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1 Introduction

The financial crisis 02007 — 2009 began with a major failure in credit markets. The causes of
this failure stretch far beyond inadequate mathematicalatiiog (see Donnelly and Embrechts
[2010] and Brigo et al. [2009] for detailed discussions fraimathematical finance perspective).
Nevertheless, it is clear that some of the more popular nsoafetredit risk were shown to be
flawed. Many of these models were and are popular becausatbegathematically tractable,
allowing easy computation of various risk measures. Maoaéistic (and complex) models come
at a significant computational cost, often requirmMgnte Carlo methodt estimate quantities

of interest.

The purpose of this chapter is to survey the Monte Carlo tegci@s that are used in portfolio
credit risk modeling. We discuss various approaches foratiogl the dependencies between
individual components of a portfolio and focus on two prpatirisk measures: Value at Risk
(VaR) and Expected Shortfall (ES).

The efficient estimation of the credit risk measures is oftemputationally expensive, as it
involves the estimation of small quantiles. Rare-evenusation techniques such as importance
sampling can significantly reduce the computational burtetithe choice of a good importance
sampling distribution can be a difficult mathematical pesbl

Recent simulation techniques such as the cross-entropgochgRubinstein and Kroese,
2004] have greatly enhanced the applicability of imporéasampling techniques by adaptively
choosing the importance sampling distribution, based omp$zs from the original simulation
model.

The remainder of this chapter is organized as follows. Irti8e@ we describe the general
model framework for credit portfolio loss. Section 3 disses the crude and importance sam-
pling approaches to estimating risk measures via the Moatk@ethod. Various applications
to specific models (including Bernoulli mixture models,tt@anodels, copula models and inten-
sity models) are given in Section 4. Many of these modelsurepmpirical features of credit
risk, such as default clustering, that are not captured bystandard Gaussian models. Finally,
the Appendix contains the essentials on rare-event sifonlahd adaptive importance sampling.

2 Modeling Credit Portfolio Losses

Portfolio credit risk is usually evaluated irsgaticsetting, whereby the loss of a portfolio is mod-
eled via a single random variablerepresenting the sum of the losses incurred by the individua
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components of the portfolio; that is,
L = Lossy + - - - + Loss, .

If the individual losses are independent, the problem ofdles g the distribution of. reduces to
the problem of describing the marginal distribution of eahvidual loss. However, in practice
the individual losses tend to be dependent on each othetthiérefore important to appropriately
model the dependence between {hess; }.

Losses can result from changes in credit quality as well@s efault. For simplicity we
will only consider default events. We write each individigas as the product of the loss incurred
if the individual component defaults and a Bernoulli (tls&tmndicator) random variable that takes
the valuel when a default occurs artdotherwise. Thus, our model is given by

L=0LD,+ - +1,D, (1)

where the{l;} are the magnitudes of individual losses and {li¢ } are Bernoulli variables
modeling the default events. TH&} can be random or deterministic. The empirical evidence
suggests a strong relation between the magnitudes of lasdeéke number of defaults. However,
many popular credit risk models assume independence betthed/;} and{D;}. We will
focus on modeling only the default evedtd; }, though some of the models given below can be
modified to incorporate dependence between losses and nsioflefaults.

2.1 Risk Measures

The distribution of L — often called thdoss distributionand denoted ag; — is the central
object of credit risk modelingt’, is typically not available in closed form. Instead, certagk
measures are used to describe its key features, particitgutiil behavior. The most widely
used risk measure in credit riskValue at RiskVaR), which describes the quantiles of the loss
distribution. For example, tH#9% VaR of a portfolio is the value of the loss varialilesuch that

a greater loss would only occuf% of the time. The VaR for confidence lewelis given by

Vo = F[Tl(a) )
WhereFL‘1 is the generalized inverse 6f,:
Frl o) =inf{l: F () > a}. (2)

Common values for are (.95, 0.99, 0.995 and0.999. The use of VaR as a risk measure has
been the subject of significant criticism (see Bluhm et a&01[# and McNeil et al. [2005] for
discussions). In particular, it has the counter-intuitigature that it is not sub-additive: the
VaR of two portfolios might be larger than the sum of the VaR¢he individual portfolios. In
other words, the VaR of a portfolio is not necessarily reduteough diversification. This led
Artzner et al. [1999] to propose a classooherent risk measurewhich satisfy certain ‘natural’
requirements, including sub-additivity. One of the mogiydar of these is thExpected Shortfall
(ES), also known a€onditional Value at RiskCVaR). Thex expected shortfall is given by

Ca =E[L|L>v,].

Expected shortfall is also an example of a spectral risk oreasee Bluhm et al. [2010].
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2.2 Modeling Dependency

The key challenge in modeling portfolio credit risk lies iasgribing the relationship between
default events. Defaults do not occur independently of oratheer, but rather tend to cluster.
These default clusters could occur as the result of secamifgpconditions, such as a downturn
in a particular industry or market, or as a result of broadacmeconomic factors. A major
failing of credit models in the financial crisis of 2007 — 2008s that they failed to adequately
model the possibility that a large number of defaults couddun simultaneously. In order to
discuss this limitation, we need to introduce a number dedéht dependency measurésat
describe the relationship between random variables.

The simplest measure of dependency between two randonblesis andY is given by
their pairwise linear correlation(X,Y) = Cov(X, Y)/+/Var(X)Var(Y). Its multivariate ana-
log is the correlation matrix. The dependency structureantiom vectoiX is completely spec-
ified by its correlation matrix if and only iX has arelliptical distribution; see McNeil et al.
[2005]. Important special cases are the multivariate nbemd multivariate Student-t distribu-
tions.

A drawback of linear correlation (and other correlation sweas, such as rank correlation) is
that it describes the average joint behavior of random kil In risk management itéxtremal
events, rather than typical events, that are of primaryréste Two dependency measures that
describe extremal behavior are the coefficients of uppetamer tail dependence. Specifically,
given two random variable& andY’, with distributionsF'y andFy, we define the coefficient of
upper tail dependence as

Ao = limP (Y > Iy ) | X > Fx'(a))
q

and the coefficient of lower tail dependence as

M=lmP (V< Fl(o)| X < F'(0).
q

These measures describe the relationship between varialtee tails of distributions. A joint
distribution is said to have upper (lower) tail independeific,, = 0 (A\; = 0). Some of the most
popular models of credit risk — in particular, the variousuGsian copula models — exhibit tail
independence in both tails. This is clearly not a desiragédure in risk models, as empirical
evidence tends to indicate that both defaults and risk fadend to become more correlated
in extreme settings. With the exception of the canonicalS&mn models, all of the models
described in the following sections possess tail deperedenc

3 Estimating Risk Measures via Monte Carlo

For a general loss distributiafi,, analytic calculation of the various risk measures desdrin
the last section is usually impossible. Often the only feélasapproach is to estimate these risk
measures using Monte Carlo methods. To proceed, we needhadrfer drawing independent
and identically distributed (iid) replicates of the randeariable L and a method for estimating
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risk measures, given an iid samgle, . .., Ly. The methodology for estimating risk measures
is largely model independent, and is the focus of this sectio

The Monte Carlo estimation of VaR turns out to be somewhatenddficult than the tradi-
tional problem of estimating an expectation. In particull&R estimators are non-linear func-
tions of the sample. Many classical Monte Carlo methodsad@applied to VaR estimation or
need to be modified to work well. In addition, it is typicalliffctult to find confidence intervals
for VaR estimators.

3.1 Crude Monte Carlo Estimators

The Crude Monte CarldCMC) estimator of VaR is the quantile estimator of clasisitatistics;
see van der Vaart [1998] for a discussion of its propertiea statistical context. It replaces
the unknown distribution function of, F, in the definition of VaR in (2) with the empirical
distribution functionF . That is, we estimate VaR using

B = mf{z Fu(l) > a},

where

. 1 &

Fi(l) = ; I(L; < 1) (3)
is the empirical distribution function of the iid sample, . .., Ly. Note thatF}, is a step func-

tion. Consequently, the CMC quantile estimator can beeabilained by ordering théL;} as
Ly < --- < Ly and finding the oV |th largest value.

Algorithm 3.1 (CMC VaR Estimator)
1. Generate an iid samplg,, ..., Ly.
2. Order the sample from smallest to largest/as < --- < L.

3. Returno, = L((QND.

The CMC estimator for the ES is more straightforward, as tBes€simply an expectation.
The estimator is given by

1
b= . > ) .
Co N(1—a) E L;I(L; > v,)

i=1

The variance of the VaR estimator is difficult to evaluatesehese the estimator is not an
average of iid random variables. However, the followingtcanlimit theorems, given with
references in Hong and Liu [2011], show that the VaR and Effhastrs have asymptotically
normal distributions.



Theorem 3.1 (Central Limit Theorems for the CMC VaR and ES Estmators) If EL? < co
and the density of., f;, is positive and continuously differentiable in a neighimd ofv,,
then, asV — oo

X D
1. V'N (04 — va) = o 2L

2. VN (oo — ) B ) 7,

—Oc)

. D . . .
whereZ; andZ, are standard normal random variables andlenotes convergence in distribu-
tion.

3.2 Importance Sampling

The CMC VaR and ES estimators generally require a very laaiggote size in order to achieve
an acceptable level of accuracy. This is because the estisrate focused on the relatively ‘rare’
event{ L > v, }. There is a substantial body of theory devoted to efficienhtd&arlo methods
for rare events. This theory has mainly been developed icdngext of estimating rare-event
probabilities of the forn? = P(S(X) > ) for some real-valued functiof, thresholdy, and
random vectoX. Some key concepts and techniques of rare-event simulateodiscussed in
the Appendix. The following discussion will assume famitiawith these concepts.

The importance sampling approach to quantile estimation suggested in Glynn [1996].
We replace the CMC estimator of the empirical distributiondtion with the 1S estimator

1 N

FLS(Z) =1- N ZW(Lz‘)H(Li >1),

1=1

where the{L;} are drawn from the IS densityandW (l) = f.(1)/g(l) is the likelihood ratio.
Note that this estimator focuses on the right tail of theridiation — see Glynn [1996] for a
motivation. This then leads to the IS VaR estimator

oS = mf{z CFS() > a}. 4)

The corresponding ES estimator is

N

. 1 .
iy = Ni=a) ;W(Lz)LzH (Li = 08) , (5)

where theL; are drawn frony. If ¢ is chosen such that draws from the right taillohappen
more frequently, this estimator could provide considerdigtter performance than the CMC
estimator. In practice, the IS VaR estimator is calculatetblhows.



Algorithm 3.2 (IS VaR Estimation)
1. Draw L., ..., Ly from the IS density.

2. Calculate the likelihood ratio®/ (L, ), ..., W (Ly).
3. Orderthe{L;} asL) < -+ < L.

4. Find N* = sup {n: %ZN W(Lu) > 1- a}.

5. Returnu!? = Ly+).

So far we have taken as given. The following central limit theorems, given in Hoand
Liu [2011] and Sun and Hong [2010], suggest a good choige of

Theorem 3.2 (Central Limit Theorem for the IS VaR Estimator) If L has a positive and dif-
ferentiable densityf;, in a neighborhood of,, and there exists aa > 0 such thati/ (1) is
bounded for all € (v, — €, v, +¢€) andE I (L > v, — €) (W(L))" is finite for somep > 2, then
asN — oo

1 VN (05 — v0,) B Y Vo W) g

2. VN(ES — ) B LW D)

. D . . .
whereZ; and 7, are standard normal random variables amdlenotes convergence in distribu-
tion.

This suggests that a good choiceypht least asymptotically, is one that minimizes & (L)
I(L > v,)). This is equivalent to finding the densigjthat minimizes the variance of

N

A 1

s — N ZW(Li)I[(LZ- > ),
=1

where the{ L;} are drawn frony. This is the standard IS estimator for
(=P(L>nv,).

Of course, the computation 6f involvesv,,, which is the unknown quantity we seek to estimate.
However, a rough estimate of, can often be obtained, either through an approximation or by
doing an initial simulation using the CMC VaR estimator. bn@ance sampling estimators for
VaR and ES will often provide very large efficiency gains, reve settings where the initial
estimate of,, is quite inaccurate.

Another complication is that we usually do not kngyy, the density ofL.. Thus, we cannot
apply importance sampling to tHg.;} directly. Instead, we seek to represénas a function
S of either a random vectaX with known densityfx or a vector-valued stochastic process
X = (X(t),0 <t < T), to which we can apply importance sampling.

In practice, the procedure for applying importance sanggbras follows.
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Algorithm 3.3 (Importance Sampling Estimation for VaR and ES)
Given a representatioh = S(X),

1. Calculate an initial estimate af,, denoted ag,,.
2. Find an appropriate importance sampling density forrastiingP(L > 0,,).

3. Generatel,; = S(X;),..., Ly = S(Xy) under the IS density and calculate the corre-
sponding likelihood ratio$V (X,), ..., W (Xy).

4. Calculate the VaR estimate as(#) and the ES estimate as (B).

3.2.1 Adaptive Importance Sampling

Because credit risk models are generally complicated, yt lbeedifficult (or even impossible) to
find a priori a good importance sampling densityAdaptive importance sampling methods aim
to avoid difficult theoretical and computational issueslegrning’ a good density from the data.
We assume here thdt, the density ofL, is not known and that a representation of the form
L = S(X), whereX has densityfx, can be used instead. We apply importance sampling to the
X. Given a prespecified IS densiy parameterized by, the idea is to take an initial sample
X4,..., X, and try to learn the optimal parameters using this sampldahdfinitial sample
X4,..., Xy can be sampled directly from the zero-variance dengityx) = f(x|S(x) > v,),

then the parameters can be chosen either to minimize thesté&nhde tq;*,

9*CE = argmax — Z log (ge(X

or to minimize the variance of the estimator
OVM = argmm — Z We(X

In some settings;* is sampled from using Markov Chain Monte Carlo methods (seege
et al. [2011] for an introduction). However, because thebphility of a loss greater tham, is
not too small, we can often use a more direct acceptanceticgjanethod here.

Algorithm 3.4 (Sampling Approximately from ¢*)
1. Generate a samplg,, ..., Ly,.
2. Order the sample from smallest to largestias < --- < L.

3. Choos€.(jan); - - -, Ly @s an approximate sample frogh.



A very small sample is usually sufficient to find very good CEMM parameters. The
additional computational cost of the trial is generally $nsampared to the overall costs of
the simulation. Indeed, there is hardly any overhead coeapaith non-adaptive methods for
guantile estimation, as such methods use trial runs to finidital estimate ofv,. A similar
adaptive approach is taken in Reitan and Aas [2010]. For &mnaitive method, where the
parameters are updated during the primary sampling phesé&gloff and Leippold [2010].

4 Specific Models

In this section we discuss four specific classes of creditmsdel: Bernoulli mixture models,
factor models, copula models, and intensity models. Algfiogiach of these models is based on
the general framework (1), they use different mathemasicattures to model the dependencies
between the default variabldd;}. As a result, each model requires a different Monte Carlo
approach to efficiently estimate the VaR and ES.

4.1 The Bernoulli Mixture Model

Bernoulli mixture models are a fundamental class of cradk models because many credit
risk models can be represented as a mixture model. It iggktfarward to apply importance
sampling to these models.

In a Bernoulli mixture model, the Bernoulli default variablD., ..., D,, are conditionally
independent given a vector of default probabilites= (P, ..., F,). It is assumed that these
default probabilities are of the ford@(¥), whereW is a random vector with a known density
fw. Conditional onP, calculatingL reduces to calculating a weighted sum of independent light-
tailed random variables.

It is quite straightforward to sample from a Bernoulli miseunodel.

Algorithm 4.1 (Sampling from a Bernoulli Mixture Model)
1. Generate a vector of success probabilifies- (P, ..., P,).

2. GivenP, generateD; ~ Ber(P,),..., D, ~ Ber(P,).

4.1.1 One-Step Importance Sampling

It is usually not possible to directly apply importance séingpto L, as the distribution of. is
often unavailable in closed form. Instead we can apply irtgyme sampling to drawing eithEr
ortheDq,..., D, conditional onP. It is simplest to apply importance sampling in the second
case. If we assume that . . ., [,, are constants, then, conditional Br



is the sum of independent random variables, withithevariable taking the valug with prob-
ability P; and0 otherwise. We exponentially twist each of these variabtethat the default
probability for theith component is given by

Fiexp(01;)

o |
Piexp(0l;) +1— P

The unique ‘asymptotically efficient’ choice 6fis the solution toz,,(0* | P) = v,, where
ka(0|P) = log[Pexp(01;) +1— P] (6)
i=1

is the joint cumulant generating function of theD;} conditional onP.

Algorithm 4.2 (One-Step Importance Sampling for a Mixture Model)
1. Generate® = (Py,..., P,).
2. Find#*, the solution tos, (f) = v,. (This step usually needs to be done numerically).
3. If9* <0, setd* = 0.

D _ _ Piexp(6*l) C
4. CalculateP; = Frow@ i1 B | = 1,...,n.

5. Givenﬁl, . .,]5n, generateD; ~ Ber (15,) i=1,...,n.
6. ReturnL =1, D, + - - - + [,,D,, and the corresponding likelihood ratio
W(L) =exp (k,(0"|P)—0"L).

Unfortunately, this approach may not give an asymptotcafficient estimator for =
P(L > wv,). This is becaus® can play a critical role in driving the dynamics of the rare
event. For example, in the context of Gaussian factor mo@sserman and Li [2005] show
that asymptotic efficiency can only be achieved if the catreh between the defaults decreases
(at some rate) as — oo andv,, — oo.

4.1.2 Two-Step Importance Sampling

A potentially more effective importance sampling schenwelves importance sampling in gen-
eratingP as well asD+, ..., D,,. We can decompose the variance afs

Var(i) = E <Var (£| P)) + Var (E (4?| P)) .

The one-step importance sampling procedure detailed atnavienizes Va(€| P). Regarding
samplingP, we aim to minimize Vaf(¢ | P)). This is equivalent to minimizing the variance of
z, the CMC estimator of

z2=P(L>uv,|P(P)).
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The zero-variance density for such a problem is given by

9w () < P(L > va [ P(Y)) fa(¥) -

The normalizing constant is the unknowrso this is not a practical IS density.

There are two common approaches to finding a good IS densigyapproach uses a density
gw Whose mean is set equal to the modepf This mode is the solution to a generally intractable
optimization problem.

Givengy, the two-step importance sampling scheme is summarizeullaw/$.

Algorithm 4.3 (Two-Step Importance Sampling for a Mixture M odel)
1. Draw W from gyg.
2. Generatd® = P(P).
3. Find#*, the solution to, () = v,.

D Piexp(lif*) -
4. CalculateP;, = Frowlo )11 F L = 1,...,n.

5. Givenﬁl, . .,]5n, generateD; ~ Ber (ﬁ,) i=1,...,n.

6. ReturnL =D, + ---+ 1, D,, and the corresponding likelihood ratio

W(L) = =~ )exp(mn(9*|P)—9*L).

4.1.3 Worked Example: A Bernoulli Mixture Model with Beta Pr obabilities

We consider a simple Bernoulli mixture model for a portfokiith » = 1000 components, with
ly =--- =1, = 1. The default probabilities are all equal, with~ Beta(0.5,9). We consider
three approaches: CMC, CE, and one-step importance sagnpline CE approach finds the
outcomes ofP corresponding to the highesf(1 — «) samples ofL. It then computes the
MLEs for a Beta distribution numerically. For the IS approag, (0| P) = 0, can be solved
analytically. However, for this problem, the dynamics/oére largely driven byP. Thus, the IS
estimator performs very poorly. Each estimator was usedltutate100 estimates. The means
and standard deviations of these estimators are reportedSFthe firstl0% of the sample was
used to calculate a rough estimateigf For CE, the firsti0% of the sample was used to learn
the parameters.
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Table 1: Estimated VaR and ES for a Bernoulli Mixture Model,

Estimator Vg Std@,) Ca Std.)
a=0.95 N =104

CMC 197.5 3.3 270.0 4.3
CE 197.6 1.4 269.9 5.3
IS 197.5 3.2 269.7 4.8
a=0.99 N =104

CMC 316 7.7 382.9 10.0
CE 314.9 3.2 375.6 8.3
IS 316.2 9.3 378.2 9.8
a = 0.995 N =104

CMC 363.3 9.9 430.6 10.5
CE 362.6 2.7 421.9 6.6
IS 363.4 9.3 413.0 27.0

4.2 Factor Models

In factor modelstheith component defaults when a corresponding random varigpteEosses
a preset thresholg. That is,

DZ:I[(XZ>pZ), Zzl,,n

The variableX; can sometimes be thought of as corresponding to a defawdt as1in the Li
copula model (see Li [2000]), though this need not be the.c@be relationship between the
{D;} isimposed by having thgX;} all depend on a vector of common factois, A model with
one factor is called aingle factormodel; a model with more than one factor is referred to as a
multifactormodel. These factors may correspond to macroeconomic osindspecific factors,
though they need not have an economic interpretation. Irsithplest case of &near factor
mode| eachX; is a weighted sum of the factors and another random varigpbhehich represents
the component-specifidiosyncraticrisk. Conditional on¥, factor models are Bernoulli mixture
models.

The most popular factor models are based on the normal ari8ttl distributions. We
focus on three specific factor models.

¢ In the Gaussian factor modgéachX; has the representation

Xi=anZi+ -+ aimZm + ;& ,
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where the{Z;} and{&;} are independent standard normal random variables and éfiécants
are chosen such that the marginal distribution of e&¢ls standard normal. Here, conditional
onz,=z,..., %4, =z, (thus,¥ = 7Z), the default probability for thé&h component is

p_ple > pi — (@21 + -+ QimZm)
(2 (2 az
(ainz1 + -+ AimZm) — pi
=&
a; ’

e In the Student-t factor modgéach.X; is a weighted sum of Student-t random variables. Usu-
ally, the Student-t factor model is chosen such that egchas the following representation

Xi = \/; (aﬂZl + - F a'imZm + algl) )

where the{Z;} are standard normals arid has a chi-squared distribution withdegrees of
freedom. Here, conditional o, = z1,...,7Z,, = z, andV = v (thus,¥ = (Z,V)), the
default probability is

P=DP <5z' > U/sz' - (Clz'121 + - +aimzm)>

a;

_ % ((ailzl + ot Apmzm) — v/rpi> .

Q;

e A more general single factor model with heavy tails and tappehdence is introduced in Bas-
samboo et al. [2008]. It is an extension of the normal mearawee mixture models described
in Frey and McNeil [2001]. Here, eack;; is of the form

X _aiZ—F\/l—a?&
[ W ;

where the{&;} are iid random variables independent of the random variabland IV is a
random variable independent #fand the{&;}, with a densityfy, that satisfies

fw(w) = w” ' +o(w’™) asw 0. (7)

This model includes that single factor Student-t model gsegial case, as the chi-squared dis-
tribution satisfies (7). Conditional 04 = z andW = w (thus, ¥ = (Z,W)) the default

probabilities are
p=plg> i)
7/1— oz?
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It is usually straightforward to sample from a factor model.

Algorithm 4.4 (Sampling from a Factor Model)
1. Draw the common factor and the idiosyncratic risks;, . . ., &,.
2. CalculateXy, ..., X,, as per the model.

3. CalculateL = [1I(Xy > p1) + - - - + LI(X, > pn).

4.2.1 Importance Sampling

Factor models are usually Bernoulli mixture models. Thuagpartance sampling can be ap-
plied as above. It is usually necessary to use a two-steprianpze sampling scheme, as in
Section 4.1.2. The difficulty lies in choosing, the IS density for the common factois

In the case of Gaussian factor models, whére= Z, Glasserman and Li [2005] use a
multivariate normal density (u, ) with the mean vecton set equal to the mode @f,. The
mode, in turn, can be obtained as the solution to the optimiz@roblem

p' =argmaxP (L > v, |Z = z)exp(—272/2) . (8)

Glasserman and Li suggest a number of approximations thatli§y this problem. One
approach is theonstant approximatigwhereL is replaced b¥E [L | Z = z| andP(L > v, | Z =
z) is replaced byl (E[L | Z = z] > v,). In this case, (8) becomes

argmin{z'z : E[L|Z =z| > v,}. 9)

Another approach is theil bound approximatiopwhich is shown to be asymptotically optimal
for the case of a homogeneous single factor portfolio. Tis@ach approximatéd (L > v, | Z
= z) by its upper bound, and (8) becomes

argmax {r,(0,, |2) — 0,,va —272/2} ,

wheref, = 0, (z) is the solution toz, (0 | z) = v, andx, is given in (6).

In a multi-factor setting, the problem of finding a good apqimation of g* becomes much
more difficult. This is because more than one combinatiomciidrs can cause a loss larger than
V.. Glasserman et al. [2008] propose an approach which eaBgraitempts to partition the
rare evenf L > v, } into different sub-events; each sub-event correspondgtotecular set of
factors taking large values, and they solve (9) for each ed¢hevents. This approach is shown
to be asymptotically efficient in certain settings. As famasare aware, this is the only method
given in the existing literature that deals adequately wighproblem of possibly infinite variance
in a multi-factor setting.

In the Student-t factor model setting given above, Kang amah8buddin [2005] propose
first samplingV/, thenZ,, ..., Z,,. GivenV, they proceed as in Glasserman et al. [2008]. They
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propose exponentially twisting by a parameter which is again the solution of a constrained
optimization problem. Note that this approach is very cotapanally expensive, as it requires
multiple numerical optimization procedures per samplendgand Shahabuddin [2005] suggest
using a stratified sampling scheme to minimize this cost.

For the general single-factor model, Bassamboo et al. [R@@®duce two methods. In the
first, they propose exponentially twistiig and find a good twisting parameteby minimizing
the upper bound on the likelihood ratio. This approach gb@sded relative error under some
technical conditions. In the second, they apply hazareltwisting tol’ = 1/, see Juneja and
Shahabuddin [2006] for a discussion of this method. Agaiey thoose the twisting parameter to
minimize the upper bound on the likelihood ratio. Under sé@ednical conditions, the resulting
estimator is shown to be asymptotically efficient.

Another method for applying variance reduction to Studdattor models is given in Chan
and Kroese [2010]. In this approach, VaR can be estimatedloylating the expectations of
truncated gamma random variables.

4.2.2 Worked Example: A Gaussian Factor Model

We consider an example suggested in Glasserman and Li [2008]is example, the portfolio
is of sizen = 1000, with ; = ([5i/n])*. The barriers are given by, = ®'(1 — P,), where

P, = 0.01 % (1 +sin(167i/n)). Them = 10 factor loadings{a;;} are drawn uniformly on
(0,1/y/m).

We calculate the VaR and ES using three different methodsCC@®lasserman and Li's
method, and Cross-Entropy. For Glasserman and Li’s alguoritwe only apply importance
sampling to the{ Z; }, as twisting the{ D,} does not make a substantial difference in this case,
and takes considerably more time. We draw {t#&} from aN(u, /) distribution, with . the
solution of (4.2.1) found via numerical root-finding. In t6& approach, we set the means of the
{Z;} and the mean of th;} equal to the sample means of t(g;} and{E&;} corresponding to
the | N(1 — «) | highest values of..

Table 2 gives the numerical results. The estimators werellzed100 times each and their
means and standard deviations are reported. The Glassanddu estimator uses the firsd%
of the sample to find an initial estimate @f. The CE estimator uses the fidst’% of the sample
to learn good parameters. Note that the CE and Glassermdn astimators performing better
relative to the CMC estimator as gets larger. Running times are not given here, as they are
implementation specific, but we note that the Glassermampraach is considerably slower
than the CE approach in our implementation.
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Table 2: Estimated VaR and ES for a Gaussian factor model.

Estimator Ve Std@,) ¢o  StdE.)
a=0.95 N = 10*

CMC 215 7 488 19
CE 217 3 469 3
GL 216 3 469 3
a = 0.99 N =10°

CMC 595 31 088 58
CE 600 13 987 12
GL 599 6 987 5
a = 0.995 N =10°

CMC 833 17 1267 28
CE 837 2 1274 2
GL 837 2 1274 2

4.3 Copula Models

One of the most popular ways of expressing dependency it cigdmodels is to use copulas.
A copula is simply a multivariate distribution function witiniform marginals:

Cluy,...,un) : [0,1]" — [0,1] .

Copulas describe the dependency structure between uniémmhom variable#’;, . .., U,,. These
can be transformed into random variablés . . . , X,,, with arbitrary distributiong, . . ., F,,, by
setting X, = F; *(U),..., X, = F;'(U,). This means that the dependency structure of the
{X;} can be modeled separately from their marginal distribstiolt can be shown that the
dependency structure of any distribution can be defined v@pala (see Nelsen [2006]). Often,
the X; are taken to be default times as, for example, in the Li magksd, Li [2000]. However,
this need not be the case. If eabhis of the formD,; = I(X; > p;), then the model is said to be
athreshold model

We focus on the Gaussian, Student-t and Archimedean cqo@s#ésese are the most popular
copulas in credit risk modeling. The Gaussian copula hastipendence. An attractive feature
of the other models is that they exhibit tail dependence.

e TheGaussian copulgoopularized in Li [2000], is of the form
Ca(ug, ..., u,) = Pr (2 Hw), ..., 2 (u,)) |
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where®r(-) is the multivariate normal distribution function with mewaector0 and cor-
relation matrixI'. The Gaussian factor model, described above, can be iatethas a
Gaussian copula.

e TheStudent-t copulés of the form
Cr(ug, ... up) =Tor (T, (1), ..., T, (un))

whereT, 1 is the multivariate Student-t distribution function withdegrees of freedom,
mean vectoB, and correlation matrixX'. The Student-t factor model can be interpreted as
a Student-t copula. The Student-T copula has tail deperdarioth tails.

e Archimedean Copulaare of the form

Cy(ur, .. un) =9 ((ur) + - + (uy)) |

where thegeneratorof the copula is a functiony : [0,1] — [0, 0] that satisfies the
following conditions:

1. Itis strictly decreasing.
2. (0) = ccandy (1) = 0.

3. ¢y~ ! is completely monotonic, meanir(gul)’f%w—l(u) > 0, Vk e Nandu €
[0, 00)

The class of Archimedean copulas includes@uenbel copulawherey, (u) = (—logu)”,
and theClayton copula wherev,(u) = u~" — 1. The Gumbel copula has upper tail
dependence and the Clayton copula has lower tail dependence

4.3.1 Sampling from a General Copula

In theory, it is possible to sample from any copd@lé., . . ., u,). The approach, given in Cheru-
bini et al. [2004], is as follows. Let;(u;,...,u;) = C(uy,...,u;1,...,1),i=1,...,n. The
conditional distribution of the copul@; is

Ci(ui|ur, ... uim) =P(U; < wi |Upy = wq, ..., Uiy = uiq)

aifl
B Cilun )
- gi—1 .
Fargu - Ci1(u1, ..o, ui1)
We can then decomposguy, .. ., u,) as follows

C<u17 R un) = P<U1 < ul) C2<u2 ‘ ul) U Cn<un ‘ Uy, - - - 7un—1) .
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Algorithm 4.5 (Sampling from a General Copula)
1. DrawU; uniformly on(0, 1).
2. DrawU; from the distributiorC;(- | uy, ..., u;—1), fori =2,... n.

In general,C;( | us,...,u;_1) has to be sampled via the inverse transform method (see
Kroese et al. [2011]). This involves drawing a uniform ramdeariableV’, and solvingl’ =
Ci(ui|uq, ..., u;—q) for u;. This usually needs to be done using a numerical root-findnog
cedure. In practice, this tends to make sampling from artrariicopula too expensive to be
feasible.

4.3.2 Sampling from Gaussian and Student-t Copulas

The Gaussian and Student-t copulasiarplicit copulas That is, they are copulas implied by
the multivariate normal and Student-t distributions. Herdrawing from these copulas is simply
a case of drawing from their respective multivariate disttion. Algorithms for drawing from
these distributions are given in Kroese et al. [2011].

Algorithm 4.6 (Sampling from a Gaussian copula)
1. DrawZ = (Z1,...,Z,) ~ N(0,%).
2. Returnly = &(Zy),...,U, = ®(Z,).
Algorithm 4.7 (Sampling from a Student-t copula)

1. DrawY from a multivariate Student-t distribution withdegrees of freedom and correla-
tion matrixI".

2. ReturnlU; = T,(Z1),...,U, = T,(Z,).

4.3.3 Sampling from Archimedean copulas

Archimedean copulas are particularly easy to sample frdme.approach below uses Bernstein’s
theorem, which states thatjf satisfies the conditions for an Archimedean generator, thén
is of the form

Vv (u) = /OOO e "M dEL(N) .

That is,)~!(u) is the Laplace transform of some distributibR. It is easily verified that, if\ is
drawn fromF, and X, ..., X,, are iid andU(0, 1) distributed, then

—log X —log X
=t () gy =g (Flee)

have the distribution given by the Archimedean copula. Thiugre know F, we have the
following algorithm for sampling from an Archimedean coaul
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Algorithm 4.8 (Sampling from an Archimedean copula)
1. Draw A from the distributiont,.

2. Draw iid standard uniform random variables,, . .., X,,.

—log X —log X,
e () - (1),

Given an arbitrary generatot;, F, may not be a known distribution, or one that can be
sampled from in a straightforward manner. Howewvéy,is known for both the Gumbel and
Clayton copulas. For the Gumbel copula,has a stable distributioft(1/n,1,~,n), where
v = (cos(mn/2))". In the case of the Clayton copul&,is Gam(1/7, 1) distributed.

3. Return

4.3.4 Importance Sampling

Importance sampling is straightforward for Gaussian anai&tt-t copula models, as it can be
applied directly to the multivariate densities.

In an Archimedean copula modél,, . . ., U, are independent conditionaldn If Dy, ..., D,
are generated using a threshold approach, we can represér snodel as a Bernoulli mixture
model. This is because,

PU; > p;) =P (¢_1 <¥) > Pz') =1—exp{—Av(p)}. (10)

Thus, we can apply importance sampling as in the Bernouktuné model case given above.

4.3.5 Worked Example: A Clayton Copula Model

We consider the case where exponentially distributed dtefenes are generated using a Clayton
copula. Uniform random variabld$,, .. ., U,, are drawn from a Clayton copula with parameter
n = 1.5. These are transformed into exponential random variabigsparameters = 0.1 by

setting oo U
0g Uj

X; = T
EachD; is then generated d§X; < 1). VaR and CVaR are both estimated using CMC, CE and
one-step importance sampling. In all three cases, the @lagdpula is sampled from via the
Laplace transform method detailed above. In the CE case,sampled from a Gamma distri-
bution with parameters estimated from the elite samplehénone-step IS case, the importance
sampling is applied by twisting the default probabilities . . ., P,,, which are calculated as in
(10). For the CE estimator, the firkd% of the sample is used for learning phase. For the IS esti-
mator, the firstl0% of the sample is used as to get a rough estimate @he results are given in
the following table. Note that the CE estimator gives sigatfit variance reduction provided that
the sample size is large enough to estimate good parametis iearning phase. The one-step
importance sampling estimator performs not much better @slC, as the value of is very
dependent on the realization &f
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Table 3: Estimated VaR and ES for a Clayton Copula model.

Estimator Vg Std@,) Ca Std.)
a=0.95 N =103

CMC 72 4.9 89.9 2.4
CE 73 5.2 86.5 9.6
IS 73.5 54 86.8 4.8
a=0.95 N =104

CMC 72.7 1.6 88.9 0.8
CE 72.9 0.3 88.7 0.1
IS 72.8 1.5 88.5 0.9
a=0.99 N =104

CMC 97.5 0.6 100.1 0.2
CE 97.6 0.5 99 0.5
IS 97.6 0.6 98.7 0.4

4.4 Intensity Models

In intensity models, the default times of thecomponentsry, ..., 7,, are modeled by the ar-
rival times of point processes. Denoting Bythe time at which the portfolio is assessed, the
Bernoulli default variables are given iy, = I(ny, < T'),..., D, = I(7, < T). In atop-down

approach, the defaults are modeled as the arrivals of aegought process. The intensity of this
process is given without reference to the portfolio coostits. In abottom-upapproach, each
component of the portfolio is modeled separately. We witlf® on this approach, and refer the
reader to Giesecke [2008] for further discussion of modgdipproaches. We model eaghas
corresponding to the arrival time of an indicator proceSgt),¢ > 0). Such a process has a
stochastic intensity,(¢), ¢ > 0, which is equal td) after the first arrival. Intuitively);(¢) is
the rate at which arrivals occur at timeconditional on the filtration (that is, the history) of the
process up to time The default probability for th&h component is given by

B:l_m<T>:1_E[exp{_/oﬂi<s>ds}].

Dependency between defaults can be induced by assumingablatintensity\; is a function
of a common processX (¢),t > 0) and an idiosyncratic proce$<;(t),t > 0); for example,
\i(t) = X(t) + X;(t). A popular modeling choice for the proceSs(¢)) is that it satisfies a
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stochastic differential equation with jumps:
dX (t) = p(X () dt + o(X(t))dB(t) + AJ(t) , (11)

where(B(t),t > 0) is a standard Brownian motiof\J(¢),t > 0) is a jump process, and both
w ando are deterministic functions. The idiosyncratic procegsé$t),t > 0),: =1,...,n can
be modeled in a similar way. }i ando are affine functions, then under certain assumptions,
the default probabilities’, . . ., P, can be found by solving a system of ODEs (see Duffie et al.
[2003] and Duffie [2005]).

One appeal of intensity models is that they can capture therea phenomenon ofonta-
gion, where defaults tend to happen in clusters. A popular mddemtagion is theyeneralized
Hawke’s processwvhere the point processV(t),t > 0) has a stochastic intensity that satisfies

dA(t) = k(p — A()) dt + o/A(E) dB(t) + AN () .

Point processes in which the intensity depends on the nuailagrivals are calledelf-exciting
Intensity models can also capture dependency betweert twsses and the default process. A
general introduction of using point process models in ¢mesk is given in Giesecke [2004]. For
the relevant background on stochastic differential equatsee, for example, Protter [2005].

4.4.1 Sampling from Intensity Models

In practice, though each portfolio component is modeled g @arate point process, we only
simulate a single point process. This point process hassiye\(t) = >~ | A\;(¢). On the event
of a default, theth component of the portfolio is chosen to default with plably \;(¢)/A(%).
The choice of algorithm for simulating from a stochastiemgity model depends on whether the
intensity A\(¢) can be bounded between jumps. If the intensity can be boubekedeen jumps
and it is straightforward to determingt) for an arbitraryt, then a thinning method due to Ogata
[1981] can be used. At each jump, a piecewise constant g¢aég)) is identified such that
A(t) < A*(t) almost surely so long as no other jumps occur. A Poisson psowith intensity
function \*(¢) is simulated, and points are accepted with probabAity) /\*(¢). This gives the
following algorithm.

Algorithm 4.9 (Sampling from a Point Process via Thinning)
1. Seti =0andm = 0;

2. Find )}, the upper bound of(¢), 7; < t < T given the history of the process up until time
Ti-

3. Simulate arrival time$,, . . . 7, for a homogeneous Poisson process with intensityAc-
cept each arrival with probability;(7)/Af. Stop after the first arrival timé; is accepted.

4. Setr; = 7:@* + Ti—1-

5. Seti =i+ 1 and repeat from step 2 unti} > 7.
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There is a general method of sampling from a point procesgnliby a stochastic intensity.
If the compensatol (t) — oo ast — oo then(N(¢)) is a standard Poisson process under the
time change defined bfA(¢)), with interarrival times given b¥xp(1) random variables (see
Giesecke et al. [2011]). The arrival times of the originaqess can be found by invertingt).
That is, given a sequenadsq, ..., Y, of Exp(1) random variables representing the interarrival
times of the time-changed process, thk arrival time of the original process,, can be found

by solving,
t n

This suggests the following algorithm.

Algorithm 4.10 (Sampling from a Point Process via a Time Chage)
1. Sett = 1.
2. DrawY; from anExp(1) distribution.
3. Returnr;, the time at which\(t) hits >~ _, V.

4. Seti =i+ 1 and repeat from step until 7; > 7.

This method is usually very computationally expensive, las integral procesd (t) =
fot A(s)ds,t > 0 needs to be approximated on a discrete grid. The conditidis&ibutions
of A(t) may also be unknown, in which case the process may only bexpmately sampled
at the grid points. An alternative method, that does notireggimulating the intensity between
jumps is suggested in Giesecke et al. [2011]. However, teihiod may be difficult orimpossible
to apply in some settings.

4.4.2 Importance Sampling

Importance sampling can be applied to intensity models iuraber of different ways. For
example, it can be observed that the evem&t) >~} and {>_"" | N;(¢t) > v} can both be
written in the form{S},) < T'}, whereS, is the sum ofk random variables, representing the
first k£ arrival times. In this setting, exponential twisting candpplied toS;. Unfortunately,
this is often not possible, as the distribution of thieis usually either unknown or intractable
— see Giesecke and Shkolnik [2011] for a discussion. Howewehis setting, standard large
deviations techniques can be applied to find good twistimgrpaters.

Another method is to apply a change of measure to the poirdegmoitself. This is the
approach taken in Zhang et al. [2009], which considers argéned Hawke’s process. In the
approach given in Giesecke and Shkolnik [2011], the chahgeeasure is applied to the intensity
processes instead.

If indicator processes are independent of one another ttondi on some common factors
X, then they have a Bernoulli mixture model structure. This,techniques described in Sec-
tion 4 can be applied. In the particular case where intassitie of the form\; (¢t) = X (¢)+ X;(¢t)
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driven by (11), and the random factors are affine processessadnboo and Jain [2006] propose
applying an exponential change of measure to the procesghss parameteé that minimizes
the upper bound on the likelihood ratio.

4.5 An Example Point Process Model

In this model, taken from Giesecke and Shkolnik [2011], teiviidual component intensities
are given by
Ai(t) = (wiXo(t) + Xi())(1 — Ni(1)) ,

where each¥;(t) satisfies the SDE

dX;(t) = mi (Xi(t) — Xi(t)) dt + 03/ X;(t) dB;(t) + 0; dJi(t) -

Here, Ji(t) = AiNi(t) + -+ + A,N,(t) and the(B;(t),t > 0),i = 1,...,n are standard
Brownian motions. Théx;} are drawn uniformly orf0.5, 1.5). The{X;} are drawn uniformly

on(0.001,0.051) and eacly; is equal tanin <\/2/{ZX¢, @-) , Where the{a; } are drawn uniformly

on (0,0.2). Each factor weightv; is drawn uniformly on(0, 1). The{A;} are drawn uniformly
on (0,2/n) and the{é;} are drawn uniformly or{0, 2). We compare the CMC algorithm with
one of the two algorithms given in Giesecke and Shkolnik 401

In the CMC approach, the process;, t > 0) is generated using the time-change algorithm
(Algorithm 4.10). A single point process is generated wittensity A(t) = >, \;(¢). The
intensity processes, (t), ..., \,(t) are square-root processes, so they can be simulated exactly
on a mesh using non-central chi-squared random variabéesGtasserman [2004]). A mesh
of 1000 points is used and the integrﬁ] A(s) ds is evaluated via the trapezoidal rule. On the
event of thekth default, theth component of the portfolio is selected to default withigability
i) /A (T )-

The IS algorithm replaces the point procg$é(¢)) with a Poisson process with intensity
A = 0,. The number of defaultsy, is drawn from a Poisson distribution with mean The
default timesry, ..., 7y are N ordered uniform random variables on the interfgall|. At time
T, the Radon—Nikodym derivative for this change of measugivisn by

M(T) = exp {ta7y — N(T)log(in)} + Y _log(A(7k)) — /O " A(s)ds .

k=1

The dynamics of \;(¢),t > 0),7 = 1,...,n remain unchanged between defaults. A great ad-
vantage of this method is a reduction in computational &fé&\;(¢) only needs to be calculated
up until the final default time.

The following numerical results are based on a portfolionés = 100, with eachl; = 1. A
sample size oV = 103 was used. The CMC and IS algorithms appear to give differainies for
c.. However, for larger sample sizes, the CMC estimates, giet closer to the IS estimates. For
the importance sampling algorithm, the fi26t% of the sample is used to get a rough estimate of
Ve s
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Table 4: Estimated VaR and ES for an intensity model.

Estimator Vg Std@,) ¢ StdE.)
a=0.95 N =103

CMC 20 0.0 23.0 0.6
IS 20 0.0 22.6 0.6
a=0.99 N =103

CMC 24.4 0.8 29.5 1.3
IS 24.2 0.4 26.7 0.5
a=0.995 N =10?

CMC 26.1 1.0 33.1 1.3
IS 25.8 0.4 27.8 0.7

A Appendix: A Primer on Rare-Event Simulation

The problem of finding good estimators for risk measures sisckaR and ES can, to a large
extent, be reduced to the problem of finding good estimatarsaire-event probabilities. This
is a much better understood problem, and one which has gisena a large number of effec-
tive Monte Carlo techniques. The vast majority of the litera on VaR and ES estimation has
focused on a variance reduction method knowmgsortance samplingnd has used methods
from the theory of rare-event simulation to find good clasgesiportance sampling estimators.
These methods can be roughly split into two classes: (1) edsthased primarily on Large De-
viations asymptotics, and (2) adaptive methods, whichitfegood estimators. In this appendix,
we review the basics of rare-event probability estimatiosh@iscuss a number of approaches that
work well in the credit risk context. There is an extensiveriture on rare-event simulation; we
mention, in particular, Bucklew [2004], Rubino and Tuffird®], Asmussen and Glynn [2007]
and Kroese et al. [2011].

A fundamental problem of rare-event simulation is to esteia= P(S(X) > ~), when/ is
very small. HereS is a real-valued functionX is a random vector with density, and~ is a
constant. Th&€rude Monte Carl{CMC) estimator of is defined as

.1 d

(=% ; I(S(X;) > 7) , (12)
where the{X;} are iid draws fromf. This estimator performs very well whefnis large, but
works very badly ag — 0. This is because the event of inter¢stX) > ~}, which is rare by
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nature, must happen a large number of times in order to get@mate estimate. The aim of rare
event simulation is to find better estimators in such sesting

A.1 Efficiency

The accuracy of a rare-event estimator is often measurets bglative error. This is the nor-
malized standard deviation of the estimator. We can ustiailhk of a rare event estimator as an
average of iid replicates of a random variable, which we lailel Z. For example, the CMC
estimator is an average of iid replicatesdf= [(S(X) > ). The relative error is then defined
as

Var(Z)

N

The relative error of the CMC estimator 6fs given by

RE =

(-0 1
(VN VNV
for small/. This means that a very large sample size is required in ¢odechieve a low error.

For example, estimating a probability of ordeér° to a relative error 06.01 requires a sample
size of approximately0'. If an estimator is unbiased, its variance is given by

Var(Z) =EZ* — (EZ)* =EZ2 — 2 < M — (2

This means that the variance of an unbiased estimator ientietermined byl// = EZ?, the
second moment of the random varialile

Rare event estimators are often evaluated in terms of tegmptotic performance. To do
this, we embed the rare event of interest in a family of insiregly rare events indexed by a rarity
parametery. For example, we might consider what happens to estimatars-oP(S(X) > )
asy — oo. The most common notion of asymptotic efficiencylagarithmic efficiency An
estimator is said to be logarithmically or asymptoticalfyogent if

By Jensen'’s inequalityl/ > ¢2. Logarithmic efficiency means that asymptotically therastior
attains this lower bound on a log scale.

A.2 Importance Sampling

Importance sampling is a variance reduction method tharigqularly well suited to rare event
problems. The idea is to improve upon the efficiency of the Gdd@mator by using a different
probability measure, under which the rare event is mordyikéo do this, we observe that an
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expectation with respect to some densftgan be rewritten as an expectation with respect to
another density, so long asf(x) = 0 wheng(x) = 0. We write

EA(S() > ) = [ 1500 > 7))

= / %H(S(x) > 7)g(x) dx = E,W(X)I(S(X) > ),

wherel (x) = f(x)/g(x) is thelikelihood ratio. This allows us to replace the CMC estimator
(12) of ¢ with the Importance Samplin¢JS) estimator

s = Z W(X)I(S(X) > 7),

where the{X;} are now drawn frony rather thanf. The second moment of the IS estimator is

Mg = E, (@)21[(5@() > ) = E LR y(5(%) > ) = BW(X)I(S(X) > ).

9(X) 9(X)
An importance sampling estimator will have smaller varetian the CMC estimator if/;s <
E/?, that is, if
E @H(S(X) > ) <E/AS(X) > 7).
T9(X) !
The optimal IS density is the density that minimizess. It turns out that this density;*,
actually gives an estimator with zero variance. The zertaaae density is given by

SIS (%) > 7)

g'(x) = argminEf@H(S(X) > ) = ;i ,

g€g g(X)
whereg contains all permissible densities (those such thia) = 0 = f(x) = 0). Unfor-
tunately, the normalizing constant g¢f is ¢, the estimand, so it is not a practical IS density.
However, it provides valuable insight into the structurggobd IS densities. In particular, note

that,
x)I(S(x) >

ORI 20 _ (w500 > )
In other words, the optimal IS density; is the original density conditioned on the rare event
of interest having occurred. In practice, we usually resthe IS densityy to be a member of
a parameterized family of densitiég(x;0) : @ € ©}. This replaces the infinite-dimensional
optimization problem of finding an optimal density with thepler finite-dimensional problem
of finding an optimal vector of paramete#s. Even so, it is generally difficult to find a closed-
form solution to thevariance Minimizatior(VM) problem

. f(X)
argmin [
so 1 9(X;6)

Instead of solving the VM problem directly, we usually aimeiither solve a simpler problem,
often using Large Deviations asymptotics, or to ‘learn’ adjdensity adaptively.

I(S(X) > 7) .
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A.3 The Choice ofg

The choice of a good importance sampling dengityhighly dependent on the distribution Xf
and the properties of the sg$(X) > ~}. The tail behavior of th&'(X) plays an important role
in determining the appropriate importance sampling dgngitrandom variable” is said to be
light-tailedif E€”Y < oo for somef > 0. Light-tailed random variables have tails that decay at
least exponentially fast. A random variable that is notthgiled is said to béeavy-tailed The
rare-event behavior of heavy-tailed random variablesmsicterably different from the behavior
of light-tailed random variables. The theory of rare-ev@ntulation for heavy tails is reviewed
in Asmussen and Glynn [2007] and Blanchet and Lam [2011].

Sometimes rare events can happen in more than one way. loabés choosing a that
increases the likelihood of the rare event happening intaicevay may decrease the likelihood
of the rare event happening in another way. This means tedikélihood ratio can take ex-
treme values. In the worst case scenarios, this can everidezstimators with asymptotically
infinite variance, as shown in Glasserman and Wang [19973uéh cases, the appropriate im-
portance sampling density may be a mixture distributiore Uike of a mixture distribution may
be necessary in some multifactor models, see Glassermarj20@/] for a discussion.

In a light-tailed setting, the best importance samplingsitgns often arexponentially twisted
density, fo, derived from the original density. This density,fy is defined as

fo(x) = exp {0Tx — x(0)} f(x) ,

where
k(0) = logEexp {07X}

is thecumulant generating functiasf X. The likelihood ratio of an exponentially twisted density
is given by
W(x)=exp{r(0) —07x}.

Dembo and Zeitouni [2010] and Bucklew [2004] summarize tranynattractive properties of
likelihood ratios of this form. For example, if there exiatsv such that

exp{kr(0) — 0"x} < exp {x(0) — 0"V}

for all @ and allx such thatS(x) > ~, then this is a uniform bound on the likelihood ratio. The
parametef can then be chosen to minimize this upper bound, often lgadimsymptotically
efficient estimators; see, for example, Bucklew [2004].

A.4 Adaptive Importance Sampling

As discussed, the choice of a good importance sampling tgaagipically model specific and
often involves heavy analysis. It is therefore desirableawee an effective way to locate a good
importance sampling density in an automatic fashion. Is #@ction we introduce a popular
adaptive importance sampling technique for rare-everiaiiity estimation, namely, the Cross
Entropy (CE) method. A book-length treatment of the CE meétban be found in Rubinstein
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and Kroese [2004], and a recent review is given in Kroese JROAn improved variant that
shows better performance in various high-dimensionahggtis recently proposed in Chan and
Kroese [2012]. See also Chan, Glynn, and Kroese [2011] fengparison between the CE and
VM methods.

To motivate the CE method, recall that the zero-variancedi$sity for estimating is the
conditional density given the rare event, i.e.,

9" (x) = 7 f(=)US(x) > 7).

This suggests a practical way to obtain a good importancekiagrdensity. Specifically, iy is
chosen to be ‘close enough’ 6 so that both behave similarly, the resulting importancedanm
estimator should have reasonable accuracy. Thereforgaalis to locate a convenient density
that is, in a well-defined sense, ‘close’¢t

Now, we formalize this strategy as an optimization problenficiows. Consider the family
of density functiorg = {g(x; 8)} indexed by the parameter vec@within which to obtain the
optimal IS densityy. One particularly convenient directed divergence meastidensitiesy;
andg, is theKullback—Leibler divergenger cross-entropy distance

D(Qlagz) :/91(X) log i;giidx

We locate the density such thatD(g¢*, ¢g) is minimized. Since every density i can be rep-
resented ag(-; 8) for some#, the problem of obtaining the optimal IS reduces to the foilhy
parametric minimization problem:

Oce = arg;ninD(g*,g(-; 0)) .

Further, it can be shown that solving the CE minimizatioropem is equivalent to finding

Oce = argmax E f(X)I(S(X) > v) log g(X; ) . (13)
]

The deterministic problem (13) typically does not have aplieit solution. Instead, we can
estimated,, by finding

N
~%

0..= argmax — Z v)log g(X;; 0), (14)

whereX,, ..., Xy are draws frony. If we are able to draw approximately frog — e.g., via
Markov Chain Monte Carlo methods — we can instead find

N
ANk 1
0. = argmax — log g(X;;0) , 15
ce = ArgMaX ;:1 89(X;;0) (15)
whereX, ..., Xy are drawn approximately from.
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A.5 Importance Sampling for Stochastic Processes

Importance sampling is easily extended to a discrete sstichprocessX = {Xn,n =0,
...,N}, as long as the conditional densitigée,, | z1,...,2,-1),n = 1,2,... are known. A
natural importance sampling approach is to simply replaesd conditional densities with other
conditional densitieg(z,, | z1,...,z,-1),n = 1,2,.... The likelihood ratio is then given by

W(x) :H fgxn|x1,...,xn_1) .

_ gxn|x17"'7xn—1)

It is less straightforward to apply importance sampling tooatinuous-time procesX =
{X:,0 <t <T}. Theideais to use the identity

EpS(X) = Eg—S(X) |

where @/dQ is theRadon-Nikodym derivatiyé' is an arbitrary real-valued function affdand

Q are equivalent measures. This allows us to affect a changeeabure similar to that used
in discrete setting importance sampling. We note that thehsistic proces$(dP/dQ);,0 <

t < T) is a positive martingale. Often, instead of defini@gexplicitly, a positive martingale
{M,;,0 < t < T} is specified instead. This induces a new meaguréa Girsanov’s theorem.
See, for example, Protter [2005] for an in-depth treatmé&xamples of specifying a positive
martingale and working out the corresponding dynamic® @fan be found in Bassamboo and
Jain [2006], Zhang et al. [2009] and Giesecke and Shkolrii]2. A discussion of change of
measure for affine jump diffusions, which are of particulaportance in credit risk modeling,
can be found in Duffie et al. [2000].
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