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1 Introduction

The financial crisis of2007 – 2009 began with a major failure in credit markets. The causes of
this failure stretch far beyond inadequate mathematical modeling (see Donnelly and Embrechts
[2010] and Brigo et al. [2009] for detailed discussions froma mathematical finance perspective).
Nevertheless, it is clear that some of the more popular models of credit risk were shown to be
flawed. Many of these models were and are popular because theyare mathematically tractable,
allowing easy computation of various risk measures. More realistic (and complex) models come
at a significant computational cost, often requiringMonte Carlo methodsto estimate quantities
of interest.

The purpose of this chapter is to survey the Monte Carlo techniques that are used in portfolio
credit risk modeling. We discuss various approaches for modeling the dependencies between
individual components of a portfolio and focus on two principal risk measures: Value at Risk
(VaR) and Expected Shortfall (ES).

The efficient estimation of the credit risk measures is oftencomputationally expensive, as it
involves the estimation of small quantiles. Rare-event simulation techniques such as importance
sampling can significantly reduce the computational burden, but the choice of a good importance
sampling distribution can be a difficult mathematical problem.

Recent simulation techniques such as the cross-entropy method [Rubinstein and Kroese,
2004] have greatly enhanced the applicability of importance sampling techniques by adaptively
choosing the importance sampling distribution, based on samples from the original simulation
model.

The remainder of this chapter is organized as follows. In Section 2 we describe the general
model framework for credit portfolio loss. Section 3 discusses the crude and importance sam-
pling approaches to estimating risk measures via the Monte Carlo method. Various applications
to specific models (including Bernoulli mixture models, factor models, copula models and inten-
sity models) are given in Section 4. Many of these models capture empirical features of credit
risk, such as default clustering, that are not captured by the standard Gaussian models. Finally,
the Appendix contains the essentials on rare-event simulation and adaptive importance sampling.

2 Modeling Credit Portfolio Losses

Portfolio credit risk is usually evaluated in astaticsetting, whereby the loss of a portfolio is mod-
eled via a single random variableL representing the sum of the losses incurred by the individual
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components of the portfolio; that is,

L = Loss1 + · · ·+ Lossn .

If the individual losses are independent, the problem of describing the distribution ofL reduces to
the problem of describing the marginal distribution of eachindividual loss. However, in practice
the individual losses tend to be dependent on each other. It is therefore important to appropriately
model the dependence between the{Lossi}.

Losses can result from changes in credit quality as well as from default. For simplicity we
will only consider default events. We write each individualloss as the product of the loss incurred
if the individual component defaults and a Bernoulli (that is, indicator) random variable that takes
the value1 when a default occurs and0 otherwise. Thus, our model is given by

L = l1D1 + · · ·+ lnDn , (1)

where the{li} are the magnitudes of individual losses and the{Di} are Bernoulli variables
modeling the default events. The{li} can be random or deterministic. The empirical evidence
suggests a strong relation between the magnitudes of lossesand the number of defaults. However,
many popular credit risk models assume independence between the {li} and {Di}. We will
focus on modeling only the default events{Di}, though some of the models given below can be
modified to incorporate dependence between losses and numbers of defaults.

2.1 Risk Measures

The distribution ofL — often called theloss distributionand denoted asFL — is the central
object of credit risk modeling.FL is typically not available in closed form. Instead, certainrisk
measures are used to describe its key features, particularly its tail behavior. The most widely
used risk measure in credit risk isValue at Risk(VaR), which describes the quantiles of the loss
distribution. For example, the99% VaR of a portfolio is the value of the loss variableL such that
a greater loss would only occur1% of the time. The VaR for confidence levelα is given by

vα = F−1
L (α) ,

whereF−1
L is the generalized inverse ofFL:

F−1
L (α) = inf {l : FL(l) > α} . (2)

Common values forα are0.95, 0.99, 0.995 and0.999. The use of VaR as a risk measure has
been the subject of significant criticism (see Bluhm et al. [2010] and McNeil et al. [2005] for
discussions). In particular, it has the counter-intuitivefeature that it is not sub-additive: the
VaR of two portfolios might be larger than the sum of the VaRs of the individual portfolios. In
other words, the VaR of a portfolio is not necessarily reduced through diversification. This led
Artzner et al. [1999] to propose a class ofcoherent risk measures, which satisfy certain ‘natural’
requirements, including sub-additivity. One of the most popular of these is theExpected Shortfall
(ES), also known asConditional Value at Risk(CVaR). Theα expected shortfall is given by

cα = E [L |L > vα] .

Expected shortfall is also an example of a spectral risk measure, see Bluhm et al. [2010].
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2.2 Modeling Dependency

The key challenge in modeling portfolio credit risk lies in describing the relationship between
default events. Defaults do not occur independently of one another, but rather tend to cluster.
These default clusters could occur as the result of sector specific conditions, such as a downturn
in a particular industry or market, or as a result of broader macroeconomic factors. A major
failing of credit models in the financial crisis of 2007 – 2009was that they failed to adequately
model the possibility that a large number of defaults could occur simultaneously. In order to
discuss this limitation, we need to introduce a number of differentdependency measuresthat
describe the relationship between random variables.

The simplest measure of dependency between two random variablesX andY is given by
their pairwise linear correlationρ(X, Y ) = Cov(X, Y )/

√
Var(X)Var(Y ). Its multivariate ana-

log is the correlation matrix. The dependency structure of random vectorX is completely spec-
ified by its correlation matrix if and only ifX has anelliptical distribution; see McNeil et al.
[2005]. Important special cases are the multivariate normal and multivariate Student-t distribu-
tions.

A drawback of linear correlation (and other correlation measures, such as rank correlation) is
that it describes the average joint behavior of random variables. In risk management it isextremal
events, rather than typical events, that are of primary interest. Two dependency measures that
describe extremal behavior are the coefficients of upper andlower tail dependence. Specifically,
given two random variablesX andY , with distributionsFX andFY , we define the coefficient of
upper tail dependence as

λu = lim
q↑1

P
(
Y > F−1

Y (q) |X > F−1
X (q)

)
,

and the coefficient of lower tail dependence as

λl = lim
q↓0

P
(
Y 6 F−1

Y (q) |X 6 F−1
X (q)

)
.

These measures describe the relationship between variables in the tails of distributions. A joint
distribution is said to have upper (lower) tail independence if λu = 0 (λd = 0). Some of the most
popular models of credit risk — in particular, the various Gaussian copula models — exhibit tail
independence in both tails. This is clearly not a desirable feature in risk models, as empirical
evidence tends to indicate that both defaults and risk factors tend to become more correlated
in extreme settings. With the exception of the canonical Gaussian models, all of the models
described in the following sections possess tail dependence.

3 Estimating Risk Measures via Monte Carlo

For a general loss distributionFL, analytic calculation of the various risk measures described in
the last section is usually impossible. Often the only feasible approach is to estimate these risk
measures using Monte Carlo methods. To proceed, we need a method for drawing independent
and identically distributed (iid) replicates of the randomvariableL and a method for estimating
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risk measures, given an iid sampleL1, . . . , LN . The methodology for estimating risk measures
is largely model independent, and is the focus of this section.

The Monte Carlo estimation of VaR turns out to be somewhat more difficult than the tradi-
tional problem of estimating an expectation. In particular, VaR estimators are non-linear func-
tions of the sample. Many classical Monte Carlo methods cannot be applied to VaR estimation or
need to be modified to work well. In addition, it is typically difficult to find confidence intervals
for VaR estimators.

3.1 Crude Monte Carlo Estimators

TheCrude Monte Carlo(CMC) estimator of VaR is the quantile estimator of classical statistics;
see van der Vaart [1998] for a discussion of its properties ina statistical context. It replaces
the unknown distribution function ofL, FL, in the definition of VaR in (2) with the empirical
distribution functionF̂L. That is, we estimate VaR using

v̂α = inf
{
l : F̂L(l) > α

}
,

where

F̂L(l) =
1

N

N∑

i=1

I(Li 6 l) (3)

is the empirical distribution function of the iid sampleL1, . . . , LN . Note thatF̂L is a step func-
tion. Consequently, the CMC quantile estimator can be easily obtained by ordering the{Li} as
L(1) 6 · · · 6 L(N) and finding the⌈αN⌉th largest value.

Algorithm 3.1 (CMC VaR Estimator)

1. Generate an iid sampleL1, . . . , LN .

2. Order the sample from smallest to largest asL(1) 6 · · · 6 L(N).

3. Returnv̂α = L(⌈αN⌉).

The CMC estimator for the ES is more straightforward, as the ES is simply an expectation.
The estimator is given by

ĉα =
1

N(1 − α)

N∑

i=1

Li I(Li > v̂α) .

The variance of the VaR estimator is difficult to evaluate, because the estimator is not an
average of iid random variables. However, the following central limit theorems, given with
references in Hong and Liu [2011], show that the VaR and ES estimators have asymptotically
normal distributions.
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Theorem 3.1 (Central Limit Theorems for the CMC VaR and ES Estimators) If EL2 < ∞
and the density ofL, fL, is positive and continuously differentiable in a neighborhood ofvα,
then, asN → ∞

1.
√
N (v̂α − vα)

D→
√
α(1−α)

fL(vα)
Z1 ,

2.
√
N(ĉα − cα)

D→
√

Var(LI(L>vα))

(1−α)
Z2 ,

whereZ1 andZ2 are standard normal random variables and
D→ denotes convergence in distribu-

tion.

3.2 Importance Sampling

The CMC VaR and ES estimators generally require a very large sample size in order to achieve
an acceptable level of accuracy. This is because the estimators are focused on the relatively ‘rare’
event{L > vα}. There is a substantial body of theory devoted to efficient Monte Carlo methods
for rare events. This theory has mainly been developed in thecontext of estimating rare-event
probabilities of the formℓ = P(S(X) > γ) for some real-valued functionS, thresholdγ, and
random vectorX. Some key concepts and techniques of rare-event simulationare discussed in
the Appendix. The following discussion will assume familiarity with these concepts.

The importance sampling approach to quantile estimation was suggested in Glynn [1996].
We replace the CMC estimator of the empirical distribution function with the IS estimator

F̂ IS

L (l) = 1− 1

N

N∑

i=1

W (Li)I(Li > l) ,

where the{Li} are drawn from the IS densityg andW (l) = fL(l)/g(l) is the likelihood ratio.
Note that this estimator focuses on the right tail of the distribution — see Glynn [1996] for a
motivation. This then leads to the IS VaR estimator

v̂ISα = inf
{
l : F̂ IS

L (l) > α
}
. (4)

The corresponding ES estimator is

ĉISα =
1

N(1 − α)

N∑

i=1

W (Li)LiI
(
Li > v̂ISα

)
, (5)

where theLi are drawn fromg. If g is chosen such that draws from the right tail ofL happen
more frequently, this estimator could provide considerably better performance than the CMC
estimator. In practice, the IS VaR estimator is calculated as follows.
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Algorithm 3.2 (IS VaR Estimation)

1. DrawL1, . . . , LN from the IS densityg.

2. Calculate the likelihood ratiosW (L1), . . . ,W (LN).

3. Order the{Li} asL(1) 6 · · · 6 L(N).

4. FindN∗ = sup
{
n : 1

N

∑N
i=nW (L(i)) > 1− α

}
.

5. ReturnvISα = L(N∗).

So far we have takeng as given. The following central limit theorems, given in Hong and
Liu [2011] and Sun and Hong [2010], suggest a good choice ofg.

Theorem 3.2 (Central Limit Theorem for the IS VaR Estimator) If L has a positive and dif-
ferentiable densityfL in a neighborhood ofvα and there exists anǫ > 0 such thatW (l) is
bounded for alll ∈ (vα− ǫ, vα+ ǫ) andEgI (L > vα − ǫ) (W (L))p is finite for somep > 2, then
asN → ∞

1.
√
N
(
v̂ISα − vα

) D→
√

Varg(W (L)I(L>vα))

fL(vα)
Z1 ,

2.
√
N(ĉISα − cα)

D→
√

Varg(W (L)LI(L>vα))

(1−α)
Z2 ,

whereZ1 andZ2 are standard normal random variables and
D→ denotes convergence in distribu-

tion.

This suggests that a good choice ofg, at least asymptotically, is one that minimizes Varg(W (L)
I(L > vα)). This is equivalent to finding the densityg that minimizes the variance of

ℓ̂IS =
1

N

N∑

i=1

W (Li)I(Li > vα) ,

where the{Li} are drawn fromg. This is the standard IS estimator for

ℓ = P(L > vα) .

Of course, the computation ofℓ̂IS involvesvα, which is the unknown quantity we seek to estimate.
However, a rough estimate ofvα can often be obtained, either through an approximation or by
doing an initial simulation using the CMC VaR estimator. Importance sampling estimators for
VaR and ES will often provide very large efficiency gains, even in settings where the initial
estimate ofvα is quite inaccurate.

Another complication is that we usually do not knowfL, the density ofL. Thus, we cannot
apply importance sampling to the{Li} directly. Instead, we seek to representL as a function
S of either a random vectorX with known densityfX or a vector-valued stochastic process
X = (X(t), 0 6 t 6 T ), to which we can apply importance sampling.

In practice, the procedure for applying importance sampling is as follows.
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Algorithm 3.3 (Importance Sampling Estimation for VaR and ES)
Given a representationL = S(X),

1. Calculate an initial estimate ofvα, denoted aŝvα.

2. Find an appropriate importance sampling density for estimatingP(L > v̂α).

3. GenerateL1 = S(X1), . . . , LN = S(XN) under the IS density and calculate the corre-
sponding likelihood ratiosW (X1), . . . ,W (XN).

4. Calculate the VaR estimate as in(4) and the ES estimate as in(5).

3.2.1 Adaptive Importance Sampling

Because credit risk models are generally complicated, it may be difficult (or even impossible) to
find a priori a good importance sampling densityg. Adaptive importance sampling methods aim
to avoid difficult theoretical and computational issues by ‘learning’ a good density from the data.
We assume here thatfL, the density ofL, is not known and that a representation of the form
L = S(X), whereX has densityfX, can be used instead. We apply importance sampling to the
X. Given a prespecified IS densitygθ parameterized byθ, the idea is to take an initial sample
X1, . . . ,XM and try to learn the optimal parameters using this sample. Ifthe initial sample
X1, . . . ,XM can be sampled directly from the zero-variance densityg∗(x) = f(x |S(x) > vα),
then the parameters can be chosen either to minimize the CE distance tog∗,

θ̂
∗

CE = argmax
θ

1

M

M∑

i=1

log (gθ(Xi)) ,

or to minimize the variance of the estimator

θ̂
∗

VM = argmin
θ

1

M

M∑

i=1

Wθ(Xi) .

In some settings,g∗ is sampled from using Markov Chain Monte Carlo methods (see Kroese
et al. [2011] for an introduction). However, because the probability of a loss greater thanvα is
not too small, we can often use a more direct acceptance–rejection method here.

Algorithm 3.4 (Sampling Approximately from g∗)

1. Generate a sampleL1, . . . , LM .

2. Order the sample from smallest to largest asL(1) 6 · · · 6 L(M).

3. ChooseL(⌈αM⌉), . . . , L(M) as an approximate sample fromg∗.
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A very small sample is usually sufficient to find very good CE orVM parameters. The
additional computational cost of the trial is generally small compared to the overall costs of
the simulation. Indeed, there is hardly any overhead compared with non-adaptive methods for
quantile estimation, as such methods use trial runs to find aninitial estimate ofvα. A similar
adaptive approach is taken in Reitan and Aas [2010]. For an alternative method, where the
parameters are updated during the primary sampling phase, see Egloff and Leippold [2010].

4 Specific Models

In this section we discuss four specific classes of credit risk model: Bernoulli mixture models,
factor models, copula models, and intensity models. Although each of these models is based on
the general framework (1), they use different mathematicalstructures to model the dependencies
between the default variables{Di}. As a result, each model requires a different Monte Carlo
approach to efficiently estimate the VaR and ES.

4.1 The Bernoulli Mixture Model

Bernoulli mixture models are a fundamental class of credit risk models because many credit
risk models can be represented as a mixture model. It is straightforward to apply importance
sampling to these models.

In a Bernoulli mixture model, the Bernoulli default variablesD1, . . . , Dn are conditionally
independent given a vector of default probabilitiesP = (P1, . . . , Pn). It is assumed that these
default probabilities are of the formP(Ψ), whereΨ is a random vector with a known density
fΨ. Conditional onP, calculatingL reduces to calculating a weighted sum of independent light-
tailed random variables.

It is quite straightforward to sample from a Bernoulli mixture model.

Algorithm 4.1 (Sampling from a Bernoulli Mixture Model)

1. Generate a vector of success probabilitiesP = (P1, . . . , Pn).

2. GivenP, generateD1 ∼ Ber(P1), . . . , Dn ∼ Ber(Pn).

4.1.1 One-Step Importance Sampling

It is usually not possible to directly apply importance sampling to L, as the distribution ofL is
often unavailable in closed form. Instead we can apply importance sampling to drawing eitherP
or theD1, . . . , Dn conditional onP. It is simplest to apply importance sampling in the second
case. If we assume thatl1, . . . , ln are constants, then, conditional onP,

L = l1D1 + · · ·+ lnDn

8



is the sum of independent random variables, with theith variable taking the valueli with prob-
ability Pi and0 otherwise. We exponentially twist each of these variables so that the default
probability for theith component is given by

P̃i =
Pi exp(θ li)

Pi exp(θ li) + 1− Pi
.

The unique ‘asymptotically efficient’ choice ofθ is the solution toκn(θ∗ |P) = vα, where

κn(θ |P) =

n∑

i=1

log [Pi exp(θ li) + 1− Pi] (6)

is the joint cumulant generating function of the{liDi} conditional onP.

Algorithm 4.2 (One-Step Importance Sampling for a Mixture Model)

1. GenerateP = (P1, . . . , Pn).

2. Findθ∗, the solution toκ′n(θ) = vα. (This step usually needs to be done numerically).

3. If θ∗ < 0, setθ∗ = 0.

4. CalculateP̃i =
Pi exp(θ∗ li)

Pi exp(θ∗ li)+1−Pi
, i = 1, . . . , n.

5. GivenP̃1, . . . , P̃n, generateDi ∼ Ber
(
P̃i

)
, i = 1, . . . , n.

6. ReturnL = l1D1 + · · ·+ lnDn and the corresponding likelihood ratio

W (L) = exp (κn(θ
∗ |P)− θ∗L) .

Unfortunately, this approach may not give an asymptotically efficient estimator forℓ =
P(L > vα). This is becauseP can play a critical role in driving the dynamics of the rare
event. For example, in the context of Gaussian factor models, Glasserman and Li [2005] show
that asymptotic efficiency can only be achieved if the correlation between the defaults decreases
(at some rate) asn→ ∞ andvα → ∞.

4.1.2 Two-Step Importance Sampling

A potentially more effective importance sampling scheme involves importance sampling in gen-
eratingP as well asD1, . . . , Dn. We can decompose the variance ofℓ̂ as

Var(ℓ̂) = E

(
Var
(
ℓ̂ |P

))
+ Var

(
E

(
ℓ̂ |P

))
.

The one-step importance sampling procedure detailed aboveminimizes Var(ℓ̂ |P). Regarding
samplingP, we aim to minimize Var(E(ℓ̂ |P)). This is equivalent to minimizing the variance of
ẑ, the CMC estimator of

z = P (L > vα |P(Ψ)) .
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The zero-variance densityg∗ for such a problem is given by

g∗
Ψ
(ψ) ∝ P(L > vα |P(ψ))fΨ(ψ) .

The normalizing constant is the unknownℓ, so this is not a practical IS density.
There are two common approaches to finding a good IS density. One approach uses a density

gΨ whose mean is set equal to the mode ofg∗
Ψ

. This mode is the solution to a generally intractable
optimization problem.

GivengΨ, the two-step importance sampling scheme is summarized as follows.

Algorithm 4.3 (Two-Step Importance Sampling for a Mixture M odel)

1. DrawΨ fromgΨ.

2. GenerateP = P(Ψ).

3. Findθ∗, the solution toκ′n(θ) = vα.

4. CalculateP̃i =
Pi exp(liθ

∗)
Pi exp(liθ∗)+1−Pi

, i = 1, . . . , n.

5. GivenP̃1, . . . , P̃n, generateDi ∼ Ber
(
P̃i

)
, i = 1, . . . , n.

6. ReturnL = l1D1 + · · ·+ lnDn and the corresponding likelihood ratio

W (L) =
fΨ(Ψ)

gΨ(Ψ)
exp (κn(θ

∗ |P)− θ∗L) .

4.1.3 Worked Example: A Bernoulli Mixture Model with Beta Pr obabilities

We consider a simple Bernoulli mixture model for a portfoliowith n = 1000 components, with
l1 = · · · = ln = 1. The default probabilities are all equal, withP ∼ Beta(0.5, 9). We consider
three approaches: CMC, CE, and one-step importance sampling. The CE approach finds the
outcomes ofP corresponding to the highestN(1 − α) samples ofL. It then computes the
MLEs for a Beta distribution numerically. For the IS approach, κn(θ |P ) = v̂α can be solved
analytically. However, for this problem, the dynamics ofL are largely driven byP . Thus, the IS
estimator performs very poorly. Each estimator was used to calculate100 estimates. The means
and standard deviations of these estimators are reported. For IS, the first10% of the sample was
used to calculate a rough estimate ofv̂α. For CE, the first10% of the sample was used to learn
the parameters.
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Table 1: Estimated VaR and ES for a Bernoulli Mixture Model,

Estimator v̂α Std(̂vα) ĉα Std(̂cα)

α = 0.95 N = 104

CMC 197.5 3.3 270.0 4.3
CE 197.6 1.4 269.9 5.3
IS 197.5 3.2 269.7 4.8

α = 0.99 N = 104

CMC 316 7.7 382.9 10.0
CE 314.9 3.2 375.6 8.3
IS 316.2 9.3 378.2 9.8

α = 0.995 N = 104

CMC 363.3 9.9 430.6 10.5
CE 362.6 2.7 421.9 6.6
IS 363.4 9.3 413.0 27.0

4.2 Factor Models

In factor models, theith component defaults when a corresponding random variableXi crosses
a preset thresholdρi. That is,

Di = I (Xi > ρi) , i = 1, . . . , n .

The variableXi can sometimes be thought of as corresponding to a default time, as in the Li
copula model (see Li [2000]), though this need not be the case. The relationship between the
{Di} is imposed by having the{Xi} all depend on a vector of common factors,Ψ. A model with
one factor is called asingle factormodel; a model with more than one factor is referred to as a
multifactormodel. These factors may correspond to macroeconomic or industry specific factors,
though they need not have an economic interpretation. In thesimplest case of alinear factor
model, eachXi is a weighted sum of the factors and another random variable,Ei which represents
the component-specificidiosyncraticrisk. Conditional onΨ, factor models are Bernoulli mixture
models.

The most popular factor models are based on the normal and Student-t distributions. We
focus on three specific factor models.

• In theGaussian factor model, eachXi has the representation

Xi = ai1Z1 + · · ·+ aimZm + aiEi ,
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where the{Zj} and{Ei} are independent standard normal random variables and the coefficients
are chosen such that the marginal distribution of eachXi is standard normal. Here, conditional
onZ1 = z1, . . . , Zm = zm (thus,Ψ = Z), the default probability for theith component is

Pi = P

(
Ei >

ρi − (ai1z1 + · · ·+ aimzm)

ai

)

= Φ

(
(ai1z1 + · · ·+ aimzm)− ρi

ai

)
.

• In theStudent-t factor model, eachXi is a weighted sum of Student-t random variables. Usu-
ally, the Student-t factor model is chosen such that eachXi has the following representation

Xi =

√
r

V
(ai1Z1 + · · ·+ aimZm + aiEi) ,

where the{Zj} are standard normals andV has a chi-squared distribution withr degrees of
freedom. Here, conditional onZ1 = z1, . . . , Zm = zm andV = v (thus,Ψ = (Z, V )), the
default probability is

Pi = P

(
Ei >

√
v/rρi − (ai1z1 + · · ·+ aimzm)

ai

)

= Φ

(
(ai1z1 + · · ·+ aimzm)−

√
v/rρi

ai

)
.

• A more general single factor model with heavy tails and tail dependence is introduced in Bas-
samboo et al. [2008]. It is an extension of the normal mean-variance mixture models described
in Frey and McNeil [2001]. Here, eachXi is of the form

Xi =
αiZ +

√
1− α2

i Ei
W

,

where the{Ei} are iid random variables independent of the random variableZ, andW is a
random variable independent ofZ and the{Ei}, with a densityfW that satisfies

fW (w) = λwν−1 + o(wν−1) asw ↓ 0 . (7)

This model includes that single factor Student-t model as a special case, as the chi-squared dis-
tribution satisfies (7). Conditional onZ = z andW = w (thus,Ψ = (Z,W )) the default
probabilities are

Pi = P

(
Ei >

wρi − αiz√
1− α2

i

)
.
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It is usually straightforward to sample from a factor model.

Algorithm 4.4 (Sampling from a Factor Model)

1. Draw the common factorsΨ and the idiosyncratic risksE1, . . . , En.

2. CalculateX1, . . . , Xn as per the model.

3. CalculateL = l1I(X1 > ρ1) + · · ·+ lnI(Xn > ρn).

4.2.1 Importance Sampling

Factor models are usually Bernoulli mixture models. Thus, importance sampling can be ap-
plied as above. It is usually necessary to use a two-step importance sampling scheme, as in
Section 4.1.2. The difficulty lies in choosinggΨ, the IS density for the common factorsΨ.

In the case of Gaussian factor models, whereΨ = Z, Glasserman and Li [2005] use a
multivariate normal densityN(µ, I) with the mean vectorµ set equal to the mode ofg∗

Z
. The

mode, in turn, can be obtained as the solution to the optimization problem

µ∗ = argmax
z

P (L > vα |Z = z) exp(−z
⊺
z/2) . (8)

Glasserman and Li suggest a number of approximations that simplify this problem. One
approach is theconstant approximation, whereL is replaced byE [L |Z = z] andP(L > vα |Z =
z) is replaced byI (E [L |Z = z] > vα). In this case, (8) becomes

argmin
z

{z⊺z : E [L |Z = z] > vα} . (9)

Another approach is thetail bound approximation, which is shown to be asymptotically optimal
for the case of a homogeneous single factor portfolio. This approach approximatesP((L > vα |Z
= z) by its upper bound, and (8) becomes

argmax
z

{κn(θvα | z)− θvαvα − z
⊺
z/2} ,

whereθvα = θvα(z) is the solution toκn(θ | z) = vα andκn is given in (6).
In a multi-factor setting, the problem of finding a good approximation ofg∗ becomes much

more difficult. This is because more than one combination of factors can cause a loss larger than
vα. Glasserman et al. [2008] propose an approach which essentially attempts to partition the
rare event{L > vα} into different sub-events; each sub-event corresponds to aparticular set of
factors taking large values, and they solve (9) for each of these events. This approach is shown
to be asymptotically efficient in certain settings. As far aswe are aware, this is the only method
given in the existing literature that deals adequately withthe problem of possibly infinite variance
in a multi-factor setting.

In the Student-t factor model setting given above, Kang and Shahabuddin [2005] propose
first samplingV , thenZ1, . . . , Zm. GivenV , they proceed as in Glasserman et al. [2008]. They
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propose exponentially twistingV by a parameter which is again the solution of a constrained
optimization problem. Note that this approach is very computationally expensive, as it requires
multiple numerical optimization procedures per sample. Kang and Shahabuddin [2005] suggest
using a stratified sampling scheme to minimize this cost.

For the general single-factor model, Bassamboo et al. [2008] introduce two methods. In the
first, they propose exponentially twistingW and find a good twisting parameterθ by minimizing
the upper bound on the likelihood ratio. This approach givesbounded relative error under some
technical conditions. In the second, they apply hazard-rate twisting toV = 1/W , see Juneja and
Shahabuddin [2006] for a discussion of this method. Again, they choose the twisting parameter to
minimize the upper bound on the likelihood ratio. Under sometechnical conditions, the resulting
estimator is shown to be asymptotically efficient.

Another method for applying variance reduction to Student-t factor models is given in Chan
and Kroese [2010]. In this approach, VaR can be estimated by calculating the expectations of
truncated gamma random variables.

4.2.2 Worked Example: A Gaussian Factor Model

We consider an example suggested in Glasserman and Li [2005]. In this example, the portfolio
is of sizen = 1000, with li = (⌈5i/n⌉)2. The barriers are given byρi = Φ−1(1 − Pi), where
Pi = 0.01 ∗ (1 + sin(16πi/n)). Them = 10 factor loadings,{aij} are drawn uniformly on
(0, 1/

√
m).

We calculate the VaR and ES using three different methods: CMC, Glasserman and Li’s
method, and Cross-Entropy. For Glasserman and Li’s algorithm, we only apply importance
sampling to the{Zi}, as twisting the{Di} does not make a substantial difference in this case,
and takes considerably more time. We draw the{Zi} from aN(µ, I) distribution, withµ the
solution of (4.2.1) found via numerical root-finding. In theCE approach, we set the means of the
{Zi} and the mean of the{Ei} equal to the sample means of the{Zi} and{Ei} corresponding to
the⌊N(1− α)⌋ highest values ofL.

Table 2 gives the numerical results. The estimators were calculated100 times each and their
means and standard deviations are reported. The Glassermanand Li estimator uses the first10%
of the sample to find an initial estimate ofv̂α. The CE estimator uses the first10% of the sample
to learn good parameters. Note that the CE and Glasserman andLi estimators performing better
relative to the CMC estimator asα gets larger. Running times are not given here, as they are
implementation specific, but we note that the Glasserman Li approach is considerably slower
than the CE approach in our implementation.
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Table 2: Estimated VaR and ES for a Gaussian factor model.

Estimator v̂α Std(̂vα) ĉα Std(̂cα)

α = 0.95 N = 104

CMC 215 7 488 19
CE 217 3 469 3
GL 216 3 469 3

α = 0.99 N = 105

CMC 595 31 988 58
CE 600 13 987 12
GL 599 6 987 5

α = 0.995 N = 105

CMC 833 17 1267 28
CE 837 2 1274 2
GL 837 2 1274 2

4.3 Copula Models

One of the most popular ways of expressing dependency in credit risk models is to use copulas.
A copula is simply a multivariate distribution function with uniform marginals:

C(u1, . . . , un) : [0, 1]
n → [0, 1] .

Copulas describe the dependency structure between uniformrandom variablesU1, . . . , Un. These
can be transformed into random variablesX1, . . . , Xn, with arbitrary distributionsF1, . . . , Fn, by
settingX1 = F−1

1 (U1), . . . , Xn = F−1
n (Un). This means that the dependency structure of the

{Xi} can be modeled separately from their marginal distributions. It can be shown that the
dependency structure of any distribution can be defined via acopula (see Nelsen [2006]). Often,
theXi are taken to be default times as, for example, in the Li model,see Li [2000]. However,
this need not be the case. If eachDi is of the formDi = I(Xi > ρi), then the model is said to be
a threshold model.

We focus on the Gaussian, Student-t and Archimedean copulas, as these are the most popular
copulas in credit risk modeling. The Gaussian copula has tail independence. An attractive feature
of the other models is that they exhibit tail dependence.

• TheGaussian copula, popularized in Li [2000], is of the form

CG(u1, . . . , un) = ΦΓ

(
Φ−1(u1), . . . ,Φ

−1(un)
)
,
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whereΦΓ(·) is the multivariate normal distribution function with meanvector0 and cor-
relation matrixΓ. The Gaussian factor model, described above, can be interpreted as a
Gaussian copula.

• TheStudent-t copulais of the form

CT (u1, . . . , un) = Tν,Γ
(
T−1
ν (u1), . . . , T

−1
ν (un)

)
,

whereTν,Γ is the multivariate Student-t distribution function withν degrees of freedom,
mean vector0, and correlation matrixΓ. The Student-t factor model can be interpreted as
a Student-t copula. The Student-T copula has tail dependence in both tails.

• Archimedean Copulasare of the form

Cψ(u1, . . . , un) = ψ−1(ψ(u1) + · · ·+ ψ(un)) ,

where thegeneratorof the copula is a functionψ : [0, 1] → [0,∞] that satisfies the
following conditions:

1. It is strictly decreasing.

2. ψ(0) = ∞ andψ(1) = 0.

3. ψ−1 is completely monotonic, meaning(−1)k dk

dukψ
−1(u) > 0, ∀k ∈ N andu ∈

[0,∞)

The class of Archimedean copulas includes theGumbel copula, whereψη(u) = (− log u)η,
and theClayton copula, whereψη(u) = u−η − 1. The Gumbel copula has upper tail
dependence and the Clayton copula has lower tail dependence.

4.3.1 Sampling from a General Copula

In theory, it is possible to sample from any copulaC(u1, . . . , un). The approach, given in Cheru-
bini et al. [2004], is as follows. LetCi(u1, . . . , ui) = C(u1, . . . , ui, 1, . . . , 1), i = 1, . . . , n. The
conditional distribution of the copulaCi is

Ci(ui | u1, . . . , ui−1) = P(Ui 6 ui |U1 = u1, . . . , Ui−1 = ui−1)

=

∂i−1

∂u1,...,∂ui−1

Ci(u1, . . . , ui)

∂i−1

∂u1,...,∂ui−1

Ci−1(u1, . . . , ui−1)
.

We can then decomposeC(u1, . . . , un) as follows

C(u1, . . . , un) = P(U1 < u1)C2(u2 | u1) · · ·Cn(un | u1, . . . , un−1) .
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Algorithm 4.5 (Sampling from a General Copula)

1. DrawU1 uniformly on(0, 1).

2. DrawUi from the distributionCi(· | u1, . . . , ui−1), for i = 2, . . . , n.

In general,Ci(· | u1, . . . , ui−1) has to be sampled via the inverse transform method (see
Kroese et al. [2011]). This involves drawing a uniform random variableV , and solvingV =
Ci(ui | u1, . . . , ui−1) for ui. This usually needs to be done using a numerical root-findingpro-
cedure. In practice, this tends to make sampling from an arbitrary copula too expensive to be
feasible.

4.3.2 Sampling from Gaussian and Student-t Copulas

The Gaussian and Student-t copulas areimplicit copulas. That is, they are copulas implied by
the multivariate normal and Student-t distributions. Hence, drawing from these copulas is simply
a case of drawing from their respective multivariate distribution. Algorithms for drawing from
these distributions are given in Kroese et al. [2011].

Algorithm 4.6 (Sampling from a Gaussian copula)

1. DrawZ = (Z1, . . . , Zn) ∼ N(0,Σ).

2. ReturnU1 = Φ(Z1), . . . , Un = Φ(Zn).

Algorithm 4.7 (Sampling from a Student-t copula)

1. DrawY from a multivariate Student-t distribution withν degrees of freedom and correla-
tion matrixΓ.

2. ReturnU1 = Tν(Z1), . . . , Un = Tν(Zn).

4.3.3 Sampling from Archimedean copulas

Archimedean copulas are particularly easy to sample from. The approach below uses Bernstein’s
theorem, which states that ifψ satisfies the conditions for an Archimedean generator, thenψ−1

is of the form

ψ−1(u) =

∫ ∞

0

e−uλ dFΛ(λ) .

That is,ψ−1(u) is the Laplace transform of some distributionFΛ. It is easily verified that, ifΛ is
drawn fromFΛ andX1, . . . , Xn are iid andU(0, 1) distributed, then

U1 = ψ−1

(− logX1

Λ

)
, . . . , Un = ψ−1

(− logXn

Λ

)

have the distribution given by the Archimedean copula. Thus, if we know FΛ, we have the
following algorithm for sampling from an Archimedean copula.
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Algorithm 4.8 (Sampling from an Archimedean copula)

1. DrawΛ from the distributionFΛ.

2. Draw iid standard uniform random variablesX1, . . . , Xn.

3. Return

U1 = ψ−1

(− logX1

Λ

)
, . . . , Un = ψ−1

(− logXn

Λ

)
.

Given an arbitrary generator,ψ, FΛ may not be a known distribution, or one that can be
sampled from in a straightforward manner. However,FΛ is known for both the Gumbel and
Clayton copulas. For the Gumbel copula,Λ has a stable distributionSt(1/η, 1, γ, η), where
γ = (cos(πη/2))η. In the case of the Clayton copula,Λ is Gam(1/η, 1) distributed.

4.3.4 Importance Sampling

Importance sampling is straightforward for Gaussian and Student-t copula models, as it can be
applied directly to the multivariate densities.

In an Archimedean copula model,U1, . . . , Un are independent conditional onΛ. If D1, . . . , Dn

are generated using a threshold approach, we can represent such a model as a Bernoulli mixture
model. This is because,

P(Ui > ρi) = P

(
ψ−1

(− logXi

Λ

)
> ρi

)
= 1− exp {−Λψ(ρi)} . (10)

Thus, we can apply importance sampling as in the Bernoulli mixture model case given above.

4.3.5 Worked Example: A Clayton Copula Model

We consider the case where exponentially distributed default times are generated using a Clayton
copula. Uniform random variablesU1, . . . , Un are drawn from a Clayton copula with parameter
η = 1.5. These are transformed into exponential random variables with parameterλ = 0.1 by
setting

Xi = − logUi
λ

.

EachDi is then generated asI(Xi < 1). VaR and CVaR are both estimated using CMC, CE and
one-step importance sampling. In all three cases, the Clayton copula is sampled from via the
Laplace transform method detailed above. In the CE case,Λ is sampled from a Gamma distri-
bution with parameters estimated from the elite sample. In the one-step IS case, the importance
sampling is applied by twisting the default probabilitiesP1, . . . , Pn, which are calculated as in
(10). For the CE estimator, the first10% of the sample is used for learning phase. For the IS esti-
mator, the first10% of the sample is used as to get a rough estimate ofv̂. The results are given in
the following table. Note that the CE estimator gives significant variance reduction provided that
the sample size is large enough to estimate good parameters in the learning phase. The one-step
importance sampling estimator performs not much better than CMC, as the value ofL is very
dependent on the realization ofΛ.
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Table 3: Estimated VaR and ES for a Clayton Copula model.

Estimator v̂α Std(̂vα) ĉα Std(̂cα)

α = 0.95 N = 103

CMC 72 4.9 89.9 2.4
CE 73 5.2 86.5 9.6
IS 73.5 5.4 86.8 4.8

α = 0.95 N = 104

CMC 72.7 1.6 88.9 0.8
CE 72.9 0.3 88.7 0.1
IS 72.8 1.5 88.5 0.9

α = 0.99 N = 104

CMC 97.5 0.6 100.1 0.2
CE 97.6 0.5 99 0.5
IS 97.6 0.6 98.7 0.4

4.4 Intensity Models

In intensity models, the default times of then components,τ1, . . . , τn, are modeled by the ar-
rival times of point processes. Denoting byT the time at which the portfolio is assessed, the
Bernoulli default variables are given byD1 = I(τ1 < T ), . . . , Dn = I(τn < T ). In a top-down
approach, the defaults are modeled as the arrivals of a single point process. The intensity of this
process is given without reference to the portfolio constituents. In abottom-upapproach, each
component of the portfolio is modeled separately. We will focus on this approach, and refer the
reader to Giesecke [2008] for further discussion of modeling approaches. We model eachτi as
corresponding to the arrival time of an indicator process(Ni(t), t > 0). Such a process has a
stochastic intensityλi(t), t > 0, which is equal to0 after the first arrival. Intuitively,λi(t) is
the rate at which arrivals occur at timet, conditional on the filtration (that is, the history) of the
process up to timet. The default probability for theith component is given by

Pi = 1− P(τi < T ) = 1− E

[
exp

{
−
∫ T

0

λi(s) ds

}]
.

Dependency between defaults can be induced by assuming thateach intensityλi is a function
of a common process(X(t), t > 0) and an idiosyncratic process(Xi(t), t > 0); for example,
λi(t) = X(t) + Xi(t). A popular modeling choice for the process(X(t)) is that it satisfies a
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stochastic differential equation with jumps:

dX(t) = µ(X(t)) dt+ σ(X(t)) dB(t) + ∆J(t) , (11)

where(B(t), t > 0) is a standard Brownian motion,(∆J(t), t > 0) is a jump process, and both
µ andσ are deterministic functions. The idiosyncratic processes(Xi(t), t > 0), i = 1, . . . , n can
be modeled in a similar way. Ifµ andσ are affine functions, then under certain assumptions,
the default probabilitiesP1, . . . , Pn can be found by solving a system of ODEs (see Duffie et al.
[2003] and Duffie [2005]).

One appeal of intensity models is that they can capture the empirical phenomenon ofconta-
gion, where defaults tend to happen in clusters. A popular model of contagion is thegeneralized
Hawke’s process, where the point process(N(t), t > 0) has a stochastic intensity that satisfies

dλ(t) = κ(µ− λ(t)) dt + σ
√
λ(t) dB(t) + ∆N(t) .

Point processes in which the intensity depends on the numberof arrivals are calledself-exciting.
Intensity models can also capture dependency between credit losses and the default process. A
general introduction of using point process models in credit risk is given in Giesecke [2004]. For
the relevant background on stochastic differential equations see, for example, Protter [2005].

4.4.1 Sampling from Intensity Models

In practice, though each portfolio component is modeled by aseparate point process, we only
simulate a single point process. This point process has intensityλ(t) =

∑n
i=1 λi(t). On the event

of a default, theith component of the portfolio is chosen to default with probability λi(t)/λ(t).
The choice of algorithm for simulating from a stochastic intensity model depends on whether the
intensityλ(t) can be bounded between jumps. If the intensity can be boundedbetween jumps
and it is straightforward to determineλ(t) for an arbitraryt, then a thinning method due to Ogata
[1981] can be used. At each jump, a piecewise constant process (λ∗(t)) is identified such that
λ(t) < λ∗(t) almost surely so long as no other jumps occur. A Poisson process with intensity
functionλ∗(t) is simulated, and points are accepted with probabilityλ(t)/λ∗(t). This gives the
following algorithm.

Algorithm 4.9 (Sampling from a Point Process via Thinning)

1. Seti = 0 andτ0 = 0;

2. Findλ∗i , the upper bound ofλ(t), τi 6 t 6 T given the history of the process up until time
τi.

3. Simulate arrival times̃τ1, . . . τ̃n for a homogeneous Poisson process with intensityλ∗. Ac-
cept each arrival with probabilityλi(τ)/λ∗i . Stop after the first arrival timẽτ ∗i is accepted.

4. Setτi = τ̃ ∗i + τi−1.

5. Seti = i+ 1 and repeat from step 2 untilτi > T .

20



There is a general method of sampling from a point process driven by a stochastic intensity.
If the compensatorΛ(t) → ∞ ast → ∞ then(N(t)) is a standard Poisson process under the
time change defined by(Λ(t)), with interarrival times given byExp(1) random variables (see
Giesecke et al. [2011]). The arrival times of the original process can be found by invertingΛ(t).
That is, given a sequenceY1, . . . , Yn of Exp(1) random variables representing the interarrival
times of the time-changed process, thenth arrival time of the original process,τn, can be found
by solving,

τn = inf
t>0

{∫ t

0

λ(s) ds >
n∑

i=1

Yi

}
.

This suggests the following algorithm.

Algorithm 4.10 (Sampling from a Point Process via a Time Change)

1. Seti = 1.

2. DrawYi from anExp(1) distribution.

3. Returnτi, the time at whichΛ(t) hits
∑i

j=1 Yj.

4. Seti = i+ 1 and repeat from step2 until τi > T .

This method is usually very computationally expensive, as the integral processΛ(t) =∫ t
0
λ(s) ds, t > 0 needs to be approximated on a discrete grid. The conditionaldistributions

of Λ(t) may also be unknown, in which case the process may only be approximately sampled
at the grid points. An alternative method, that does not require simulating the intensity between
jumps is suggested in Giesecke et al. [2011]. However, this method may be difficult or impossible
to apply in some settings.

4.4.2 Importance Sampling

Importance sampling can be applied to intensity models in a number of different ways. For
example, it can be observed that the events{N(t) > γ} and {∑n

i=1Ni(t) > γ} can both be
written in the form

{
S⌈γ⌉ < T

}
, whereSk is the sum ofk random variables, representing the

first k arrival times. In this setting, exponential twisting can beapplied toSk. Unfortunately,
this is often not possible, as the distribution of theSk is usually either unknown or intractable
— see Giesecke and Shkolnik [2011] for a discussion. However, in this setting, standard large
deviations techniques can be applied to find good twisting parameters.

Another method is to apply a change of measure to the point process itself. This is the
approach taken in Zhang et al. [2009], which considers a generalized Hawke’s process. In the
approach given in Giesecke and Shkolnik [2011], the change of measure is applied to the intensity
processes instead.

If indicator processes are independent of one another conditional on some common factors
Xt, then they have a Bernoulli mixture model structure. Thus, the techniques described in Sec-
tion 4 can be applied. In the particular case where intensities are of the formλi(t) = X(t)+Xi(t)
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driven by (11), and the random factors are affine processes, Bassamboo and Jain [2006] propose
applying an exponential change of measure to the processes,with a parameterθ that minimizes
the upper bound on the likelihood ratio.

4.5 An Example Point Process Model

In this model, taken from Giesecke and Shkolnik [2011], the individual component intensities
are given by

λi(t) = (wiX0(t) +Xi(t))(1−Ni(t)) ,

where eachXi(t) satisfies the SDE

dXi(t) = κi
(
X̄i(t)−Xi(t)

)
dt + σi

√
Xi(t) dBi(t) + δi dJi(t) .

Here, Ji(t) = ∆1Ni(t) + · · · + ∆nNn(t) and the(Bi(t), t > 0), i = 1, . . . , n are standard
Brownian motions. The{κi} are drawn uniformly on(0.5, 1.5). The

{
X̄i

}
are drawn uniformly

on(0.001, 0.051) and eachσi is equal tomin
(√

2κiX̄i, σ̄i

)
, where the{σ̄i} are drawn uniformly

on (0, 0.2). Each factor weightwi is drawn uniformly on(0, 1). The{∆i} are drawn uniformly
on (0, 2/n) and the{δi} are drawn uniformly on(0, 2). We compare the CMC algorithm with
one of the two algorithms given in Giesecke and Shkolnik [2011].

In the CMC approach, the process(Nt, t > 0) is generated using the time-change algorithm
(Algorithm 4.10). A single point process is generated with intensityλ(t) =

∑n

i=1 λi(t). The
intensity processesλ1(t), . . . , λn(t) are square-root processes, so they can be simulated exactly
on a mesh using non-central chi-squared random variables (see Glasserman [2004]). A mesh
of 1000 points is used and the integral

∫ t
0
λ(s) ds is evaluated via the trapezoidal rule. On the

event of thekth default, theith component of the portfolio is selected to default with probability
λi(τk)/λ(τk).

The IS algorithm replaces the point process(N(t)) with a Poisson process with intensity
λ = v̂α. The number of defaults,N , is drawn from a Poisson distribution with meanv̂α. The
default timesτ1, . . . , τN areN ordered uniform random variables on the interval[0, 1]. At time
T , the Radon–Nikodym derivative for this change of measure isgiven by

M(T ) = exp {v̂ατN −N(T ) log(v̂α)}+
N∑

k=1

log(λ(τk))−
∫ τN

0

λ(s) ds .

The dynamics of(λi(t), t > 0), i = 1, . . . , n remain unchanged between defaults. A great ad-
vantage of this method is a reduction in computational effort, asλi(t) only needs to be calculated
up until the final default time.

The following numerical results are based on a portfolio of sizen = 100, with eachli = 1. A
sample size ofN = 103 was used. The CMC and IS algorithms appear to give different values for
cα. However, for larger sample sizes, the CMC estimates ofcα get closer to the IS estimates. For
the importance sampling algorithm, the first20% of the sample is used to get a rough estimate of
v̂α.
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Table 4: Estimated VaR and ES for an intensity model.

Estimator v̂α Std(̂vα) ĉα Std(̂cα)

α = 0.95 N = 103

CMC 20 0.0 23.0 0.6
IS 20 0.0 22.6 0.6

α = 0.99 N = 103

CMC 24.4 0.8 29.5 1.3
IS 24.2 0.4 26.7 0.5

α = 0.995 N = 103

CMC 26.1 1.0 33.1 1.3
IS 25.8 0.4 27.8 0.7

A Appendix: A Primer on Rare-Event Simulation

The problem of finding good estimators for risk measures suchas VaR and ES can, to a large
extent, be reduced to the problem of finding good estimators for rare-event probabilities. This
is a much better understood problem, and one which has given rise to a large number of effec-
tive Monte Carlo techniques. The vast majority of the literature on VaR and ES estimation has
focused on a variance reduction method known asimportance samplingand has used methods
from the theory of rare-event simulation to find good classesof importance sampling estimators.
These methods can be roughly split into two classes: (1) methods based primarily on Large De-
viations asymptotics, and (2) adaptive methods, which ‘learn’ good estimators. In this appendix,
we review the basics of rare-event probability estimation and discuss a number of approaches that
work well in the credit risk context. There is an extensive literature on rare-event simulation; we
mention, in particular, Bucklew [2004], Rubino and Tuffin [2009], Asmussen and Glynn [2007]
and Kroese et al. [2011].

A fundamental problem of rare-event simulation is to estimate ℓ = P(S(X) > γ), whenℓ is
very small. Here,S is a real-valued function,X is a random vector with densityf , andγ is a
constant. TheCrude Monte Carlo(CMC) estimator ofℓ is defined as

ℓ̂ =
1

N

N∑

i=1

I(S(Xi) > γ) , (12)

where the{Xi} are iid draws fromf . This estimator performs very well whenℓ is large, but
works very badly asℓ → 0. This is because the event of interest{S(X) > γ}, which is rare by
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nature, must happen a large number of times in order to get an accurate estimate. The aim of rare
event simulation is to find better estimators in such settings.

A.1 Efficiency

The accuracy of a rare-event estimator is often measured by its relative error. This is the nor-
malized standard deviation of the estimator. We can usuallythink of a rare event estimator as an
average of iid replicates of a random variable, which we willlabelZ. For example, the CMC
estimator is an average of iid replicates ofZ = I(S(X) > γ). The relative error is then defined
as

RE =

√
Var(Z)

ℓ
√
N

.

The relative error of the CMC estimator ofℓ is given by
√
ℓ(1− ℓ)

ℓ
√
N

≈ 1√
N
√
ℓ

for smallℓ. This means that a very large sample size is required in orderto achieve a low error.
For example, estimating a probability of order10−6 to a relative error of0.01 requires a sample
size of approximately1010. If an estimator is unbiased, its variance is given by

Var(Z) = EZ2 − (EZ)2 = EZ2 − ℓ2
def
= M − ℓ2 .

This means that the variance of an unbiased estimator is entirely determined byM = EZ2, the
second moment of the random variableZ.

Rare event estimators are often evaluated in terms of their asymptotic performance. To do
this, we embed the rare event of interest in a family of increasingly rare events indexed by a rarity
parameterγ. For example, we might consider what happens to estimators of ℓ = P(S(X) > γ)
asγ → ∞. The most common notion of asymptotic efficiency islogarithmic efficiency. An
estimator is said to be logarithmically or asymptotically efficient if

lim inf
γ→∞

|logM |
|log ℓ2| > 1 .

By Jensen’s inequality,M > ℓ2. Logarithmic efficiency means that asymptotically the estimator
attains this lower bound on a log scale.

A.2 Importance Sampling

Importance sampling is a variance reduction method that is particularly well suited to rare event
problems. The idea is to improve upon the efficiency of the CMCestimator by using a different
probability measure, under which the rare event is more likely. To do this, we observe that an
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expectation with respect to some densityf can be rewritten as an expectation with respect to
another densityg, so long asf(x) = 0 wheng(x) = 0. We write

EfI(S(x) > γ) =

∫
I(S(x) > γ)f(x) dx

=

∫
f(x)

g(x)
I(S(x) > γ)g(x) dx = EgW (X)I(S(X) > γ) ,

whereW (x) = f(x)/g(x) is thelikelihood ratio. This allows us to replace the CMC estimator
(12) of ℓ with theImportance Sampling(IS) estimator

ℓ̂IS =
1

N

N∑

i=1

W (Xi)I(S(Xi) > γ),

where the{Xi} are now drawn fromg rather thanf . The second moment of the IS estimator is

MIS = Eg

(
f(X)

g(X)

)2

I(S(X) > γ) = Ef
f(X)

g(X)
I(S(X) > γ) = EW (X)I(S(X) > γ).

An importance sampling estimator will have smaller variance than the CMC estimator ifMIS <
Eℓ̂2, that is, if

Ef
f(X)

g(X)
I (S(X) > γ) < EfI(S(X) > γ) .

The optimal IS density is the density that minimizesMIS. It turns out that this density,g∗,
actually gives an estimator with zero variance. The zero-variance density is given by

g∗(x) = argmin
g∈G

Ef
f(X)

g(X)
I(S(X) > γ) =

f(x)I(S(x) > γ)

ℓ
,

whereG contains all permissible densities (those such thatg(x) = 0 ⇒ f(x) = 0). Unfor-
tunately, the normalizing constant ofg∗ is ℓ, the estimand, so it is not a practical IS density.
However, it provides valuable insight into the structure ofgood IS densities. In particular, note
that,

f(x)I(S(x) > γ)

ℓ
= f (x |S(x) > γ) .

In other words, the optimal IS density,g∗ is the original density conditioned on the rare event
of interest having occurred. In practice, we usually restrict the IS densityg to be a member of
a parameterized family of densities{g(x; θ) : θ ∈ Θ}. This replaces the infinite-dimensional
optimization problem of finding an optimal density with the simpler finite-dimensional problem
of finding an optimal vector of parametersθ∗. Even so, it is generally difficult to find a closed-
form solution to theVariance Minimization(VM) problem

argmin
θ∈Θ

Ef
f(X)

g(X; θ)
I(S(X) > γ) .

Instead of solving the VM problem directly, we usually aim toeither solve a simpler problem,
often using Large Deviations asymptotics, or to ‘learn’ a good density adaptively.
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A.3 The Choice ofg

The choice of a good importance sampling densityg is highly dependent on the distribution ofX

and the properties of the set{S(X) > γ}. The tail behavior of theS(X) plays an important role
in determining the appropriate importance sampling density. A random variableY is said to be
light-tailed if EeθY < ∞ for someθ > 0. Light-tailed random variables have tails that decay at
least exponentially fast. A random variable that is not light-tailed is said to beheavy-tailed. The
rare-event behavior of heavy-tailed random variables is considerably different from the behavior
of light-tailed random variables. The theory of rare-eventsimulation for heavy tails is reviewed
in Asmussen and Glynn [2007] and Blanchet and Lam [2011].

Sometimes rare events can happen in more than one way. In thiscase, choosing ag that
increases the likelihood of the rare event happening in a certain way may decrease the likelihood
of the rare event happening in another way. This means that the likelihood ratio can take ex-
treme values. In the worst case scenarios, this can even leadto estimators with asymptotically
infinite variance, as shown in Glasserman and Wang [1997]. Insuch cases, the appropriate im-
portance sampling density may be a mixture distribution. The use of a mixture distribution may
be necessary in some multifactor models, see Glasserman et al. [2007] for a discussion.

In a light-tailed setting, the best importance sampling density is often anexponentially twisted
density,fθ, derived from the original densityf . This density,fθ is defined as

fθ(x) = exp {θ⊺x− κ(θ)} f(x) ,

where
κ(θ) = logE exp {θ⊺X}

is thecumulant generating functionofX. The likelihood ratio of an exponentially twisted density
is given by

W (x) = exp {κ(θ)− θ⊺x} .
Dembo and Zeitouni [2010] and Bucklew [2004] summarize the many attractive properties of
likelihood ratios of this form. For example, if there existsanν such that

exp {κ(θ)− θ⊺x} < exp {κ(θ)− θ⊺ν}

for all θ and allx such thatS(x) > γ, then this is a uniform bound on the likelihood ratio. The
parameterθ can then be chosen to minimize this upper bound, often leading to asymptotically
efficient estimators; see, for example, Bucklew [2004].

A.4 Adaptive Importance Sampling

As discussed, the choice of a good importance sampling density is typically model specific and
often involves heavy analysis. It is therefore desirable tohave an effective way to locate a good
importance sampling density in an automatic fashion. In this section we introduce a popular
adaptive importance sampling technique for rare-event probability estimation, namely, the Cross
Entropy (CE) method. A book-length treatment of the CE method can be found in Rubinstein
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and Kroese [2004], and a recent review is given in Kroese [2011]. An improved variant that
shows better performance in various high-dimensional settings is recently proposed in Chan and
Kroese [2012]. See also Chan, Glynn, and Kroese [2011] for a comparison between the CE and
VM methods.

To motivate the CE method, recall that the zero-variance IS density for estimatingℓ is the
conditional density given the rare event, i.e.,

g∗(x) = ℓ−1f(x)I(S(x) > γ).

This suggests a practical way to obtain a good importance sampling density. Specifically, ifg is
chosen to be ‘close enough’ tog∗ so that both behave similarly, the resulting importance sampling
estimator should have reasonable accuracy. Therefore, ourgoal is to locate a convenient density
that is, in a well-defined sense, ‘close’ tog∗.

Now, we formalize this strategy as an optimization problem as follows. Consider the family
of density functionG = {g(x; θ)} indexed by the parameter vectorθ within which to obtain the
optimal IS densityg. One particularly convenient directed divergence measureof densitiesg1
andg2 is theKullback–Leibler divergence, or cross-entropy distance:

D(g1, g2) =

∫
g1(x) log

g1(x)

g2(x)
dx .

We locate the densityg such thatD(g∗, g) is minimized. Since every density inG can be rep-
resented asg(·; θ) for someθ, the problem of obtaining the optimal IS reduces to the following
parametric minimization problem:

θ∗ce = argmin
θ

D(g∗, g(·; θ)) .

Further, it can be shown that solving the CE minimization problem is equivalent to finding

θ∗ce = argmax
θ

Ef(X)I(S(X) > γ) log g(X; θ) . (13)

The deterministic problem (13) typically does not have an explicit solution. Instead, we can
estimateθ∗ce by finding

θ̂
∗

ce = argmax
θ

1

N

N∑

i=1

I(S(Xi) > γ) log g(Xi; θ), (14)

whereX1, . . . ,XN are draws fromf . If we are able to draw approximately fromg∗ — e.g., via
Markov Chain Monte Carlo methods — we can instead find

θ̂
∗

ce = argmax
θ

1

N

N∑

i=1

log g(Xi; θ) , (15)

whereX1, . . . ,XN are drawn approximately fromg∗.

27



A.5 Importance Sampling for Stochastic Processes

Importance sampling is easily extended to a discrete stochastic process,X =
{
Xn, n = 0,

. . . , N
}

, as long as the conditional densitiesf(xn | x1, . . . , xn−1), n = 1, 2, . . . are known. A
natural importance sampling approach is to simply replace these conditional densities with other
conditional densitiesg(xn | x1, . . . , xn−1), n = 1, 2, . . .. The likelihood ratio is then given by

W (x) =

N∏

n=1

f(xn | x1, . . . , xn−1)

g(xn | x1, . . . , xn−1)
.

It is less straightforward to apply importance sampling to acontinuous-time process,X =
{Xt, 0 6 t 6 T}. The idea is to use the identity

EPS(X) = EQ

dP
dQ

S(X) ,

where dP/dQ is theRadon-Nikodym derivative, S is an arbitrary real-valued function andP and
Q are equivalent measures. This allows us to affect a change ofmeasure similar to that used
in discrete setting importance sampling. We note that the stochastic process{(dP/dQ)t, 0 6

t 6 T ) is a positive martingale. Often, instead of definingQ explicitly, a positive martingale
{Mt, 0 6 t 6 T} is specified instead. This induces a new measureQ via Girsanov’s theorem.
See, for example, Protter [2005] for an in-depth treatment.Examples of specifying a positive
martingale and working out the corresponding dynamics ofQ can be found in Bassamboo and
Jain [2006], Zhang et al. [2009] and Giesecke and Shkolnik [2011]. A discussion of change of
measure for affine jump diffusions, which are of particular importance in credit risk modeling,
can be found in Duffie et al. [2000].
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