
∂2 log f(ψ; v∗ce)

∂v2

]
is positive definite, then

∂v∗ce
∂θ0

= −Eπ
[
∂2 log f(ψ; v∗ce)

∂v2

]−1(
Eπ
[
∂ log f(ψ; v∗ce)

∂v

∂ log(π(ψ;θ0))

∂θ′0

])
,

where the expectation Eπ is taken with respect to the posterior measure.

Proof. Based on the first-order condition for vce, we have∫
p(y|ψ)p(ψ)

∂ log f(ψ; v∗ce)

∂v
dψ = 0.

This is equivalent to∫
π(ψ;θ0)

∂ log f(ψ; v∗ce)

∂v
dψ = Eπ

[
∂ log f(ψ; v∗ce)

∂v

]
= 0.

Given the regularity assumption, we can now apply derivative with respect to θ0 to both

sides

Eπ
[
∂2 log f(ψ; v∗ce)

∂v2

]
∂v∗ce
∂θ0

+ Eπ
[
∂ log f(ψ; v∗ce)

∂v

∂ log(π(ψ;θ0))

∂θ′0

]
= 0.

The result is immediate by re-arranging the above expression.

Let Ψ = {ψ1,ψ2, ...,ψR} denote the collection of posterior draws, its consistent sample

estimate is

∂v̂∗ce
∂θ0

= −

[
R∑
r=1

∂2 log f(ψr; v∗ce)

∂v2

]−1[ R∑
r=1

∂2 log f(ψr,v∗ce)

∂v∂ψj

∂ψj

∂θ0

]
.
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This expression involves the storage of ∂ψ
r

∂θ0
’s from the original MCMC algorithm. Hence, it

is operational if we choose the importance sampling density so that most of the parameters

can be solved analytically, and the dimension of ψ that requires the above manipulation

is small.

Finally, given the draws ψj, j = 1, . . . , N from the importance sampling density f(ψ; v̂∗ce),

the derivative of the CE estimator is given by:

∂ ̂p(y;θ0)ce
∂θ0

=
1

N

N∑
j=1

(
∂

∂ψ

(p(y |ψj)p(ψj;θ0)

f(ψj; v̂∗ce)

)∂ψj

∂v∗ce
− p(y |ψj)p(ψj;θ0)

f(ψj; v̂∗ce)
2

∂f(ψj; v̂∗ce)

∂v

)
∂v̂∗ce
∂θ0

+
p(y |ψj)

f(ψj; v̂∗ce)

∂p(ψj;θ0)

∂θ0
.

In other words, the sensitivity of the cross-entropy estimator with respect to θ0 is through

its dependence on v̂∗ce. Depending on the complexity of obtaining v∗ce, the Jacobian ∂ψj

∂v∗
ce

can be obtained either algorithmically or through the distributional derivative method in

Jacobi, Joshi, and Zhu (2018).

3.4 Perturbation Analysis and Model Comparison

In most situations, it is not necessarily the sensitivity of the marginal likelihood that is

of interest, but the sensitivity of the model ordering — e.g., one might worry that a small

change in prior hyperparameter values would reverse the value of the Bayes factor from

greater than one to less than one. Below we outline a procedure to extend our method

of computing the gradient of the marginal likelihood to approximate the change in the

Bayes factor from a small change of hyperparameter values.

To that end, consider the Bayes factor in favor of model i against model j:

BFi,j(η0,ηi,ηj) =
pi(η0,ηi)

pj(η0,ηj)
,

where pi and pj are respectively the marginal likelihoods of model i and model j, η0

denotes the vector of hyperparameters that are common in both models, and ηi and

ηj are model-specific hyperparameter vectors. Note that we suppress the dependence

on the data y to simplify the notation. To approximate the change in Bayes factor

when the hyperparameter values are changed from (η0,ηi,ηj) to (η∗0,η
∗
i ,η

∗
j), one can use
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perturbation analysis via AD as follows:

BFi,j(η
∗
0,η

∗
i ,η

∗
j) ≈ BFi,j(η0,ηi,ηj) +

(
∇BFi,j(η0,ηi,ηj)

)′ η
∗
0 − η0

η∗i − ηi
η∗i − ηi

 ,
where the gradient ∇BFi,j(η0,ηi,ηj) can be computed using the AD-based methods

described in previous sections. In particular, the three partial derivative vectors can be

computed simultaneously via AD regardless of the perturbation size. Given the Bayes

factor and its gradient at the baseline (η0,ηi,ηj), this perturbation analysis allows an

easy mechanism to assess the impact of small changes in hyperparameters on the Bayes

factor and to check if the ranking of the models would change.

4 Empirical Applications

This section presents two empirical applications to illustrate the proposed automated

prior sensitivity analysis based on Automatic Differentiation. The first application com-

pares two vector autoregressions (VARs) for modeling a US macroeconomic dataset. In

the second empirical example, we fit exchange rate data using factor models with different

numbers of latent factors.

4.1 Vector Autoregressions for the US Economy

Since the seminal work of Sims (1980), vector autoregressions (VARs) have become a

workhorse model for analyzing the evolving inter-relationships between multiple macroe-

conomic variables. VARs are widely used for structural analysis and macroeconomic

forecasting. In particular, VARs combined with the Minnesota prior developed in Doan,

Litterman, and Sims (1984) and Litterman (1986) are often used as benchmark models.

We perform a formal Bayesian model comparison exercise to compare two popular VARs

for fitting a US macroeconomic dataset in the first application. We aim to identify salient

model features that are useful in modeling the evolution and interdependence among the

macroeconomic time series. To that end, let yt be an n×1 vector of endogenous variables

at time t with t = 1, . . . , T . The first model we consider is the conventional VAR with
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Gaussian innovations:

yt = b + B1yt−1 + · · ·+ Bpyt−p + εt, εt ∼ N (0,Σ),

where b is an n×1 vector of intercepts, B1, . . . ,Bp are n×n matrices of VAR coefficients,

Σ is a covariance matrix, and N (·, ·) denotes the normal distribution.

For estimation purpose, this VAR can be written in the seemingly unrelated regression

(SUR) form as:

yt = Xtβ + εt, εt ∼ N (0,Σ), (5)

where Xt = In⊗(1,y′t−1, . . . ,y
′
t−p) and β = vec([b,B1, . . . ,Bp]

′) is the vector of intercepts

and VAR coefficients stacked by rows. Note that the dimension of β is kβ × 1 with

kβ = n(np+ 1).

Despite the empirical success of the standard VAR with Gaussian innovations, recent

research has found that macroeconomic variables are occasionally subject to large shocks

(see, e.g. Cúrdia, Del Negro, and Greenwald, 2014). Hence, the second model we con-

sider is a VAR with t innovations, which we denote as VAR-t. That is, instead of the

Gaussian distribution for the innovations, we assume they follow a multivariate t dis-

tribution. For ease of estimation, we use the following latent variable representation:

(εt |Σ, λt) ∼ N (0, λtΣ) with (λt | ν) ∼ IG(ν/2, ν/2), where IG(·, ·) denote the inverse-

gamma distribution. Then marginal of λt, εt has a multivariate t distribution with mean

vector 0, scale matrix Σ and degree of freedom parameter ν (see, e.g., Geweke, 1993).

Empirical work that uses VARs with t innovations include Clark and Ravazzolo (2015),

Cross and Poon (2016) and Chiu, Mumtaz, and Pinter (2017).

4.1.1 Data, Priors and Estimation

For our first application, we use a US quarterly macroeconomic dataset that involves GDP

deflator and real GDP from 1948:Q1 to 2019:Q4. Both variables are commonly used in

structural analysis and forecasting (e.g., Banbura, Giannone, and Reichlin, 2010; Koop,

2013), and following standard practice, they are transformed to annualized growth rates.

The data are sourced from the Federal Reserve Bank of St. Louis economic database,

and they are plotted in Figure 1.
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Figure 1: Plots of GDP deflator inflation and real GDP growth.

Next, we describe the priors for the two VARs. In general, we maintain the same priors

for common parameters across models. For the Gaussian VAR, the parameters are β and

Σ. We assume a standard inverse-Wishart prior for Σ and a Minnesota-type prior for β

that shrinks the VAR coefficients to zero:

β ∼ N (0,Vβ), Σ ∼ IW(k0,Σ,S0,Σ), (6)

where IW(·, ·) denotes the inverse-Wishart distribution. The prior covariance matrix

Vβ is assumed to be diagonal with diagonal elements vβ,ii = κ1/(l
2ŝr) for a coefficient

associated to lag l of variable r and vβ,ii = κ2 for an intercept, where ŝr is the sample

variance of an AR(4) model for the variable r. To avoid theoretical issues of using the

sample to calibrate the prior, we compute ŝr using a pre-sample. Specifically, we use the

data from 1948:Q1 to 1957:Q4 as the pre-sample; the sample to compute the marginal

likelihood then starts from 1958:Q1 and ends in 2019:Q4. We set κ1 = 0.42 and κ2 = 102.

These values imply that the coefficient associated to a lag l variable is shrunk more heavily

to zero as the lag length increases, but intercepts are not shrunk to zero. Further we set

k0,Σ = n + 3, S0,Σ = κ3In with κ3 = 1. Similar hyperparameter values are widely used

in the literature; see, e.g., Koop and Korobilis (2010) or Karlsson (2013). For the VAR

with t innovations, the parameters are β and Σ (the degree of freedom parameter ν is

fixed but we consider a range of values). We use exactly the same priors for β and Σ as
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in the Gaussian VAR case given in (6).

Bayesian estimation of the two VARs is fairly standard. Estimation of the Gaussian

VAR is done using a 2-block Gibbs sampler by sequentially drawing from p(β |y,Σ) and

p(Σ |y,β). In particular, in the notations of Section 2.1, the two blocks of parameters

are ψ1 = β and ψ2 = Σ. For a textbook treatment on the estimation on the Gaussian

VAR, see, e.g., Koop and Korobilis (2010) or Chan (2020b).

For estimating the VAR with t innovations, we implement a 3-block Gibbs sampler that

sequentially draws from the conditional distributions: p(β |y,Σ,λ, ν), p(Σ |y,β,λ, ν)

and p(λ |y,β,Σ, ν), where λ = (λ1, . . . , λT )′ is the vector of latent variables. For more

estimation details on a regression with t innovations, see Chan, Koop, Poirier, and Tobias

(2019). To estimate the marginal likelihood, we integrate out analytically the latent

variables λ and use p(y |β,Σ, ν) as the likelihood. Similar to the Gaussian VAR, the

two blocks of parameters are ψ1 = β and ψ2 = Σ.

Finally, in implementing the proposed method, we store all the posterior draws and their

associated derivatives. In addition, to speed up the computations of the gradient of

Chib’s method, we also store the means and precision matrices of the full conditional

distribution of the VAR coefficients.

4.1.2 Empirical Results

We fit the US quarterly dataset using VARs with Gaussian and t errors and lag length

p = 2.12 For each VAR, we first obtain 10,000 posterior draws after a burn-in period of

1,000. We then compute the marginal likelihood value using both Chib’s method and

the cross-entropy method. We set the simulation size of both the reduced-run for Chib’s

method and the importance sampling for the CE method to be 10,000. The results are

reported in Table 1.

Both Chib’s and the cross-entropy methods give exactly the same marginal likelihood

estimates. Our results show that the data overwhelmingly prefer VARs with t errors to

the benchmark with Gaussian errors. This is consistent with earlier empirical studies

that show VARs with t errors generally forecast better than those with Gaussian errors

(e.g., Cross and Poon, 2016; Chiu, Mumtaz, and Pinter, 2017; Chan, 2020a). Among the

t VARs, the one with the heaviest tails (ν = 5) receives the most support. Even the

12For all VARs, the choice of lag length p = 2 is best supported by the data. Additional model
comparison results with various lag lengths are provided in Appendix B.

19



version with the thinnest tails (ν = 30) is strongly favored by the data compared to the

Gaussian VAR. At first glance, this finding might appear to be surprising; after all, the

t distribution with degree of freedom ν = 30 is very similar to the standard Gaussian

distribution for most of their supports. To investigate this issue further, we compute the

standardized residuals using the least squares (see Figure 5 in Appendix B). There are a

few residuals with absolute magnitudes larger than 3 (and one is larger than 4), which

are highly unlikely under the Gaussian assumption, but are much more probable under

the t distribution.13

Table 1: Log marginal likelihood estimates of the VAR and VAR with t innovations using

the cross-entropy method (CE) and Chib’s method (Chib).

VAR VAR-t

ν = 5 ν = 10 ν = 30

CE −1039.6 −1013.0 −1019.7 −1031.3

Chib −1039.6 −1013.0 −1019.7 −1031.3

Next, Table 2 reports the derivatives of the log marginal likelihood estimates with respect

to the three key hyperparameters: κ1, κ2 and κ3. Recall that κ1 controls the overall

shrinkage strength of the VAR coefficients; κ2 is the prior variance for the intercepts; and

κ3 controls the prior mean of the covariance matrix Σ.

Our results show that the marginal likelihood estimates are relatively sensitive to κ1 and

κ3, but not to κ2. For example, decreasing κ1 from the baseline value of 0.42 to 0.32

would increase the log marginal likelihood value of the Gaussian VAR by about 1.54,14

but decreasing κ2 by the same proportion—from the baseline value of 100 to 56—has

little impact on the marginal likelihood value.

13For instance, for a standard Gaussian random variable X, the probability that |X| > 4 is about
6.33× 10−5, which is an order of magnitude smaller than that for a t distributed random variable with
degree of freedom parameter ν = 30 (3.82× 10−4).

14To check this estimate, we redid the marginal likelihood estimation with κ1 = 0.32, while keeping
other hyperparameters exactly the same. The new marginal likelihood value increases by 2, which is
similar to the original estimate.
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Table 2: Derivatives of log marginal likelihood estimates of the VAR and VAR with t

innovations with respect to the hyperparameters.

VAR VAR-t (ν = 5)

κ1 κ2 κ3 κ1 κ2 κ3

CE −22.0 −0.01 5.54 −12.8 −0.01 4.09

Chib −22.0 −0.01 5.54 −12.9 −0.01 4.09

Interestingly, even though the three hyperparameters are common across the two VARs,

their impacts on the marginal likelihood values differ across the two VARs. For example,

decreasing κ1, i.e., increasing the strength of shrinkage, helps the Gaussian VAR fit the

data better relative to the t VAR. In view of the differential impact of the common

hyperparameters, it would be of interest to assess if the ranking of the models would

change over a range of reasonable hyperparameter values. For example, even if we halve

the value of κ1, the log marginal likelihood values of the Gaussian and t VARs would be

about −1037.8 and −1012, respectively.15 Since the difference between the two values

remains large, the conclusion that the data strongly prefer the t VAR is reasonably robust.

To illustrate the computational requirements of the proposed method, Table 3 breaks

down the runtime and memory requirements of the three components: obtaining poste-

rior draws using MCMC and estimating the marginal likelihood using the CE method

and Chib’s method. Overall the proposed method is reasonably fast — even for the high-

dimensional latent variable model VAR-t, obtaining 10,000 draws and all the necessary

derivatives take only 2 minutes. The memory requirements to store all the necessary

derivatives are also modest, which are well within a standard desktop computers’ capac-

ity.16

Table 3: Performance measures of the proposed AD algorithm for VAR and VAR-t.

VAR VAR-t (ν = 5)

MCMC CE Chib’s MCMC CE Chib’s

Runtime (s) 6 3 2 120 54 75

Memory used (GB) 2.9 < 0.01 < 0.01 2.9 < 0.01 < 0.01

15To verify these estimates, we redid the marginal likelihood estimation with κ1 = 0.42/2 for the two
VARs. The log marginal likelihood values of the Gaussian and t VARs are, respectively −1037.2 and
−1012.

16The memory requirement is the total memory used by Matlab. As a benchmark, an empty
workspace in Matlab requires about 2.2 GB of memory.
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Next, to assess how the marginal likelihood estimates vary over a wider range of hy-

perparameter values, one can plot the estimates together with the corresponding partial

derivatives against some hyperparameters of interest. In addition, this provides a vi-

sual way to select the values of some key shrinkage hyperparameters by maximizing

the marginal likelihood, as is commonly done in applications (see, e.g., Del Negro and

Schorfheide, 2004; Schorfheide and Song, 2015; Carriero, Clark, and Marcellino, 2015).

As an example, Figure 2 plots the partial derivatives of the log marginal likelihood values

with respect to the overall shrinkage parameter κ1 on the VAR coefficients. As the figure

shows, for values of κ1 less than about 0.015, the derivatives are large and positive, in-

dicating that a small increase in κ1 would substantially increase the marginal likelihood

value. However, for values of κ1 greater than 0.015, the derivative values are small in

magnitude and even negative. These results suggest that the maximizer is around 0.15.

In addition, since the marginal likelihoods for a wide range of values of κ1 are all less

than −1033, one can confirm that the data favor the VAR with t errors.
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Figure 2: Marginal likelihood estimates (red dots) and the corresponding partial deriva-

tives with respect to κ1 (blue tangents) under the Gaussian VAR.

4.2 Factor Models for Exchange Rate Returns

Factor models have been widely used in many different areas, including psychology, bioin-

formatics, economics and finance. They are often used for modeling the dependence

structure of high-dimensional data. One central interest in factor analysis is to determine
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the number of latent factors. In the second application, we compare factor models with

different number of factors for fitting a dataset of exchange rates.

More specifically, let yt denote the n×1 vector of observations at time t with t = 1, . . . , T ,

and let ft represent a vector of k latent factors. Then, the k-factor model is specified as:

yt = Aft + εt, (7)

where A is the n× k loading matrix. The factors and the innovations are assumed to be

independent and normally distributed: ft ∼ N (0,Ω) and εt ∼ N (0,Σ), where Σ and Ω

are diagonal. For the purpose of identification, we also require n > 2k + 1 and assume

that A is lower triangular where the diagonal elements are set to be one (see, for example,

the discussion in Geweke and Zhou, 1996).

4.2.1 Data, Priors and Estimation

In the second application, we analyze daily returns on ten international currency exchange

rates relative to the US dollar beginning in January 2016 and ending in December 2020.

Specifically, the exchange rate returns are computed as yit = 100 log(pi,t/pi,t−1), where

pit denotes the daily closing spot rate for currency i at time t. We then demean these

returns so that their sample means are zero. The ten currencies are the Australian Dollar

(AUD), Canadian Dollar (CAD), Swiss Franc (CHF), Chinese Yuan (CNY), Euro (EUR),

British Pound (GBP), Japanese Yen (JPY), South Korean Won (KRW), New Zealand

Dollar (NZD) and New Taiwan Dollar (TWD). These represent some of the most heavily

traded currencies over the period. The dataset is sourced from the Federal Reserve Bank

of St. Louis economic database.

To specify the priors, first let a denote the vector of free elements in the factor loadings

A stacked by row. Note that the dimension of a is ka = kn − k(k + 1)/2. Now, the

parameters for the k-factor model are a,Σ = diag(σ2
1, . . . , σ

2
n), and Ω = diag(ω2

1, . . . , ω
2
k).

We consider the following independent priors:

a ∼ N (a0,Va), σ2
i ∼ IG(νσ2

i
, Sσ2

i
), ω2

j ∼ IG(νω2
j
, Sω2

j
) (8)

for i = 1, . . . , n and j = 1, . . . , k. We parameterize the priors so that they depend on 4

key hyperparameters κ4, κ5, κ6 and κ7. More specifically, we set a0 = κ41ka , Va = κ5Ika ,

νσ2
i

= κ6, Sσ2
i

= κ6−1, νω2
j

= κ7 and Sω2
j

= κ7−1, where κ4 = 0 and κ5 = 1, κ6 = κ7 = 3.
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Using these hyperparameter values, the prior means of σ2
i and ω2

j are both 1, and their

prior variances are, respectively, 1/(κ6 − 2) and 1/(κ7 − 2).

The factor model is estimated using a 4-block Gibbs sampler by sequentially drawing

from p(A |y,Σ,Ω, f), p(Σ |y,A,Ω, f), p(Ω |y,A,Σ, f) and p(f |y,A,Σ,Ω), where f =

(f ′1, . . . , f
′
T )′ is the vector of latent factors. Estimation details can be found in standard

sources such as Geweke and Zhou (1996) and Lopes and West (2004). We note that

while this approach is easy to implement, in some instances mixing could be slow. In

those cases, one might consider a more efficient sampler of jointly sampling the factors

and the factors loadings, as proposed in Chib, Nardari, and Shephard (2006). Lastly, to

estimate the marginal likelihood, we integrate out analytically the latent factors f and

use p(y |A,Σ,Ω) as the likelihood; its analytical expression is given in Appendix A. In

the notations of Section 2.1, the three blocks of parameters are ψ1 = A, ψ2 = Σ and

ψ2 = Ω.

4.2.2 Results

We fit the exchange rate returns data using the factor models with k = 1 to k = 4

factors. For each factor model, we first obtain 10,000 posterior draws after a burn-in

period of 1,000. We then compute the marginal likelihood value using both Chib’s and

the cross-entropy methods. We set the simulation size for both methods to 10,000. For

computing the gradients of Chib’s and CE methods, we store all the posterior draws and

their associated derivatives. We report the log marginal likelihood estimates in Table 4.

The two marginal likelihood estimators give slightly different estimates, but they are

within simulation errors.17 In addition, both methods are consistent in terms of the

ranking of the models — both indicate that the 3-factor model is most preferred by the

data, whereas the 4-factor model comes in second. Furthermore, both methods show

a substantial initial increase in log marginal likelihood—e.g. log marginal likelihood

17It is not uncommon for different estimators of the marginal likelihood of a factor model to give
somewhat different estimates. For example, Lopes and West (2004) computes the log marginal likelihood
of a 2-factor model using a variety of estimators, and the estimates range from −871.0 from the harmonic
mean estimator to −935.3 from the Chib’s method. However, these differences are likely due to the
overestimation in some inaccurate estimators, such as the harmonic mean estimator. Finally, we also
compute the derivatives of the log marginal likelihood estimate from Chib’s method with respect to the
posterior ordinates, and the results are reported in Appendix B. In principle, these derivatives should
all be zero. In practice, however, Chib’s estimates are sometimes found to be sensitive to the posterior
ordinates’ choice. Our results indicate that while Chib’s estimates are insensitive to the selected values
of the factor loadings, but they are relatively sensitive to those of the variances.
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increases by about 422 from k = 1 to k = 2 factors and 272 from k = 2 to k = 3

factors—but it starts to decrease when we move from k = 3 to k = 4 factors.

Table 4: Log marginal likelihood estimates of the factor model with k factors using the

cross-entropy method (CE) and Chib’s method (Chib).

k = 1 k = 2 k = 3 k = 4

CE −6106.7 −5684.5 −5411.2 −5432.4

Chib −6104.9 −5683.1 −5411.9 −5434.4

Next, Table 5 reports the derivatives of the log marginal likelihood estimates for the

3- and 4-factor models with respect to the four key hyperparameters: κ4, κ5, κ6 and κ7.

Recall that κ4 and κ5 control, respectively, the prior means and the prior variances of

the factor loadings a. The prior means of σ2
i and ω2

i are both fixed at 1, but their priors

variances are inversely proportional to κ6 and κ7, respectively.

Table 5: Derivatives of the log marginal likelihood estimates of the 3- and 4-factor models

with respect to the hyperparameters.

k = 3 k = 4

κ4 κ5 κ6 κ7 κ4 κ5 κ6 κ7

CE 12.9 −5.7 −124 −35.9 11.1 −8.0 −129 −63.2

Chib 12.8 −5.8 −125 −35.6 11.1 −8.0 −128 −64.2

The results suggest that the marginal likelihood values are more sensitive to κ4, which

controls the prior means of the factor loadings, relative to κ5, which controls the prior

variances. For instance, increasing κ4 by 1 would increase the marginal likelihood of the

3-factor model by about 13, whereas the same increase in value for κ5 would decrease the

marginal likelihood by about 6. Next, between κ6 and κ7, the former has a much larger

impact on the marginal likelihood than the latter. For example, increasing κ6 by 1 would

decrease the marginal likelihood of the 3-factor model by about 124-125. Since κ6 controls

the shrinkage strength on σ2
1, . . . , σ

2
n to unity, these results suggest that stronger shrinkage

of the idiosyncratic variances to unity has a large negative impact on the model-fit, and

this negative impact is much larger than similar shrinkage of the factor variances.

It is also interesting to note that except for κ7, the hyperparameters seem to have a

similar impact on both factor models. Since κ7 controls the shrinkage strength on the
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factor variances ω2
1, . . . , ω

2
k, it is not surprising that its impact on the marginal likelihood

is noticeably larger for the 4-factor model than the 3-factor model. Due to the differential

impact of κ7, the marginal likelihood of the 4-factor model increases more than that of

the 3-factor model as κt decreases. Given that these two models have rather similar

marginal likelihood values at the baseline setting, their marginal likelihood values would

become even closer if we reduce the value of κ7. We thus conclude that the 3- and 4-

factor models receive similar support from the data. This sensitivity analysis highlights

the value of having gradient estimates of the log marginal likelihood with respect to some

key hyperparameters.

Finally, we report in Table 6 the runtimes and memory requirements of the proposed

method. As is clear from the table, the proposed method is fast and requires only

a modest amount of memory to store all the necessary derivatives. For example, the

runtime of the main MCMC for a 3-factor model takes only 1.5 minutes and requires

about 3.2 GB of memory.

Table 6: Performance measures of the proposed AD algorithm for the factor models.

k = 3 k = 4

MCMC CE Chib’s MCMC CE Chib’s

Runtime (s) 90 15 69 106 15 80

Memory used (GB) 3.2 0.02 < 0.01 3.2 0.02 < 0.01

5 A Simulation Study: Empirical Computational Com-

plexity

In this section, we conduct a series of simulations to illustrate the computational require-

ments of the proposed method in a variety of high-dimensional settings. More specifically,

we report the runtimes of the different components of the proposed method and the as-

sociated memory requirements as a function of various inputs (e.g., the dimensionality of

the model and sample size) in the context of a factor model. For all the simulations, we

set the main MCMC run, reduced-run in Chib’s method, and the Monte Carlo sample

size in the CE method to be 10,000.

We first investigate the computational requirements of the proposed method as a function

of the sample size T , ranging from 200 to 3,200. For this experiment, we set the number
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of factors r to be 3 and the number of variables n to be 10. Figure 3 reports the runtimes

of the main MCMC run, the CE method and Chib’s method, as well as the memory

requirements of the main MCMC run (the memory requirements of the CE method and

Chib’s method are negligible). As is clear from the figure, the runtimes increase linearly in

the sample size T , whereas the memory required appears to be insensitive to T . Overall,

even for a large dataset with T = 3, 200 observations, the proposed method is fast and

requires only a modest amount of memory.

Next, we report in Figure 4 the computational requirements of the proposed method as a

function of the number of variables n, ranging from 5 to 50. For this experiment, we set

the number of factors r to be 3 and the number of observations T to be 500. The runtimes

of the main MCMC run and the Chib’s reduced-run appear to be linear in n, whereas

that of the CE method rises more rapidly than linear. Consequently, the CE method is

faster than Chib’s for lower dimensions (n < 30) but slower for higher dimensions. Here

the memory required increases slowly with the model’s dimension, from about 3 GB for

n = 5 to about 3.1 GB for n = 50 (as a benchmark, an empty workspace in Matlab

uses about 2.2 GB of memory). All in all, these results show that the proposed method

remains computationally feasible for high-dimensional settings.
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Figure 3: Runtimes (in second) and memory requirements (in GB) of the proposed

method for a 3-factor model with n = 10.
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Figure 4: Runtimes (in second) and memory requirements (in GB) of the proposed

method for a 3-factor model with T = 500.

6 Concluding Remarks and Future Research

We have developed a general method based on Automatic Differentiation to compute the

sensitivities of two common marginal likelihood estimators with respect to a set of prior

hyperparameters. We have illustrated the methodology using two empirical applications.

While in the VAR example the conclusion is robust over a wide range of hyperparameter

values, the most preferred number of factors in the factor model application is more

uncertain. Our findings, therefore, highlight the importance to conduct a prior sensitivity

analysis in Bayesian model comparison routinely.

In future work, it would be useful to develop similar automated prior sensitivity analysis

for time-varying models. This is motivated by recent findings that models that allow

for time-varying parameters and stochastic volatility, such as those developed in Cogley

and Sargent (2001, 2005) and Primiceri (2005), tend to forecast substantially better, as

demonstrated in Clark (2011), D’Agostino, Gambetti, and Giannone (2013) and Cross

and Poon (2016). Furthermore, AD-based prior sensitivity analysis is instrumental when

strong prior information is used, such as estimating dynamic stochastic general equilib-

rium models.
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Appendix A: Integrated Likelihood of the Factor Model

In this appendix we provide an explicit expression for the integrated likelihood factor

model in (7). Recall that ft ∼ N (0,Ω) and εt ∼ N (0,Σ). By integrating out the factors

ft, we have

(yt |β,A,Ω,Σ) ∼ N (Xtβ,AΩA′ + Σ).

Evaluating this Gaussian distribution in the conventional way would involve computing

the n× n inverse (AΩA′ + Σ)−1, which is a time-consuming operation when n is large.

As pointed out in Geweke and Zhou (1996), one can avoid this computation problem by

using the Woodbury matrix identity:

(AΩA′ + Σ)−1 = Σ−1 −Σ−1A(Ω−1 + A′Σ−1A)−1A′Σ−1, (9)

which only requires computing the k×k inverse (Ω−1+A′Σ−1A)−1.18 In typical situations

where n is much larger than k, the computation saving is substantial. We further improve

the efficiency of this approach by vectorizing the operations and by implementing sparse

matrix routines.

To that end, we stack the observations over t and write (7) as:

y = Xβ + (IT ⊗A)f + ε,

where y = (y′1, . . . ,y
′
T )′, f = (f ′1, . . . , f

′
T )′, ε = (ε′1, . . . , ε

′
T )′ and X is similarly defined. It

follows that unconditional on f , y is jointly distributed as:

(y |β,A,Ω,Σ) ∼ N (Xβ, IT ⊗ (AΩA′ + Σ)).

Hence, the integrated likelihood (in log) of this model is given by

log f(y |β,A,Ω,Σ) =− Tn

2
log(2π)− T

2
log |AΩA′ + Σ|

− 1

2
(y −Xβ)′

(
IT ⊗ (AΩA′ + Σ)−1

)
(y −Xβ).

(10)

18Note that Σ and Ω are both diagonal matrices and their inverses are fast to compute.
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Appendix B: Additional Results

In this appendix we provide additional empirical results. Table 6 presents the log marginal

likelihood estimates of the VAR and VAR-t models with various lag lengths. For all

models, the choice of p = 2 is best supported by the data.

Table 7: Log marginal likelihood estimates of the VAR and VAR-t models with lag length

p = 1, . . . , 4.

p = 1 p = 2 p = 3 p = 4

VAR −1044.1 −1039.6 −1042.0 −1043.3

VAR-t (ν = 5) −1020.1 −1013.0 −1016.9 −1020.4

VAR-t (ν = 10) −1025.8 −1019.7 −1023.3 −1026.0

VAR-t (ν = 30) −1036.6 −1031.3 −1034.7 −1036.6

Next, Figure 5 plots the standardized residuals of the Gaussian VAR of GDP deflator

inflation and real GDP growth. There are a few residuals with absolute values larger

than 3, which are highly unlikely under the Gaussian assumption.
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Figure 5: Standardized residuals of the Gaussian VAR of GDP deflator inflation and real

GDP growth.
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We next report the boxplots of the derivatives of the log marginal likelihood estimate

from Chib’s method with respect to the posterior ordinates of 3 groups of parameters:

the factor loadings a, the idiosyncratic variances σ2
1, . . . , σ

2
n and the factor variances

ω2
1, . . . , ω

2
r . As is clear from Figure 6, while the derivatives with respect to the factor

loadings a are small in magnitude, those with respective to the variances are relatively

large.
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Figure 6: Boxplots of the derivatives of the log marginal likelihood estimate from Chib’s

method with respect to the posterior ordinates.
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