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Abstract

High-dimensional matrix-valued time-series are increasingly common in economics

and finance. Prominent examples include large cross-region panels and dynamic

economic networks. As the dimensions of the matrix grow, conventional approaches

based on vector autoregressions—implemented by vectoring the matrix-valued data—

become computationally infeasible. We introduce a class of large Bayesian ma-

trix autoregressions (BMARs) that can accommodate time-varying volatility, non-

Gaussian errors and COVID-19 outliers. To tackle parameter proliferation, we

propose Minnesota-type shrinkage priors on the MAR coefficients. We develop a

unified approach for estimating this class of models, which scales well to high di-

mensions. The empirical relevance of these new BMARs is illustrated using a US

state-level dataset that contains 6 macroeconomic times-series for each of the 50

states, with a total of 300 times-series.
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1 Introduction

Matrix-valued data observed over time are common in economics, finance and related ar-

eas. A classic example is a cross-country panel dataset in which a few key macroeconomic

indicators for each country are observed over time (Canova and Ciccarelli, 2009, 2013;

Koop and Korobilis, 2016; Assaf, Li, Song, and Tsionas, 2019). More recently, larger

cross-region panels with more regional units and economic variables, such as state-level

or other sub-national level time-series datasets, have become widely available (Baumeis-

ter, Leiva-León, and Sims, 2022; Bokun, Jackson, Kliesen, and Owyang, 2023; Koop,

McIntyre, Mitchell, Poon, and Wu, 2023). Another fast growing category of large matrix-

valued time-series is dynamic economic networks, such as bilateral trade volumes among

trading partners (Kharrazi, Rovenskaya, and Fath, 2017; Kapetanios, Serlenga, and Shin,

2021) and bilateral outstanding credits between countries (Billio, Casarin, Iacopini, and

Kaufmann, 2023).

The growing availability of these complex datasets presents new opportunities, but it also

exposes the limitations of conventional multivariate time-series econometric models. More

specifically, a standard approach is to treat the matrix-valued observations over time as

time-series vectors, which can then be conveniently modeled using vector autoregressions

(VARs). There are, however, two disadvantages of this approach. First, vectoring the

matrix-valued observation mixes its columns and rows, and consequently it disregards the

correlation structure of the data (e.g., elements in the same column or row are expected to

be highly correlated). Second, despite recent advances in modeling large VARs, it remains

extremely time-consuming to estimate VARs obtained by vectoring the high-dimensional

matrix-valued data.1

To tackle these challenges, we take up the matrix autoregression (MAR) introduced

in Hoff (2015) and Chen, Xiao, and Yang (2021), which regresses the matrix-valued

1The seminal paper by Bańbura, Giannone, and Reichlin (2010) demonstrates the feasibility of fitting
homoskedastic Bayesian VARs with over a hundred variables. Carriero, Clark, and Marcellino (2019)
later introduce an equation-by-equation estimation approach designed for large BVARs with stochastic
volatility. Tsionas, Izzeldin, and Trapani (2022) further develop this equation-by-equation approach by
treating an n-dimensional BVAR as a set of n univariate equations, and cross-equation dependence is
modeled using a copula. Despite these developments, fitting flexible BVARs with hundreds of variables
using exact Markov chain Monte Carlo (MCMC) methods remains practically infeasible. To circumvent
these computational issues, Feldkircher, Huber, Koop, and Pfarrhofer (2022) develop a fast, approximate
approach for estimating large Panel VARs using integrated rotated Gaussian approximations.
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observation on its lagged values using a bilinear form. The left matrix in this bilinear

form models the row-wise dependence, whereas the right matrix captures the column-

wise interactions. The MAR has an equivalent representation as a parsimonious VAR,

where the VAR coefficient matrices are represented as Kronecker products of the left and

right matrices in the bilinear form. The matrix structure of the data is thus exploited

to construct the VAR coefficient matrices using far fewer free parameters relative to an

unrestricted VAR. As such, the MAR modeling framework ameliorates the two drawbacks

of the standard VAR approach.

We further extend the MAR framework along two directions. First, instead of as-

suming a time-invariant Gaussian error distribution, we introduce a class of Bayesian

MARs (BMARs) that can accommodate time-varying volatility, non-Gaussian errors and

COVID-19 outliers. This is motivated by the increasing recognition of the need to allow

for time-varying volatility in modeling most macroeconomic datasets (see, e.g., Cogley

and Sargent, 2005; Primiceri, 2005; Sims and Zha, 2006). In fact, there is now a large

body of empirical evidence that demonstrates the importance of time-varying volatility

for model-fit and forecasting in small VARs (Clark, 2011; D’Agostino, Gambetti, and Gi-

annone, 2013; Clark and Ravazzolo, 2015; Chan and Eisenstat, 2018) as well as in large

VARs (Koop and Korobilis, 2013; Carriero, Clark, and Marcellino, 2016, 2019; Chan,

2023a). Clark and Mertens (2023) provide a recent review on the benefits of incorporat-

ing stochastic volatility in a wide range of applications using Bayesian VARs. In addition,

the unexpected extreme movements in many macroeconomic variables at the onset of the

COVID-19 pandemic underline the need to allow for non-Gaussian errors and potential

outliers.

Our second contribution is to introduce Bayesian shrinkage priors and efficient estimation

methods that can handle large datasets. While earlier works have focused on matrix-

valued time-series of moderate sizes,2 we are interested in high-dimensional settings in

which the matrix dimensions are large. For example, in our empirical application we

analyze a US state-level dataset that contains 6 macroeconomic times-series for each of the

50 states, with a total of 300 times-series. Even though a MAR has far fewer parameters

compared to an unrestricted VAR, it may still have more parameters than observations

2For example, Chen, Xiao, and Yang (2021) consider an application with a panel of 5 countries, and
each has 4 economic indicators. The model is fitted using the iterative least squares and maximum
likelihood estimators. Celani and Pagnottoni (2023) provide a Bayesian treatment of the MAR and
consider a panel of 9 countries, each with 6 economic indicators.

3



over time when the dimensions of the matrix are large. Therefore, we introduce Bayesian

shrinkage priors on the MAR coefficients. These new priors are inspired by the Minnesota

prior of Doan, Litterman, and Sims (1984) and Litterman (1986), and can be viewed as a

generalization of the Minnesota prior to the MAR setting. These priors are conjugate and

hence facilitate fast estimation. Additionally, we follow Giannone, Lenza, and Primiceri

(2015) and estimate the prior hyperparameters that control the overall shrinkage strength

from the data, instead of fixing them at some subjective values.

Building upon the fast sampling methods in Carriero, Clark, and Marcellino (2016) and

Chan (2020), we develop a unified approach for estimation—by exploiting a certain Kro-

necker product structure of the likelihood implied by this family of BMARs—that can

drastically speed up the computations. In particular, for the matrix-valued observation

Yt of size n×k, sampling the MAR coefficients using conventional methods would involve

O(n6) and O(k6) elementary operations. The proposed sampling approach instead can

be done in computational complexity of the order O(n3) and O(k3). For more general

BMARs whose likelihoods do not have a Kronecker product structure (such as BMARs

with the Cholesky or factor stochastic volatility), estimation can still be done in O(n4)

and O(k4) computational complexity, using a similar equation-by-equation estimation ap-

proach developed in Carriero, Clark, and Marcellino (2019) and Carriero, Chan, Clark,

and Marcellino (2022). These orders-of-magnitude speed-ups make the proposed estima-

tion methods suitable for fitting large datasets.

The empirical relevance of these new models is illustrated using a US state-level dataset

that includes 300 times-series. Even with such a large dataset, the proposed BMARs,

together with the Minnesota-type shrinkage priors, can be estimated relatively quickly.

The estimation results demonstrate the strong interactions between the variables across

states, highlighting the importance of modeling all the state variables jointly. In addition,

it is also clear that there is a spike in volatility at the onset of the COVID-19 pandemic—

the error standard deviation in 2020Q2 is estimated to be between 5-6 times larger than

that of regular periods. These results thus underscore the importance of allowing time-

varying volatility and heavy-tailed error distributions.3 In a recursive forecasting exercise,

we show that the proposed BMARs provide better density forecasts relative to dynamic

3A few recent papers, such as Schorfheide and Song (2021) and Lenza and Primiceri (2022) using US
data and Bobeica and Hartwig (2023) using euro area data, have shown that impulse response functions
and forecasts from homoskedastic VARs are heavily distorted by the extreme observations related to the
COVID-19 pandemic.
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factor models. In addition, forecast performance can often be improved substantially by

incorporating stochastic volatility and heavy-tailed error distributions.

In addition to contributing to the development of more flexible BMARs, this paper is

also related to two other strands of literature. First, it contributes to the emerging

literature on modeling multidimensional arrays or tensors (Leng and Tang, 2012; Lock,

2018), particularly third-order tensors. Most of the existing literature does not explicitly

model the dynamics even when one of the tensor dimensions is time. There are a few

notable exceptions. Hoff (2015) introduces a multilinear tensor autoregression based on

the Tucker product. Billio, Casarin, Iacopini, and Kaufmann (2023) and Wang, Zheng,

and Li (2024) develop a general linear autoregressive tensor process, where the tensor

coefficients are parameterized using a PARAFAC decomposition in the former and a

Tucker decomposition in the latter. In contrast to the typical time-invariant Gaussian

error distribution considered in earlier works, here we explicitly model the time-varying

dynamics by developing a framework that can accommodate time-varying volatility and

non-Gaussian errors.4

This paper also contributes to the literature on modeling and forecasting regional data.

Hamilton and Owyang (2012) is a classic paper that uses US state-level payroll employ-

ment data to infer regional recessions. Koop, McIntyre, and Mitchell (2020) and Koop,

McIntyre, Mitchell, and Poon (2020) develop a mixed-frequency framework to nowcast

UK regional growths using both regional and national data. More recent papers such

as Baumeister, Leiva-León, and Sims (2022) and Bokun, Jackson, Kliesen, and Owyang

(2023) have used larger US state-level datasets for nowcasting or monitoring state-level

economic conditions. Our paper provides a convenient modeling framework that can

handle datasets with a large number of regional units and economic indicators.

There is also a related literature on developing factor models for matrix-valued time-

series. The seminal paper by Wang, Liu, and Chen (2019) introduces a novel factor

model that exploits the matrix structure of the data using a bilinear form (left and right

matrices of factor loadings). The model is estimated based on a Box–Ljung type statistics

4There are some recent works that develop estimation procedures that are robust against outliers in
the context of matrix or tensor factor models. Barigozzi, He, Li, and Trapani (2023) propose estimators
based on minimizing the Huber loss, which assigns an L1-norm weight on outliers. This is similar to
our likelihood approach based on distributions that have heavier tails than Gaussian. Alternatively,
Barigozzi, Cho, and Maeng (2024) develop a two-stage procedure with data truncation for estimating
the factor loadings.
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in matrix, which is constructed from the sample autocovariance matrices of the time

series. Yu, He, Kong, and Zhang (2022) propose a projection estimation method for this

matrix factor model that is especially suitable for high-dimensional settings. They show

that the proposed projected estimators of the factor loadings achieve faster convergence

rates than alternatives. In terms of model development, Chen, Tsay, and Chen (2020)

consider a general framework for imposing linear restrictions—derived from domain or

prior knowledge—on the factor loadings matrices. This achieves a more parsimonious

parameterization and facilitates interpretation of the latent matrix factors. Liu and

Chen (2022) further propose a threshold matrix factor model in which the factor loadings

matrices are regime-dependent and the regimes are determined by an observed threshold

variable. In a recent paper, Chen, Chen, Bolivar, and Chen (2024) develop a time-

varying matrix factor model in which the factor loadings can change smoothly over time

to account for potential structural changes.

The rest of this paper is organized as follows. Section 2 first introduces a general frame-

work for modeling matrix-valued time-series with a flexible error covariance structure. It

then offers a few different interpretations of the matrix autoregression and discusses some

identification issues. Lastly, the section develops Bayesian shrinkage priors that general-

ize the Minnesota priors to the MAR setting. Section 3 proposes a unified approach to

estimate these flexible BMARs using MCMC methods. Section 4 further extends these

BMARs to accommodate more general stochastic volatility specifications, such as the

Cholesky and factor stochastic volatility. We then discuss in Section 5 the Bayesian ap-

proach of using the marginal likelihood to assess if the restrictions implied by the MAR

are appropriate. Section 6 considers an application that involves a US state-level dataset

with 300 time-series. Lastly, Section 7 concludes and outlines some future research direc-

tions.

2 A Flexible Framework for Matrix Autoregressions

We introduce a general framework for Bayesian matrix autoregressions that aims to strike

the right balance between flexibility and tractability in high-dimensional settings. On the

one hand, this flexible framework can accommodate a wide variety of empirically relevant

features, including heavy-tailed error distributions, time-varying volatility and robustness
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to outliers. On the other hand, it also facilitates fast computation and can be used to

model large datasets.

2.1 The Modeling Framework

To set the stage, let Yt denote an n × k matrix of endogenous variables at time t for

t = 1, . . . , T . To fix ideas, one may think of each column of Yt containing the n variables

for each of the k regions. In our empirical application that models US state-level data,

we have k = 50 states and each state has n = 6 variables, with a total of 300 variables.

A common approach to model the matrix-valued data Yt is to first stack its columns into

a vector, i.e., vec(Yt), which is then fitted using the vector autoregression with p lags:

vec(Yt) = Φ1vec(Yt−1) + · · ·+ Φpvec(Yt−p) + et, (1)

where Φ1, . . . ,Φp are nk × nk coefficient matrices and et is an nk × 1 vector of errors.

There are two main drawbacks of modeling Yt using the VAR in (1). First, by vectoring

Yt, the columns and rows of Yt are mixed. Consequently, the VAR ignores the matrix

structure—e.g., the strong connections between the variables in the same region (column)

and those between the same variable (row) across regions. The second drawback is the

proliferation of parameters when either n or k is large. For example, for n = 6, k = 50

and p = 2, there are 180, 000 VAR coefficients, which makes estimation and inference

practically infeasible.

To tackle these two issues, we follow Hoff (2015) and Chen, Xiao, and Yang (2021) to

directly model the evolution of the matrix Yt via the following matrix autoregression

(MAR):

Yt = A1Yt−1B
′
1 + · · ·+ ApYt−pB

′
p + Et, (2)

where A1, . . . ,Ap and B1, . . . ,Bp are, respectively, n× n and k × k coefficient matrices.

For simplicity we exclude the intercepts; a matrix of intercepts or any deterministic term

can be easily added to the model. The above bilinear form facilitates model interpretation

and estimation. In particular, the matrix autoregression in (2) can be represented in the
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form of a VAR:

vec(Yt) = (B1 ⊗A1)vec(Yt−1) + · · ·+ (Bp ⊗Ap)vec(Yt−p) + vec(Et),

where ⊗ denotes the Kronecker product. Hence, the MAR can be viewed as a special

case of the VAR, where the VAR coefficient matrix is modeled as the Kronecker product

Φj = (Bj ⊗Aj). Consequently, the number of VAR coefficients is reduced from n2k2p to

(n2 + k2)p. Subsection 2.2 provides more discussions on the interpretation of the MAR

and and its relations to the VAR.5

While earlier works consider only homoskedastic MARs where the distribution of the

n× k matrix of errors, Et, is time-invariant, we propose a more general setting in which

Et has a conditionally Gaussian distribution given the latent variable ωt:

vec(Et) ∼ N (0nk, ωtΣc ⊗Σr), (3)

where Σc and Σr are, respectively, k×k and n×n covariance matrices. The homoskedastic

MAR considered in Hoff (2015) and Chen, Xiao, and Yang (2021) can be recovered as

a special case with ω1 = · · · = ωT = 1. By assuming different distributions for the

mixing variables ω1, . . . , ωT , this framework encompasses a wide range of flexible error

distributions that are found empirically useful for modeling macroeconomic and financial

data. Below we give a few important examples.

1. Heavy-tailed distributions. Since many distributions can be represented as a scale

mixture of normals, the conditionally Gaussian specification in (3) can accommodate

many common heavy-tailed distributions that are useful to capture rare but large changes

in volatility. For example, if the mixing variable ωt follows the inverse-gamma distribution

ωt ∼ IG(ν/2, ν/2), then the marginal distribution of vec(Et) unconditional on ωt has a

multivariate t distribution with zero mean, scale matrix Σc ⊗Σr and degree of freedom

parameter ν. Alternatively, if ωt has a gamma distribution, then marginally vec(Et)

has a multivariate normal-gamma distribution, which includes the multivariate Laplace

distribution as a special case. Both of these distributions have heavier tails than normals,

5For lag length p = 1, Chen, Xiao, and Yang (2021) prove that if the product of the spectral radiuses
of A1 and B1 is less than 1, then the MAR is stationary. Since the MAR has an equivalent VAR
representation, for general lag length p, if the spectral radius of the companion matrix of the associated
VAR is less then 1, then the MAR is stationary.
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and they generally provide better fit for data with infrequent volatility jumps. Empirical

studies that find heavy-tailed errors useful in the context of VARs include Clark and

Ravazzolo (2015), Cross and Poon (2016) and Chiu, Mumtaz, and Pinter (2017).

2. Robustness to outliers. The conditionally Gaussian specification in (3) can also be

used for addressing potential outliers using a tailored mixing distribution. An important

example is an explicit outlier component of the type proposed in Stock and Watson

(2016). More specifically, let ωt = o2t and ot follows a mixture of two distributions: a

point mass at 1 and a uniform distribution on the interval (2, 20). The former can be

thought of as ‘regular’ observations with scale normalized to 1, whereas the latter captures

‘outliers’ that have 2-20 times larger standard deviations than regular observations. As

demonstrated in Carriero, Clark, Marcellino, and Mertens (2022), this outlier component

is especially useful for modeling observations associated with the COVID-19 pandemic.

3. Time-varying volatility. One of the most robust empirical findings in modeling

macroeconomic data is the importance of allowing for time-varying volatility (e.g., Sims

and Zha, 2006; Clark, 2011; Chan and Eisenstat, 2018). The conditionally Gaussian

framework in (3) can accommodate certain types of time-varying volatility processes.

An important example is the common stochastic volatility model introduced in Carriero,

Clark, and Marcellino (2016). In particular, let ωt = eht , and assume that the log-

volatility ht follows a stationary AR(1) process with 0 mean:

ht = φht−1 + uht , uht ∼ N (0, σ2
h), (4)

for t = 2, . . . , T , where |φ| < 1 and the initial condition is specified as h1 ∼ N (0, σ2
h/(1−

φ2)). The log-volatility ht here may be interpreted as the level of economy-wide macroe-

conomic uncertainty (see also Jurado, Ludvigson, and Ng, 2015). Another example is

the volatility model with a deterministic break date considered in Lenza and Primiceri

(2022), which is designed to model the drastic increase in volatility at the onset of the

COVID-19 pandemic and the subsequent gradual decrease in volatility. Their model can

also be parameterized using the conditionally Gaussian framework.

Naturally, any combinations of the above heavy-tailed errors and volatility processes can

also be incorporated using the conditionally Gaussian framework. For instance, one may

consider a MAR with the common stochastic volatility and the outlier component. In

that case, ωt = ehto2t , where ht follows the AR(1) process in (4) and ot follows the two-
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component mixture described above. Other models such as those in Chan (2020) and

Hartwig (2021) can also be considered.

While the modeling framework in (2)–(3) is flexible and includes many empirically useful

specifications as special cases, it is crucial to recognize its limitations. In particular,

the latent variable ωt is assumed to scale the entire covariance matrix of Et, implying

that each element of Et is impacted equally by ωt. As such, the proposed framework

does not nest, for example, a model in which each row of Yt has its specific stochastic

volatility factor. Estimation of such a model, however, would be practically infeasible in

high-dimensional settings. The proposed framework therefore provides the right balance

between modeling flexibility and computational tractability.

2.2 Model Interpretation and Identification

In this section we discuss various interpretations of the coefficient matrices in the MAR

and some identification issues. For ease of exposition, throughout this section we consider

the case with only one lag:

Yt = A1Yt−1B
′
1 + Et. (5)

We first cast the MAR(1) in (5) as a VAR and relate the coefficient matrices A1 and B1 to

the corresponding VAR coefficients. We then discuss how the MAR coefficient matrices

are related to the 3-dimensional coefficient array in a more general MAR framework.

2.2.1 Relation to VARs

The coefficient matrix A1 in the bilinear form in (5) corresponds to row-wise relationships,

whereas B1 represents column-wise interactions. To tease out the impact of the two

matrices, it is useful to consider a few special cases. Recall that the MAR may be viewed

as a special VAR in which the VAR coefficient matrix is parameterized as Φ1 = (B1⊗A1).

If we assume B1 = Ik, then we can express the MAR as:

vec(Yt) = (Ik ⊗A1)vec(Yt−1) + vec(Et).
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In other words, each column of Yt follows the same VAR with the coefficient matrix A1,

and there are no interactions among the columns (in the conditional mean). Similarly,

for the special case with A1 = In, each row of Yt follows a VAR with the same coefficient

matrix.

The covariance matrix of vec(Et) has a similar interpretation. For simplicity, set ωt = 1.

Then, the matrix of errors as specified in (3) can be equivalently represented as Et =

Σ
1
2
r ZtΣ

1
2
c , where Zt is an n×k matrix consisting of independent standard normal random

variables. It is clear from this representation that Σr corresponds to row-wise covariances

and Σc represents column-wise covariances. In particular, if Σc = Ik, then Et = Σ
1
2
r Zt,

which implies that the columns of Et are all mutually independent and each row has

the same covariance matrix Σr. More generally, the covariance between the (i1, j1) and

(i2, j2) elements of Et is cov(et,i1,j1 , et,i2,j2) = σr,i1,i2σc,j1,j2 .

Another interpretation of the MAR is related to the global VAR (Pesaran, Schuermann,

and Weiner, 2004) and the multivariate autoregressive index model (Carriero, Kapetanios,

and Marcellino, 2016). More specifically, let yt,i,j, a1,i,j and b1,i,j denote the (i, j) elements

of Yt, A1 and B1, respectively. Then, yt,i,j can be expressed as

yt,i,j =
n∑

l1=1

k∑
l2=1

a1,i,l1b1,j,l2yt−1,l1,l2 + et,i,j =
n∑

l1=1

a1,i,l1zt−1,l1,j + et,i,j,

where zt−1,l1,j =
∑k

l2=1 b1,j,l2yt−1,l1,l2 is a linear combination of the l1-th row of Yt−1 across

the columns. Under this representation, one can view the MAR as a multi-equation

regression with covariates constructed from linear combinations of the columns of Yt−1.

In particular, using our running state-level data example, the MAR can be interpreted

as first constructing linear combinations of GDP, unemployment, etc., across states, and

use them as regressors.

2.2.2 Relation to a Factor Model

The MAR also a two-step, hierarchical interpretation analogous to the multilevel inter-

pretation of the matrix factor model discussed in Wang, Liu, and Chen (2019). More

specifically, in the first step, suppose that each row of Yt, denoted as yt,i,· (as a k × 1
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column vector), has the factor structure

yt,i,· = B
(i)
1 zt,i,· + ut,i,·,

where zt,i,· is a k × 1 vector of factors and B
(i)
1 is the associated k × k factor loadings

matrix. Next, let Zt = (zt,1,·, . . . , zt,n,·)
′ denote the n× k matrix of factors. Then, in the

second step, suppose we construct each column of Zt, denoted as zt,·,j for j = 1, . . . , k as

zt,·j = A
(j)
1 yt−1,·j + vt,·,j,

where yt−1,·,j is the j-th column of Yt−1 and A
(j)
1 is an n× n coefficient matrix. Finally,

putting these two stages together and letting A
(1)
1 = · · · = A

(k)
1 ≡ A1 and B

(1)
1 = · · · =

B
(n)
1 ≡ B1, we have

Yt = ZtB
′
1 + U = A1Yt−1B

′
1 + E,

where E = VB′1 + U.

2.2.3 Relation to a Generalized MAR

Following Hoff (2015) and Chen, Xiao, and Yang (2021), we formulate the MAR in (5)

using a bilinear form. However, a more general autoregressive process for matrix-valued

data can be represented as

Yt = 〈C, vec(Yt−1)〉+ Et, (6)

where C ∈ Rn×k×nk is a 3-dimensional array or tensor and 〈·, ·〉 is the generalized inner

product (see, e.g., Kolda and Bader, 2009, for a general introduction to tensors and their

associated operations). The generalized inner product 〈C, vec(Yt−1)〉 in this case defines

an n× k matrix, where the (i, j) element is given by

〈C, vec(Yt−1)〉i,j =
n∑

l1=1

k∑
l2=1

Ci,j,(l2−1)n+l1yt−1,l1,l2 .

Note that the third-order tensor C has n2k2 free parameters, and they are difficult to pin

down in high-dimensional settings. The bilinear form in (5) may be viewed as a judicious

way to constructs C using matrices A1 and B1 with a total of n2 + k2 free parameters.
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Specifically, it can be readily verified that (6) reduces to the MAR in (5) if we set

Ci,j,(l2−1)n+l1 = a1,i,l1b1,j,l2 ,

where a1,i,l1 is the (i, l1) element of A1 and b1,j,l2 is the (j, l2) element of B1.

2.2.4 Identification Issues

Finally, we discuss some identification issues that arise in the MAR. First, the parameters

A1 and B1 are not separately identified, but they are identified up to scale. That is, if

(B1 ⊗ A1)z = (B̃1 ⊗ Ã1)z, for all z, then Ã1 = cA1 and B̃1 = c−1B1 for some c 6= 0,

provided that neither A1 and B1 is the zero matrix. Hence, to fix the scale, we normalize

the (1,1) element of B1 to be 1. More generally, for the MAR of order p, we set the (1,1)

element of Bj to be 1, i.e., bj,1,1 = 1, j = 1, . . . , p. Similarly, the covariances Σr and Σc

are only identified up to scale. We normalize the (1,1) element of Σc to be 1: σc,1,1 = 1.

2.3 Bayesian Shrinkage Priors

We are interested in settings when n or k (or both) is large. In those cases, the matrix

autoregression has a large number of parameters, and consequently regularization or

shrinkage is vital for obtaining sensible results. In addition, to facilitate fast estimation,

we extend the natural conjugate prior (see, e.g., Koop and Korobilis, 2010; Karlsson,

2013) designed for VARs to our setting. To that end, let A = (A1, . . . ,Ap)
′ and B =

(B1, . . . ,Bp)
′, so that A and B are of dimensions np × n and kp × k, respectively. We

consider the prior of the form p(A,B,Σr,Σc |κA, κB) = p(A,Σr |κA)p(B,Σc |κB), where

κA and κB are some hyperparameters which we treat as unknown.

First, we assume that (A,Σr) has a normal-inverse-Wishart distribution (see, e.g., Kadiyala

and Karlsson, 1997; Koop and Korobilis, 2010):

Σr ∼ IW(νr,Sr), (vec(A) |Σr, κA) ∼ N (vec(A0),Σr ⊗VA),

where vec(A0) is the prior mean vector and the np × np prior covariance matrix VA

is assumed to be diagonal and depend on the unknown hyperparameter κA. The joint
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density function of (A,Σr) is thus given by

p(A,Σr) ∝ |VA|−
n
2 |Σr|−

νr+n+np+1
2 e−

1
2
tr(Σ−1

r Sr)e−
1
2
tr(Σ−1

r (A−A0)′V
−1
A (A−A0)), (7)

where tr(·) is the trace operator.

We calibrate A0 and VA in the spirit of the Minnesota priors pioneered by Doan, Lit-

terman, and Sims (1984) and Litterman (1986). More specifically, vec(A0) is set to be a

zero vector for growth rates data. This reflects the prior belief that growth rates data are

typically not very persistent, and the coefficient matrix A is thus shrunk to 0. For levels

data, vec(A0) is set to be zero except for the coefficients associated with the first own lag,

which are set to be one. This expresses the preference for a random walk specification,

reflecting the prior belief that levels data are generally highly persistent.

To calibrate the diagonal elements of VA, let ŝ2i,• =
∑k

j=1 ŝ
2
i,j/k, where ŝ2i1,i2 denotes the

sample variance of an AR(4) model for the variable yt,i1,i2 , the (i1, i2) element of Yt.

Hence, ŝ2i,• is the average sample variances of the variables in the i-th row. Then, the j-th

diagonal element of VA is assumed to be vA,j,j = κA/(l
2ŝ2i,•) for a coefficient associated

with lag l of the variable in the i-th row. Intuitively, the prior variance is scaled by ŝ2i,•, and

the coefficient associated to a lag l variable is shrunk more heavily to zero as the lag length

increases. The overall shrinkage strength is controlled by the hyperparameter κA, where

a smaller value indicates more aggressive shrinkage. We follow the recommendation of

Giannone, Lenza, and Primiceri (2015) to estimate κA from the data instead of fixing it at

some commonly-used subjective value. Finally, we set νr = n+2, Sr = diag(ŝ21,•, . . . , ŝ
2
n,•).

These hyperparameters are elicited in the spirit of the Minnesota priors. In particular,

for k = 1, they reduce to those of the standard Minnesota priors (see, e.g., Karlsson,

2013; Carriero, Clark, and Marcellino, 2015).

Similarly, we consider the following normal-inverse-Wishart prior on (B,Σc):

Σc ∼ IW(νc,Sc), (vec(B) |Σc, κB) ∼ N (vec(B0),Σc ⊗VB),

where vec(B0) is the prior mean vector and the kp × kp prior covariance matrix VB is

assumed to be diagonal and depend on the unknown hyperparameter κB. Naturally, one

can elicit B0 and VB to incorporate prior beliefs specific to the application. Below we

provide a baseline case that is expected to be applicable to a wide range of cross-region
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applications.

As discussed in Section 2.2, when Bj = Ik, j = 1, . . . , p, then each column of Yt, repre-

senting observations from a particular region, follows the same VAR with the coefficient

matrix A, and there are no interactions among the columns in the conditional mean. We

therefore set the prior mean to be B0 = (Ik, . . . , Ik)
′, and shrink B toward to this simpler

setting. This choice of prior mean is also consistent with the identification restrictions

that the (1,1) elements of B1, . . . ,Bp are 1. To calibrate the diagonal elements of VB,

let ŝ2•,j =
∑n

i=1 ŝ
2
i,j/n denote the average sample variances of the variables in the j-th

column. Then, the i-th diagonal element of VB is assumed to be vB,i,i = κB/(l
2ŝ2•,j)

for a coefficient associated with lag l of the variable in the j-th column. Hence, a co-

efficient is shrunk more strongly to its mean if it corresponds to a variable of higher

lag, and the prior variance is scaled by ŝ2•,j. The hyperparameter κB determines the

overall shrinkage strength, which is again estimated from the data. We set νc = k + 2,

Sc = diag(1, ŝ2•,2/ŝ
2
•,1, . . . , ŝ

2
•,k/ŝ

2
•,1). Here we normalize the scale matrix Sc so that it is

consistent with the identification restriction that the (1, 1) element of Σc is fixed at one.

Finally, the hyperparameters κA and κB are assumed to have hierarchical gamma priors:

κA ∼ G(cA,1, cA,2) and κB ∼ G(cB,1, cB,2).

3 Bayesian Estimation

In this section we provide a general discussion on the estimation of the BMARs specified

in (2)-(3). In particular, we develop a fast and simple approach to sample the pairs

(A,Σr) and (B,Σc) given the shrinkage hyperparameters κ = (κA, κB)′ and an arbitrary

vector of latent variables ω = (ω1, . . . , ωT )′. In Appendix A we take up various examples

of ω and provide estimation details for tackling each case, as well as the sampling steps

for κ.

We first derive the likelihood function implied by (2)-(3). Letting A = (A1, . . . ,Ap)
′ and

B = (B1, . . . ,Bp)
′, note that one can rewrite the mean equation in (2) as:

Yt = A′XtB + Et,
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where Xt = diag(Yt−1, . . . ,Yt−p) is an np × kp block-diagonal matrix of lagged values.

Given the covariance structure in (3), the likelihood function can be expressed as:

p(Y |A,B,Σc,Σr,ω) = (2π)−
Tnk
2 |Σc|−

Tn
2 |Σr|−

Tk
2

T∏
t=1

ω
−nk

2
t e

− 1
2ωt

tr(Σ−1
c (Yt−A′XtB)′Σ−1

r (Yt−A′XtB)).

(8)

Assuming the natural conjugate priors for (A,Σr) and (B,Σc), posterior draws can be ob-

tained by sequentially sampling from: 1) p(A,Σr |Y,B,Σc,κ,ω); 2) p(B,Σc |Y,A,Σr,κ,ω);

3) p(κ |Y,A,B,Σr,Σc,ω); and 4) p(ω |Y,A,B,Σr,Σc,κ). Depending on how one

models the latent variables ω, additional blocks might be needed to sample some ad-

ditional hierarchical parameters. These steps are typically easy to implement as they

amount to fitting a univariate time-series model. A variety of examples are given in Ap-

pendix A. Below we provide details on implementing Step 1 and Step 2 of sampling from

the high-dimensional densities p(A,Σr |Y,B,Σc,κ,ω) and p(B,Σc |Y,A,Σr,κ,ω) ef-

ficiently.

More specifically, recall that A is of dimensions np×n, and sampling A using conventional

methods would involve O(n6) elementary operations. Fortunately, it can be shown that

(A,Σr |Y,B,Σc,κ,ω) has a normal-inverse-Wishart distribution, and one can sample

A with computational complexity of the order O(n3). To see this, note that it follows

from (7) and (8) that

p(A,Σr |Y,B,Σc,κ,ω) ∝|Σr|−
νr+n+np+Tk+1

2 e−
1
2
tr(Σ−1

r Sr)

× e−
1
2
tr(Σ−1

r ((A−A0)′V
−1
A (A−A0)+

∑T
t=1 ω

−1
t (Yt−A′XtB)Σ−1

c (Yt−A′XtB)′))

=|Σr|−
νr+n+np+Tk+1

2 e−
1
2
tr(Σ−1

r Sr)e−
1
2
tr(Σ−1

r (A′0V−1
A A0+

∑T
t=1 ω

−1
t YtΣ

−1
c Y′t−Â′KAÂ))

× e−
1
2
tr(Σ−1

r (A−Â)′KA(A−Â)),

where

KA = V−1A +
T∑
t=1

ω−1t XtBΣ−1c B′X′t, Â = K−1A

(
V−1A A0 +

T∑
t=1

ω−1t XtBΣ−1c Y′t

)
.
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In the above derivation we have used the fact that

(A−A0)
′V−1A (A−A0) +

T∑
t=1

ω−1t (Yt −A′XtB)Σ−1c (Yt −A′XtB)′

=(A− Â)′KA(A− Â) + A′0V
−1
A A0 +

T∑
t=1

ω−1t YtΣ
−1
c Y′t − Â′KAÂ.

In other words, (A,Σr |Y,B,Σc,κ,ω) has the normal-inverse-Wishart distribution with

parameters νr + Tk, Ŝr, Â and K−1A , where

Ŝr = Sr + A′0V
−1
A A0 +

T∑
t=1

ω−1t YtΣ
−1
c Y′t − Â′KAÂ.

Hence, we can sample (A,Σr |Y,B,Σc,κ,ω) in two steps. First, we sample Σr marginally

from (Σr |Y,B,Σc,κ,ω) ∼ IW(Ŝr, νr + Tk). Then, given the Σr drawn, we sample

(vec(A) |Y,B,Σr,Σc,κ,ω) ∼ N
(

vec(Â),Σr ⊗K−1A

)
.

Since the covariance matrix is of dimension n2p × n2p, and sampling from this high-

dimensional density using conventional methods would involve O(n6p3) operations. This

can be computationally intensive when n is large. Instead, we adopt an efficient al-

gorithm to sample from the matrix-normal distribution to our setting (e.g., Bauwens,

Lubrano, and Richard, 1999, p.320). This algorithm has been used in Carriero, Clark,

and Marcellino (2016) and Chan (2020) to estimate various large Bayesian VARs. More

specifically, we exploit the Kronecker structure Σr⊗K−1A to speed up computation. Conse-

quently, the complexity of the problem can be drastically reduced to O(n3p3) operations.

We further improve upon this approach by avoiding the computation of the inverse of the

np× np matrix KA. The computational details are provided in Appendix A.

Similarly, it can be shown that (B,Σc |Y,A,Σr,κ,ω) has a normal-inverse-Wishart
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distribution with parameters νc + Tn, Ŝc, B̂ and K−1B , where

KB = V−1B +
T∑
t=1

ω−1t X′tAΣ−1r A′Xt, B̂ = K−1B

(
V−1B B0 +

T∑
t=1

ω−1t X′tAΣ−1r Yt

)
,

Ŝc = Sc + B′0V
−1
B B0 +

T∑
t=1

ω−1t Y′tΣ
−1
r Yt − B̂′KBB̂.

Again, we can sample (B,Σc |Y,A,Σr,κ,ω) in two steps. First, we sample Σc marginally

from (Σc |Y,A,Σr,κ,ω) ∼ IW(Ŝc, νc + Tn) with the normalization restriction that

σc,1,1 = 1. This can be done using the algorithm in Nobile (2000). Then, given the

sampled Σc, we simulate

(vec(B) |Y,A,Σr,Σc,κ,ω) ∼ N
(

vec(B̂),Σc ⊗K−1B

)
with the normalization restrictions that the (1,1) elements of B1, . . . ,Bp are all 1. Sam-

pling from a Gaussian distribution subjected to linear restrictions can be done efficiently

by using Algorithm 2.6 in Rue and Held (2005) or Algorithm 2 in Cong, Chen, and Zhou

(2017). We provide the details of this sampling step in Appendix A.

4 Extensions

The MAR modeling framework can be extended along a few directions. For example, one

may consider a more flexible covariance matrix for vec(Et). More specifically, instead of

the Kronecker product scaled by a single latent variable as specified in (3), we consider a

generic nk × nk error covariance matrix Ωt:

vec(Et) ∼ N (0nk,Ωt). (9)

This extended MAR framework can incorporate a wide variety of more flexible multi-

variate stochastic volatility specifications. For example, the popular Cholesky stochastic

volatility model of Cogley and Sargent (2005) can be represented as

Ωt = B−10 Dt(B
−1
0 )′,
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where B0 is an nk × nk lower triangular matrix with ones on the diagonal, Dt =

diag(eh1,t , . . . , ehnk,t), and the log-volatilities h1,t, . . . , hnk,t are specified as independent

autoregressive processes. Naturally, various extensions of this model can also be enter-

tained, such as the version in which B0 is time-varying (Primiceri, 2005); the order-

invariant version in which B0 is a dense matrix (Chan, Koop, and Yu, 2024); and the

outlier-augmented version developed by Carriero, Clark, Marcellino, and Mertens (2022).

Another popular class of multivariate stochastic volatility specifications is the family of

factor stochastic volatility models (Pitt and Shephard, 1999; Aguilar and West, 2000;

Chib, Nardari, and Shephard, 2006; Kastner, 2019), under which the error covariance

matrix Ωt is constructed as

Ωt = LGtL
′ + Dt,

where Dt = diag(eh1,t , . . . , ehnk,t) and Gt = diag(ehnk+1,t , . . . , ehnk+r,t), and h1,t, . . . , hnk+r,t

follow independent AR(1) processes. Typically the number of factors r is set to be small

relative to nk.

The error distribution specified in (9) with a generic covariance matrix Ωt is very flexible,

but it comes at a cost of substantially more parameters and latent variables when n or

k is large. This increases both the computational burden and posterior uncertainty. In

particular, the conditional posterior covariance matrices of the MAR coefficient matrices

A = (A1, . . . ,Ap)
′ and B = (B1, . . . ,Bp)

′ no longer have a Kronecker structure, when the

error covariance matrix deviates from the form specified in (3). Consequently, sampling A

and B would involve more operations than O(n3) and O(k3), respectively. Fortunately,

using the equation-by-equation estimation approach developed in Carriero, Clark, and

Marcellino (2019) and Carriero, Chan, Clark, and Marcellino (2022), sampling A and B

can still be done in O(n4) and O(k4) elementary operations, respectively. Appendix A

provides some technical details in estimating a BMAR with the factor stochastic volatility.

5 Assessing the MAR Restrictions

As discussed in Section 2, the MAR can be viewed as a special case of the VAR,

where each of the VAR coefficient matrix is constructed via the Kronecker product

Φj = (Bj ⊗Aj), j = 1, . . . , p. This particular structure is designed to explicitly capture
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the intertemporal correlations among the elements in the same row or column. Under-

standably, one might wish to empirically verify if this modeling choice is appropriate for

a particular dataset. Under the Bayesian approach, this can be done using the marginal

likelihood. More specifically, assessing these restrictions can be framed as a model com-

parison exercise comparing an MAR with an unrestricted VAR, and this boils down to

computing the marginal likelihoods of the two models.

Below we conduct two Monte Carlo experiments to assess how the marginal likelihood

performs in selecting the correct data generating process. In the first Monte Carlo experi-

ment, we generate 500 datasets from a VAR. Each dataset consists of nk = 50 time-series,

T = 200 observations and p = 2 lags. Given each dataset, we compute the log marginal

likelihoods of the VAR and the MAR. For the VAR, each observation is treated as a 50×1

vector; for the MAR, it is arranged as a 5 × 10 matrix.6 In the second experiment, we

generate 500 datasets from the MAR with n = 5, k = 10, T = 200 and p = 2. Again, for

each dataset, we compute the log marginal likelihoods of the MAR and the VAR (in the

latter case we vectorize the 5× 10 matrix observation).

For the VAR, we generate the intercepts from the uniform distribution on (−10, 10),

i.e., U(−10, 10). The diagonal elements of the first VAR coefficient matrix are drawn

independently from U(0, 0.5) and the off-diagonal elements are from U(−0.2, 0.2); all

elements of the second VAR coefficient matrix are independently drawn from N (0, 0.052).

The error covariance matrix is generated from the inverse-Wistart distribution IW(nk+

5, 0.8× Ink + 0.2× 1nk1
′
nk), where 1nk is an nk × 1 column of ones.

For the MAR, the diagonal elements of A1 are generated independently from U(0, 0.5)

and the off-diagonal elements are from U(−0.2, 0.2); all elements of A2 are independently

drawn from N (0, 0.052). The diagonal elements of B1 and B2 are generated indepen-

dently from U(0.2, 1) and the off-diagonal elements are from U(0, 0.2). Finally, the error

covariance matrices Σr and Σc are generated from IW(n + 5, In) and IW(k + 5, Ik),

respectively.

Figure 1 reports the results of these two Monte Carlo experiments. The left panel presents

the scatter plot of the log marginal likelihoods of the MAR against those of the VAR when

6To make the computation manageable, for the VAR we use the natural conjugate prior on the VAR
coefficient matrices and the error covariance matrix. The advantage of the natural conjugate prior is
that the associated marginal likelihood is analytically available and no MCMC is required.
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the data generating process (DGP) is the VAR. Each point represents the log marginal

likelihoods of the two models for each dataset. Since the DGP is the VAR, the log

marginal likelihoods of the VAR should be larger than those of the MAR, and the points

should lie below the diagonal line. This is indeed the case for all 500 datasets. The right

panel reports a similar scatter plot when the DGP is the MAR. For this case, one would

expect the points to be above the diagonal line since the log marginal likelihoods of the

MAR should be larger. Again, the results show that this is true for all the replications.

Overall, these Monte Carlo results show that the marginal likelihood is able to distinguish

the two models even for a relatively moderate system (nk = 50, T = 200). Therefore, it

can be used in practice to assess if the MAR restrictions are appropriate.
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Figure 1: Scatter plots of the log marginal likelihoods of the MAR against those of the
VAR when the DGP is the VAR (left panel) and when the DGP is the MAR (right panel).

Relatedly, the marginal likelihood can also be used to select the lag length in MARs,

since the MAR has an equivalent VAR representation and it is widely established that

the marginal likelihood works well for selecting lag length in VARs. An alternative model

selection criterion is the Bayesian information criterion, which can be viewed as the

Laplace’s approximation to the marginal likelihood.
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6 Empirical Application

To illustrate the utility of the proposed models and estimation methods, we consider an

application that involves a US state-level dataset. More specifically, for each of the 50

US states, we obtain 6 quarterly time-series sourced from the Bureau of Labor Statistics

and the FRED database maintained by the Federal Reserve Bank of St. Louis. These 6

variables are initial unemployment insurance claims, continued unemployment insurance

claims, total nonfarm employment, unemployment rate, new housing permits, and real

home price index. The sample period is from 1991Q1 to 2023Q1. A detailed description

of the variables and their transformations are provided in Appendix B. We represent

the data at time t as an n × k matrix Yt, where the columns refer to the k = 50

states and the rows are the n = 6 variables. We first report the full sample estimates

in Subsection 6.1. We then present results from a recursive out-of-sample forecasting

exercise in Subsection 6.2.

6.1 Full Sample Results

As discussed in Section 2, the MAR has an equivalent VAR representation in which the

VAR coefficient matrices have the form Φj = (Bj⊗Aj), j = 1, . . . , p. We first verify that

these restrictions implied by the MAR are appropriate for our state-level dataset. For

this purpose, we conduct a model comparison exercise comparing a BMAR against an

unrestricted BVAR as outlined in Section 5. The log marginal likelihood of the BMAR

is 2461, whereas the value for the unrestricted BVAR is −8631. These results show that

there is strong empirical support for the Kronecker product structure.

Next, we report various estimates of interest using the full sample, which includes the

COVID-19 pandemic. As widely noted, the COVID-19 pandemic has caused extreme

movements in many macroeconomic and financial time-series, and a failure to account

for these outliers would result in heavily distorted parameter estimates, as demonstrated

in recent papers such as Schorfheide and Song (2021), Lenza and Primiceri (2022) and

Bobeica and Hartwig (2023). Therefore, we consider two BMARs that explicitly account

for time-varying volatility or potential outliers.

More specifically, both models can be nested within the proposed framework and rep-
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resented as the system in (2)–(3). The first Bayesian MAR incorporates the common

stochastic volatility specification proposed in Carriero, Clark, and Marcellino (2016) with

ωt = eht , and the log-volatility ht follows the stationary AR(1) given in (4). This model is

referred to as BMAR-CSV. The second model includes the outlier component introduced

in Stock and Watson (2016) with ωt = o2t , where ot follows a 2-part distribution with a

point mass at 1 and a uniform distribution on the interval (2, 20). This latter model is

referred to as BMAR-O. For both models we set the lag order to be p = 2.
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Figure 2: Heatmaps of the posterior means of A1 and A2 from the BMAR-CSV.

To visualize the correlation pattern among the variables (rows), we report in Figure 2

heatmaps of the posterior means of A1 and A2 from the BMAR-CSV, where red entries

denote positive values, blue negative and white zero. First, it is clear that, as expected,

all variables are highly persistent. For example, the AR(1) coefficient for nonfarm pay-

roll is estimated to be about 0.85, and the AR(1) and AR(2) coefficient estimates for

unemployment rate are, respectively, 1.28 and −0.49. Second, the proposed hierarchical

shrinkage prior on A = (A1,A2)
′ strongly shrinks many of the off-diagonal elements to

zero. In particular, the shrinkage hyperparameter κA—that controls the overall shrink-

age strength on A, where a smaller value indicate more aggressive shrinkage to zero—is

estimated to be 0.12 (compared to the prior mean of 1). Despite the shrinkage effects,

many off-diagonal elements corresponding to closely related variables remain non-zero.

23



For example, lagged initial claims have non-negligible impacts on continued claims, and

vice versa, reflecting current labor market conditions.
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Figure 3: A heatmap of the posterior mean of B1 from the BMAR-CSV.

Next, Figure 3 reports a heatmap of the posterior mean of B1 from the BMAR-CSV,

which represents the correlation structure among the states (columns). The hierarchical

shrinkage prior on B = (B1,B2)
′ strongly shrinks both B1 and B2 to the identity matrix;

the shrinkage hyperparameter κB is estimated to be 0.0084 (compared to the prior mean of

1). Even so, some of the diagonal elements of B1 are substantially different from one and

many of the off-diagonal elements are estimated to be non-zero. In particular, the diagonal

elements range from 0.75 to 1.1, indicating heterogeneity in variables dynamics across
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states. Not surprisingly, many neighboring states or states with similar types of industries

show stronger interactions. For instance, lagged variables of Arkansas and Oklahoma

most positively impact the variables of South Dakota with corresponding coefficients

estimated to be 0.2 and 0.12, respectively.7 Overall, these results highlight the strong

interactions between the states.
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Figure 4: Posterior means of the time-varying standard derivations, exp(ht/2) and ot
respectively, from BMAR-CSV (top panel) and BMAR-O (bottom panel).

To assess the extent of time-varying volatility in our sample, we report the posterior

means of the error standard derivations from the BMAR-CSV and the BMAR-O in Fig-

ure 4. Despite the two very different modeling approaches—the BMAR-CSV prescribes

a persistent volatility process whereas the BMAR-O assumes serial independence of the

occurrence of outliers—the estimated error standard derivations from the two models are

7The diagonal element of B1 corresponding to South Dakota is estimated to be 0.75. Hence, the
impact magnitudes of the lagged variables of Arkansas and Oklahoma are 27% and 16% of those of own
state variables.
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remarkably similar. In particular, for most of the sample before the onset of the COVID-

19 pandemic in 2020Q2, the standard derivations were mostly around 1 (normalized as

the size of ‘regular’ observations). In 2020Q2, the standard derivations jumped to 5 for

the BMAR-CSV and 6 for the BMAR-O, and they stayed elevated afterward. These

results underscore the empirical relevance of explicitly modeling time-varying volatility

or allowing for outliers.

6.2 Forecasting Results

Next, we conduct a recursive out-of-sample forecasting exercise to evaluate the perfor-

mance of the proposed BMARs. We forecast the 6 quarterly macroeconomic variables for

each of the 50 US states. The evaluation period starts from 2000Q1 and ends in 2023Q1.

We consider a homoskedastic BMAR with ωt = 1 (BMAR), BMARs with the common

stochastic volatility (BMAR-CSV), an explicit outlier component (BMAR-O) and t er-

rors (BMAR-t). We also include a version with a more general error covariance matrix,

namely, the factor stochastic volatility (BMAR-FSV) as specified in Section 4. We set

the number of factors to be 6 and they are identified via the 6 macroeconomic variables.

To estimate these BMARs, the observations at time t are represented as an n× k matrix

Yt, where each column denotes a state and each row a macroeconomic variable.

As a comparison, we also consider two dynamic factor models. For identification purposes,

the factor loadings matrix is assumed to be lower triangular with ones on the diagonal.

For the first dynamic factor model, we set the number of factors to be 6, and stack the

observations column by column as yt = vec(Yt). Hence, the factors are identified via the

macroeconomic variables. This model is referred to as DFM-6. For the second dynamic

factor model, we set the number of factors to be 50 and stack the observations row by

row, i.e., yt = vec(Y′t). In this case the factors are associated with the states. This

version is referred to as DFM-50.

To evaluate the performance of jointly forecasting all 300 time-series, we compute the

average of log predictive likelihoods for each model over the forecast horizons of one- and

four-quarter-ahead. The results are reported in Table 1. A larger value of log predictive

likelihood indicates better forecast performance.
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Table 1: Joint forecast performance of the proposed BMARs as well as two dynamic
factor models with 6 and 50 factors.

BMAR BMAR-CSV BMAR-O BMAR-t BMAR-FSV DFM-6 DFM-50
One-quarter-ahead −161 22 31 −16 −701 −445 −1,887
Four-quarter-ahead −2,492 −1,534 −351 −1,110 −4,017 −818 −4,231

The results show that the proposed BMARs perform well compared to the dynamic factor

models, especially those with a more structured error covariance matrix. Specifically,

BMAR, BMAR-CSV, BMAR-O and BMAR-t all substantially outperform dynamic factor

models, and they all assume an error covariance matrix that has a parsimonious Kronecker

product structure. In contrast, BMAR-FSV has a much more flexible error covariance

matrix constructed from nk+ r = 306 stochastic volatility processes. But this additional

flexibility does not seem to improve density forecast performance.8 These results suggest

that for modeling a large number of state-level variables, the specification in (3)—that

assumes a Kronecker product structure for the error covariance matrix—strikes the right

balance between flexibility and parsimony.

Among the 4 parsimonious BMARs, the versions with time-varying volatility or heavier

tails than Gaussian do substantially better than the homoskedastic Gaussian BMAR. This

result is in line with the large empirical literature that demonstrates the superior forecast

performance of models with stochastic volatility and heavy tails. Lastly, BMAR-O with

an outlier component is the best performing model, highlighting the value of explicitly

modeling potential outliers when the sample includes the COVID-19 pandemic.

Next, we look at the point forecast performance for each of the macroeconomic variables.

More specifically, we compute the root mean square error for each variable, summing over

the 50 states and the evaluation periods. For easy comparison, we report the point fore-

cast performance relative to DFM-6 (which outperforms DFM-50 in the joint forecasting

exercise). The results are reported in Tables 2 and 3. Values less than one indicate better

forecast performance than the benchmark.

8To corroborate this finding, we also investigate the magnitude of the common component in the
stochastic volatilities using a similar analysis conducted in Carriero, Clark, and Marcellino (2016). More
specifically, we separately fit each of the 300 times-series with an AR(4) model with stochastic volatility.
We then compute the first principal component of these 300 estimated stochastic volatility series. We
find that the first principal component explains about 74% of the variations, suggesting a dominant
common component in the stochastic volatility of the state-level variables.
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Table 2: One-quarter-ahead point forecast performance relative to the dynamic factor
model with 6 factors.

BMAR BMAR-CSV BMAR-O BMAR-t BMAR-FSV DFM-50
Initial claims 0.99 0.98 0.98 0.98 0.94 0.95
Continued claims 0.94 0.94 0.94 0.94 1.02 1.06
Nonfarm payroll 1.00 0.94 0.93 0.94 0.94 0.94
Unemployment rate 1.19 1.11 1.11 1.11 1.09 0.95
New housing permits 0.86 0.87 0.87 0.87 0.82 0.81
House price 0.74 0.75 0.74 0.75 0.68 0.85

Table 3: Four-quarter-ahead point forecast performance relative to the dynamic factor
model with 6 factors.

BMAR BMAR-CSV BMAR-O BMAR-t BMAR-FSV DFM-50
Initial claims 0.98 0.97 0.97 0.97 1.00 1.02
Continued claims 1.01 1.01 1.01 1.01 1.00 1.01
Nonfarm payroll 0.99 0.97 0.97 0.97 0.92 0.98
Unemployment rate 1.03 1.01 1.01 1.01 0.97 0.98
New housing permits 0.93 0.93 0.93 0.93 0.95 0.96
House price 0.98 0.98 0.99 0.98 0.94 0.97

Compared to the joint forecasting exercise, these point forecasting results are more mixed.

While the proposed BMARs tend to provide better point forecasts for the majority of the

variables compared to DFM-6, DFM-50 performs well in a number of variables. Among

the proposed BMARs, BMAR-CSV, BMAR-O, BMAR-t and BMAR-FSV provide very

similar point forecasts, and they tend to outperform the homoskedastic Gaussian version.

Overall, these results show that the proposed BMARs are competitive relative to dynamic

factor models. In addition, point forecast performance can often be improved by allowing

for time-varying volatility or an explicit outlier component.

7 Concluding Remarks and Future Research

Two recent developments have motivated our paper: 1) the increasing recognition of the

need to allow for flexible time-varying features in modeling most macroeconomic datasets;

and 2) the growing availability of a large number of matrix-valued time-series. In response

to these developments, we have introduced a new class of matrix autoregressions that
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can accommodate time-varying volatility, non-Gaussian errors and COVID-19 outliers.

We then developed an efficient, unified approach that scales well to high-dimensional

datasets. We illustrated the methodology using a US state-level dataset that involves

300 macroeconomic time-series.

In terms of methodological development, there are multiple lines of future research

that are worth pursuing. First, it would be useful to extend the MARs to a mixed-

frequency framework—e.g., modeling both quarterly and monthly time-series simultane-

ously. This can be done, for example, by incorporating the data augmentation approach

in Schorfheide and Song (2015) or Chan, Poon, and Zhu (2023) to simulate the missing

monthly observations of the quarterly data. An interesting application would be one that

aims to construct monthly state-level GDP estimates using both quarterly and monthly

variables. Another promising direction is to develop time-varying parameter MARs. In

a VAR setting, Chan (2023b) has found evidence that the VAR coefficients in some, but

not all, equations are time-varying. The binary indicator approach in Chan (2023b) can

be adopted to model the time-varying MAR coefficients. Alternatively, both the dy-

namic shrinkage approach of Koop and Korobilis (2018) and the dynamic shrinkage with

sparsification approach of Huber, Koop, and Onorante (2019) are also promising.

While our application focuses on modeling regional macroeconomic variables, the pro-

posed modeling framework is also well suited for high-dimensional dynamic economic

networks, such as financial network or international trade network. For instance, bilat-

eral import/export volumes between countries can be naturally represented as a matrix

(e.g., the (i, j) element of Yt is the export volume from country i to country j at time

t). One complication in such applications is that the diagonal elements of the matrix

are missing. In a recent working paper, Chen, Chen, Bolivar, and Chen (2024) use a

matrix factor model to study the the pattern and evolution of international trade flow

among 24 countries and regions, and they replace the diagonal missing elements with

zeros. It would be interesting to investigate the effects of such an imputation scheme or

if alternative methods would be more appropriate (e.g., replacing the diagonal elements

with GDP values).
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Appendix A: Estimation Details

In this appendix we provide estimation details of the proposed Bayesian matrix autore-

gressions and their extensions. Specifically, Subsections A1-A3 give estimation details of

the baseline BMAR as specified by (2) and (3). Subsection A4 provides some technical

details for estimating a BMAR with the factor stochastic volatility.

A1: Sampling A and B

For sampling the coefficient matrices A and B—of dimensions np × n and kp × k,

respectively—from their full conditional distributions, we make use of some standard

results on the matrix normal distribution (see, e.g., Bauwens, Lubrano, and Richard,

1999, pp. 301-302). Specifically, an r × s random matrix Z is said to have a matrix

normal distributionMN (M,S⊗R) for covariance matrices R and S of dimensions r× r
and s× s, respectively, if and only if vec(Z) ∼ N (vec(M),S⊗R). Naturally, a bilinear

transformation of a matrix normal random matrix followed by a translation is also a

matrix normal random matrix. More precisely, suppose Z ∼ MN (M,S ⊗ R) and let

V = CZD + E. Then, V ∼MN (CMD + E, (D′SD)⊗ (CRC′)).

Now, we can sample vec(A) ∼ N (vec(Â),Σr ⊗K−1A ) as follows. Let CKA
and CΣr be

the lower Cholesky factors of KA and Σr, respectively. We claim that if we construct

A = Â + C−1
′

KA
ZC′Σr

,

where Z is an np×n matrix of iid N (0, 1) random variables, then vec(A) has the desired

distribution. To show that, since Z ∼MN (0, In⊗Inp), using the previous result with C =

C−1
′

KA
, D = C′Σr

and E = Â, we have A ∼MN (Â,Σr⊗K−1A ) and therefore, by definition,

vec(A) ∼ N (vec(Â),Σr ⊗ K−1A ). Finally, we note that in the above construction, one

can efficiently compute C−1
′

KA
Z by solving the linear system C′KA

X = Z for X without

explicitly obtaining the inverse C−1
′

KA
.

Next, we outline the sampling of vec(B) ∼ N (vec(B̂),Σc⊗K−1B ) with the normalization

restrictions that the (1, 1) elements of B1, . . . ,Bp are all one. To that end, we first

represent the normalization restrictions as a system of p linear restrictions: M vec(B) =
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b0, where M = (mi,j) is a p × k2p selection matrix with mi,(i−1)k+1 = 1 for i = 1, . . . , p,

and b0 is a p × 1 vector of ones. Then, we can apply Algorithm 2.6 in Rue and Held

(2005) or Algorithm 2 in Cong, Chen, and Zhou (2017) to efficiently sample vec(B) ∼
N (vec(B̂),Σc⊗K−1B ) so that M vec(B) = b0. In particular, one can first sample vec(Bu)

from the unconstrained conditional posterior distribution using the algorithm discussed

earlier, and construct

vec(B) = vec(Bu) +
(
Σc ⊗K−1B

)
M′ (M (

Σc ⊗K−1B

)
M′)−1 (b0 −M vec(Bu)).

Then, vec(B) has the distribution N (vec(B̂),Σc ⊗K−1B ) such that M vec(B) = b0. We

summarize the algorithm in Algorithm 1.

Algorithm 1 Sampling N (vec(B̂),Σc ⊗K−1B ) such that M vec(B) = b0.

1. Sample Bu = B̂ + C−1
′

KB
ZC′Σc

, where Z is a kp × k matrix of N (0, 1) random
variables.

2. Compute C = CΣ−1
c
⊗CKB

, where CΣ−1
c

is the lower Cholesky factor of Σ−1c .

3. Solve CC′U = M′ for U

4. Solve MUV = U′ for V.

5. Return vec(B) = vec(Bu) + V′(b0 −M vec(Bu)).

A2: Sampling κA and κB

Next, we discuss the sampling steps of drawing the hyperparameters κA and κB. First,

note that κA only appears in two terms: its gamma prior κA ∼ G(cA,1, cA,2) and VA, the

prior covariance matrix of A, which is an np×np diagonal matrix with the i-th diagonal

element vA,i,i = κACA,i for some constant CA,i. Then, we can express the conditional
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distribution of κA as

p(κA |A,Σr) ∝ κ
cA,1−1
A e−cA,2κA × |VA|−

n
2 e−

1
2
tr(Σ−1

r (A−A0)′V
−1
A (A−A0))

∝ κ
cA,1−n

2p
2
−1

A e−cA,2κAe−
1
2
tr(V−1

A (A−A0)Σ
−1
r (A−A0)′)

∝ κ
cA,1−n

2p
2
−1

A e−
1
2(2cA,2κA+κ−1

A

∑np
i=1QA,i/CA,i),

where QA,i is the i-th diagonal element of QA = (A−A0)Σ
−1
r (A−A0)

′. Note that this

is the kernel of the generalized inverse Gaussian distribution

GIG

(
cA,1 −

n2p

2
, 2cA,2,

np∑
i=1

QA,i/CA,i

)
.

Draws from the generalized inverse Gaussian distribution can be obtained using the al-

gorithm in Devroye (2014).

Similarly, κB only appears in its gamma prior κB ∼ G(cB,1, cB,2) and VB, which is a

kp × kp diagonal matrix where the i-th diagonal element is vB,i,i = κBCB,i for some

constant CB,i. It can be shown that (κB |B,Σc) has the generalized inverse Gaussian

distribution:

GIG

(
cB,1 −

k2p

2
, 2cB,2,

kp∑
i=1

QB,i/CB,i

)
,

where QB,i is the i-th diagonal element of QB = (B−B0)Σ
−1
c (B−B0)

′.

A3: Sampling Other Parameters

We now consider a few specific examples of ω and discuss how one can modify the

posterior sampler outlined in the main text to handle each case.

Example 1 Student’s t errors

As discussed in Section 2 of the main text, the case of t distributed errors is nested

within the proposed framework: the latent variables ω = (ω1, . . . , ωT )′ are distributed

independently as (ωt | ν) ∼ IG(ν/2, ν/2).

Posterior draws can be obtained by sequentially sampling from: 1) p(A,Σr |Y,B,Σc,κ,ω);
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2) p(B,Σc |Y,A,Σr,κ,ω); 3) p(κ |Y,A,B,Σr,Σc,ω); 4) p(ω |Y,A,B,Σr,Σc,κ, ν);

and 5) p(ν |Y,A,B,Σr,Σc,κ,ω). Steps 1-2 can be implemented exactly as described

in Section 3 of the main text and Step 3 as outlined in Section A2. For Step 4, let

s2t = tr
(
Σ−1c E′tΣ

−1
r Et

)
, where Et can be computed given Yt,A and B using (2). Then,

the conditional distribution of ω can be expressed as:

p(ω |Y,A,B,Σr,Σc,κ, ν) =
T∏
t=1

p(ωt |Y,A,B,Σr,Σc,κ, ν)

∝
T∏
t=1

ω
−( ν

2
+1)

t e
− ν

2ωt × ω−
nk
2

t e
− 1

2ωt
s2t .

That is, each ωt is conditionally independent given the data and other parameters, and

has an inverse-gamma distribution: (ωt |Y,A,B,Σr,Σc, ν) ∼ IG((nk+ν)/2, (s2t +ν)/2).

Lastly, ν can be sampled by an independence-chain Metropolis-Hastings step with the

proposal distribution N (ν̂, K−1ν ), where ν̂ is the mode of log p(ν |Y,A,B,Σr,Σc,ω) and

Kν is the negative Hessian evaluated at the mode. For implementation details of this

step, see Chan and Hsiao (2014).

Example 2 Outlier detection

The proposed framework can also be used to incorporate the approach in Stock and

Watson (2016) and Carriero, Clark, Marcellino, and Mertens (2022) to handle potential

outliers. To that end, let ωt = o2t , where ot follows a mixture distribution that distin-

guishes between regular observations with ot = 1 and outliers for which ot > 2. More

specifically, ot equals 1 with probability 1−po; ot follows a uniform distribution on (2, 20)

with probability po. The outlier probability po is assumed to have a beta prior B(a0, b0),

where the hyperparameters a0 and b0 are calibrated so that the mean outlier frequency

is once every 4 years in quarterly data.

Posterior draws can then be obtained by sequentially sampling from: 1) p(A,Σr |Y,B,Σc,κ,ω);

2) p(B,Σc |Y,A,Σr,κ,ω); 3) p(κ |Y,A,B,Σr,Σc,ω, po); 4) p(ω |Y,A,B,Σr,Σc,κ, po);

and 5) p(po |Y,A,B,Σr,Σc,κ,ω). Steps 1-3 remain the same as before. To implement

Step 4, we discretize the distribution using a fine grid as proposed in Stock and Watson

(2016). Consequently, each ot follows a discrete distribution that can be easily sampled
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from. In particular, we have

p(ω |Y,A,B,Σr,Σc,κ, po) =
T∏
t=1

p(ot |Y,A,B,Σr,Σc,κ, po) ∝
T∏
t=1

p(ot | po)o−nkt e
− s2t

2o2t ,

where p(ot | po) is the prior for ot and s2t = tr
(
Σ−1c E′tΣ

−1
r Et

)
. Hence, we can sample each

ωt from its discrete distribution. Lastly, Step 5 can be implemented easily as po follows

the following beta distribution

(po |Y,A,B,Σr,Σc,κ,ω) ∼ B(a0 + no, b0 + T − no),

where no =
∑T

t=1 1(ot > 1) is the number of outliers.

Example 3 The common stochastic volatility

Next, we incorporate the common stochastic volatility introduced in Carriero, Clark, and

Marcellino (2016) to our matrix autoregression with ωt = eht , where ht follows an AR(1)

process: ht = φht−1+εht , where εht ∼ N (0, σ2
h). We assume independent truncated normal

and inverse-gamma priors for φ and σ2
h: φ ∼ N (φ0, Vφ)1(|φ| < 1) and σ2

h ∼ IG(νh, Sh).

Then, posterior draws can be obtained by sampling from: 1) p(A,Σr |Y,B,Σc,κ,ω); 2)

p(B,Σc |Y,A,Σr,κ,ω); 3) p(κ |Y,A,B,Σr,Σc,ω, φ, σ
2
h); 4) p(ω |Y,A,B,Σr,Σc,κ, φ, σ

2
h);

5) p(φ |Y,A,B,Σr,Σc,κ,ω, σ
2
h); and 6) p(σ2

h |Y,A,B,Σr,Σc,κ,ω, φ).

Steps 1-2 again can be implemented exactly as described in Section 3 of the main text

and Step 3 as outlined in Section A2. For Step 4, we follow the approach outlined in

Chan (2017). Specifically, note that

p(ω |Y,A,B,Σr,Σc,κ, φ, σ
2
h) = p(h |Y,A,B,Σr,Σc,κ, φ, σ

2
h)

∝ p(h |φ, σ2
h)

T∏
t=1

p(Yt |A,B,Σr,Σc, ht),

where p(h |φ, σ2
h) is a Gaussian density implied by the state equation,

log p(Yt |A,B,Σr,Σc, ht) = ct −
nk

2
ht −

1

2
e−hts2t

and ct is a normalizing constant that does not dependent on ht and s2t = tr
(
Σ−1c E′tΣ

−1
r Et

)
.
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It is easy to check that

∂

∂ht
log p(Yt |A,B,Σr,Σc, ht) = −nk

2
+

1

2
e−hts2t ,

∂2

∂h2t
log p(Yt |A,B,Σr,Σc, ht) = −1

2
e−hts2t .

Then, one can implement a Newton-Raphson algorithm to obtain the mode of the log

density log p(h |Y,A,B,Σr,Σc, φ, σ
2
h) and the negative Hessian evaluated at the mode,

which are denoted as ĥ and Kh, respectively. UsingN (ĥ,K−1h ) as a proposal distribution,

one can sample h directly via an acceptance-rejection Metropolis-Hastings step, where the

candidate is obtained using the precision-based sampling approach in Chan and Jeliazkov

(2009). Building upon earlier work on Gaussian Markov random fields (Rue, 2001) and

nonparametric regression (Chib and Jeliazkov, 2006; Chib, Greenberg, and Jeliazkov,

2009), this precision-based sampling approach is generally more efficient than Kalman-

filter based methods. Alternatively, one can also sample h by modifying the auxiliary

mixture sampler of Kim, Shephard, and Chib (1998), as implemented in Carriero, Clark,

and Marcellino (2016). Finally, Steps 4 and 5 are standard and can be easily implemented

(see., e.g., Chan and Hsiao, 2014).

A4: Estimating a BMAR with the Factor Stochastic Volatility

This subsection provides details on estimating a BMAR in which the error covariance

matrix of vec(Et) is specified using a factor stochastic volatility model. More specifically,

we augment the model with r latent factors ft = (f1,t, . . . , fr,t)
′ and write the errors as

vec(Et) = Lft + ut, (10)

where L is the nk × r factor loadings matrix. The latent factors ft and ut are assumed

to be independent at all leads and lags and jointly Gaussian:(
ut

ft

)
∼ N

((
0nk

0r

)
,

(
Dt 0

0 Gt

))
,

where Dt = diag(eh1,t , . . . , ehnk,t) and Gt = diag(ehnk+1,t , . . . , ehnk+r,t).
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We first discuss the sampling of A = (A1, . . . ,Ap)
′ and B = (B1, . . . ,Bp)

′. Let Et =

vec−1n,k(Lft) denote the n× k matrix constructed by reshaping the nk × 1 vector Lft such

that vec(Et) = Lft and let Ut = vec−1n,k(ut). Then, (10) can be written as

Et = Et + Ut.

Letting Yt = Yt − Et and substituting Et into (2), we have

Yt = A′XtB + Ut, (11)

where vec(Ut) = ut ∼ N (0nk,Dt). Given a Gaussian prior on vec(A), one can in principle

sample the entire matrix A in one step; similarly for B. But when n or k is large, it

is much faster to sample each column separately. In what follows, we demonstrate both

approaches. For our application, n = 6 and k = 50, and hence we sample A in one block

and draw each column of B separately.

To sample A, we vectorize the transpose of (11) to obtain

vec(Y′t) = ZB,ta + vec(U′t),

where ZB,t = In⊗(XtB)′, a = vec(A) and vec(U′t) ∼ N (0nk, D̃t). Here D̃t = Kn,kDtK
′
n,k

and Kn,k is the commutation matrix such that Kn,kvec(Ut) = vec(U′t). Consider the

Gaussian prior on a:

(a |κa) ∼ N (a0,Va),

where κa is a prior hyperparameter that controls the overall shrinkage strength and Va

is an n2p × n2p prior covariance matrix that depends on κa. Let h and f denote the

collections of log-volatilities and latent factors, respectively. Then, the full conditional

posterior distribution of a is

(a |Y,B,L,h, f) ∼ N (â,K−1a ),

where

Ka = V−1a +
T∑
t=1

Z′B,tD̃
−1
t ZB,t, â = K−1a

(
V−1a a0 +

T∑
t=1

Z′B,tD̃
−1
t vec(Y′t)

)
.
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The computational complexity of sampling a in one block is O(n6). This is computational

feasible when n is relatively small.

Next, we sample each column of B at a time. To that end, let bi, yi,t and ui,t denote

the i-th column of B, Yt and Ut, respectively. Then, the i-th column of (11) can be

represented as

yi,t = ZA,tbi + ui,t,

where ZA,t = A′Xt and ui,t ∼ N (0n,Di,t) with Di,t = diag(eh(i−1)n+1,t , . . . , ehin,t). If we

assume a Gaussian prior on bi:

(bi |κb) ∼ N (b0,i,Vbi),

where Vbi is a kp× kp prior covariance matrix that depends on the hyperparameter κb,

then the full conditional posterior distribution of bi is

(bi |Y,A,L,h, f) ∼ N (b̂i,K
−1
bi

),

where

Kbi = V−1bi
+

T∑
t=1

Z′A,tD
−1
i,t ZA,t, b̂i = V−1bi

b0,i +
T∑
t=1

Z′A,tD
−1
i,t yi,t.

The computational complexity of sampling each bi is O(k3), iterated over i = 1, . . . , k,

with total computational complexity of the order O(k4). Hence, sampling each bi sepa-

rately reduces the computational complexity by two orders of magnitude.

Standard algorithms can be applied to sample the factors, log-volatilities and the other

parameters. We refer the readers to Chan (2023a) for more details.
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Appendix B: Data

The US state-level data are sourced from the Federal Reserve Bank of St. Louis and

the Bureau of Labor Statistics. For each of the 50 states, 6 quarterly time-series from

2005Q1 to 2023Q1 are obtained. Table 4 lists the variables and describes how they are

transformed.

Table 4: Description of state-level variables in the empirical application.

Variable Source Tcode Seasonal Adjustment
Initial unemployment insurance claims FRED 3 NSA∗

Continued unemployment insurance claims FRED 3 NSA∗

Total nonfarm employment BLS 2 SA
Unemployment rate FRED 1 SA
New housing permits FRED 3 SA
Real home price index FRED 2 NSA∗

Note: Tcode describes the transformation of the variable, where 1 indicates no transformation, 2
denotes year-over-year growth rate, 3 stands for taking natural logarithm. NSA∗ indicates that the
quarterly series has been seasonally adjusted using the X13-ARIMA procedure, and SA indicates that
the series is available in seasonally-adjusted form.
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