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Abstract

We introduce a class of large Bayesian vector autoregressions (BVARs) that allows

for non-Gaussian, heteroscedastic and serially dependent innovations. To make

estimation computationally tractable, we exploit a certain Kronecker structure of

the likelihood implied by this class of models. We propose a unified approach

for estimating these models using Markov chain Monte Carlo (MCMC) methods.

In an application that involves 20 macroeconomic variables, we find that these

BVARs with more flexible covariance structures outperform the standard variant

with independent, homoscedastic Gaussian innovations in both in-sample model-fit

and out-of-sample forecast performance.

Keywords: stochastic volatility, non-Gaussian, ARMA, forecasting

JEL classification codes: C11, C51, C53

∗Financial support by the Australian Research Council via a Discovery Early Career Researcher
Award (DE150100795) is gratefully acknowledged. I would also like to thank seminar and conference
participants at University of Technology Sydney, Deakin University, University of Sydney, Purdue Uni-
versity, Macquarie University, Melbourne Bayesian Econometrics Workshop, the 10th Rimini Bayesian
Econometrics Workshop, the 10th International Conference on Computational and Financial Economet-
rics, and the 4th Meeting of the Sydney Econometrics Research Group. In particular, this paper has
benefited from helpful comments from Gary Koop, Todd Clark and James Morley.



1 Introduction

Vector autoregressions (VARs) are widely used for macroeconomic forecasting and struc-

tural analysis. VARs tend to have a lot of parameters, and Bayesian methods that

formally incorporate prior information to provide shrinkage are often found to greatly

improve forecast performance (e.g., Doan, Litterman, and Sims, 1984; Litterman, 1986).

Until recently, most empirical work had considered only small systems that rarely include

more than ten dependent variables. This has changed since the seminal work of Ban-

bura, Giannone, and Reichlin (2010), who find that large Bayesian VARs (BVARs) with

more than 20 dependent variables forecast better than small VARs. This has generated

a rapidly expanding literature on using large BVARs for forecasting; recent papers in-

clude Carriero, Kapetanios, and Marcellino (2009), Koop (2013) and Carriero, Clark, and

Marcellino (2015a). Large BVARs thus provide an alternative to factor models that are

traditionally used to handle large datasets (e.g., Stock and Watson, 2002; Forni, Hallin,

Lippi, and Reichlin, 2003).

There is a wide variety of extensions of small VARs that take into account important fea-

tures of macroeconomic data, such as time-varying volatility (Cogley and Sargent, 2005;

Primiceri, 2005). Some recent papers have considered similar extensions for large BVARs.

For example, Koop and Korobilis (2013) propose an approximate method for forecasting

using large time-varying parameter BVARs. Chan, Eisenstat, and Koop (2016) estimate

a Bayesian VARMA containing 12 variables. Carriero, Clark, and Marcellino (2016) pro-

pose a fast algorithm to estimate a large BVAR with a common stochastic volatility. In

a follow-up paper, Carriero, Clark, and Marcellino (2015b) estimate a 125-variable VAR

with a standard stochastic volatility specification. More recently, Koop, Korobilis, and

Pettenuzzo (2017) consider compressed VARs based on the random projection method

and Ahelegbey, Billio, and Casarin (2016a,b) develop Bayesian graphical models for large

VARs.

We contribute to this emerging literature by proposing a class of flexible large BVARs

with non-Gaussian, heteroscedastic and serially dependent innovations. These include

models with heavy-tailed innovations, autoregressive moving average innovations, and the

common stochastic volatility model of Carriero et al. (2016). The proposed framework

also extends the univariate moving average stochastic volatility models of Chan (2013) to

a multivariate setting. To estimate these diverse models under a unified framework, we

build upon the computational approach in Carriero et al. (2016) that exploits a certain

Kronecker structure of the likelihood implied by their model to speed up the sampling
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of the large dimensional VAR coefficients. As they emphasize in their paper, without

this Kronecker structure it is very computationally intensive to estimate BVARs above

a handful of variables. We adopt their computational shortcut to our setting and show

how it can be applied to a much wider class of models. We further improve upon their

algorithm by vectoring the operations and using fast band matrix routines.

In our application we consider two datasets, each consists of 20 quarterly variables—they

include a variety of standard macroeconomic and financial variables such as GDP, in-

flation, interest rates, and money supply. To illustrate the usefulness of the proposed

framework, we fit this dataset using BVARs with various flexible error covariance struc-

tures. In particular, we consider three types of innovations: t innovations, innovations

with a common stochastic volatility and moving average innovations. The full sample

estimation results show that all these features are useful in improving the performance

of the standard BVAR. The most important gain is to allow for a common stochastic

volatility, followed by using t innovations and adding a moving average component. In

addition, one can further improve the performance of the common stochastic volatility

model by allowing for t or MA innovations. In a recursive out-of-sample forecasting ex-

ercise using a real-time dataset, we show that these more flexible BVARs also provide

better point and density forecasts.

The rest of this paper is organized as follows. Section 2 first introduces a general frame-

work for modeling the error covariance structure that lends itself to fast computation.

We then discuss in Section 3 a unified approach to estimate these more flexible BVARs

using Markov chain Monte Carlo (MCMC) methods. Section 4 considers an application

that involves 20 macroeconomic variables. We first present full sample estimation re-

sults and results from a model comparison exercise using the marginal likelihood. It is

followed by a recursive out-of-sample forecasting exercise that assesses the performance

of the proposed BVARs. Lastly, Section 5 concludes and briefly discusses some future

research directions.

2 Covariance with a General Kronecker Structure

In this section we introduce a general framework for modeling the covariance structure

of a large BVAR. Specifically, we consider a class of covariance matrices with a certain

Kronecker structure that would allow us to model non-Gaussian, heteroscedastic and

serially dependent innovations.
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To set the stage, let yt be an n× 1 vector of variables that is observed over the periods

t = 1, . . . , T . Consider the following generic VAR(p) model:

yt = a0 +A1yt−1 + · · ·+Apyt−p + ut,

where a0 is an n×1 vector of intercepts and A1, . . . ,Ap are all n×n coefficient matrices.

Let x′

t = (1,y′

t−1, . . . ,y
′

t−p) be a 1 × k vector of an intercept and lags with k = 1 + np.

Then, stacking the observations over t = 1, . . . , T , we have

Y = XA+U, (1)

where A = (a0,A1, . . . ,Ap)
′ is k × n, and the matrices Y, X and U are respectively of

dimensions T × n, T × k and T × n. In a standard VAR the innovations u1, . . . ,uT are

assumed to be independent and identically distributed (iid) as N (0,Σ). More succinctly,

we write vec(U) ∼ N (0,Σ⊗IT ), where Σ is an n×n covariance matrix, IT is the identity

matrix of dimension T , ⊗ is the Kronecker product and the vec(·) operator converts the

matrix into a column vector by stacking the columns.

Here we consider the following more general covariance structure:

vec(U) ∼ N (0,Σ⊗Ω), (2)

where Ω is a T×T covariance matrix. Intuitively, we separately model the cross-sectional

and serial covariance structures of Y, which are governed by Σ and Ω respectively. By

choosing a suitable serial covariance structure Ω, the model in (1)–(2) includes a wide

variety of flexible specifications. Below we list a few examples.

1. Non-Gaussian innovations. Since many distributions can be written as a scale mix-

ture of Gaussian distributions, the proposed framework accommodates various commonly-

used non-Gaussian distributions.

To see this, let Ω = diag(λ1, . . . , λT ). If each λt follows independently an inverse-gamma

distribution (λt | ν) ∼ IG(ν/2, ν/2), then marginally ut has a multivariate t distribution

with mean vector 0, scale matrix Σ and degree of freedom parameter ν (see, e.g., Geweke,

1993). Empirical work that uses VARs with t innovations include Clark and Ravazzolo

(2015), Cross and Poon (2016) and Chiu, Mumtaz, and Pinter (2017).

If each λt has an independent exponential distribution with mean α, then marginally ut

has a multivariate Laplace distribution with mean vector 0 and covariance matrix αΣ
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(Eltoft, Kim, and Lee, 2006a). Other scale mixtures of Gaussian distributions can be

defined similarly. For additional examples, see, e.g., Eltoft, Kim, and Lee (2006b).

2. Heteroscedastic innovations. Time-varying volatility can be modeled by specifying

a suitable diagonal Ω. For example, the BVAR with a common drifting volatility consid-

ered in Carriero et al. (2016) is nested within the proposed framework. Specifically, they

consider ut ∼ N (0, ehtΣ), where the log volatility follows a stationary AR(1) process:

ht = ρht−1 + εht (3)

with εht ∼ N (0, σ2
h) and |ρ| < 1.1 This model falls within the proposed framework with

Ω = diag(eh1 , . . . , ehT ). Empirical applications that use this common drifting volatility

include Mumtaz (2016) and Mumtaz and Theodoridis (2017).

3. Serially dependent innovations. Innovations with ARMA(p, q) structure can be

easily handled. For example, suppose ut follows the following MA(2) process:

ut = εt + ψ1εt−1 + ψ2εt−2,

where εt ∼ N (0,Σ), ψ1 and ψ2 satisfy the invertibility conditions. This is a special case

of the proposed framework with

Ω =




ω0 ω1 ω2 0 · · · 0

ω1 ω0 ω1
. . . . . .

...

ω2 ω1 ω0
. . . . . . 0

0
. . . . . . . . . . . . ω2

...
. . . . . . . . . . . . ω1

0 · · · 0 ω2 ω1 ω0




,

where ω0 = 1 + ψ2
1 + ψ2

2, ω1 = ψ1(1 + ψ2) and ω2 = ψ2.

4. Heteroscedastic moving average innovations. More elaborate covariance struc-

tures can be constructed by combining different elements in the previous examples. For

1Following Carriero et al. (2016), the unconditional mean of ht is assumed to be zero for identification
purposes. In fact, the marginal distribution of ht is N (0, σ2

h
/(1 − ρ2)). This prior implies that the

standard deviation exp(ht/2) is log-normally distributed with mean exp(σ2

h
/(8(1 − ρ2))). For example,

if ρ = 0.98 and σ2

h
= 0.1, the prior mean of exp(ht/2) is about 1.37.
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instance, suppose ut follows an MA(1) stochastic volatility process of the form:

ut = εt + ψ1εt−1,

where εt ∼ N (0, ehtΣ) and ht has an AR(1) process as in (3). This is a multivariate

extension of the univariate moving average stochastic volatility models proposed in Chan

(2013). This model is a special case of the general framework with

Ω =




(1 + ψ2
1)e

h1 ψ1e
h1 0 · · · 0

ψ1e
h1 ψ2

1e
h1 + eh2

. . . . . .
...

0
. . . . . . . . . 0

...
. . . . . . ψ2

1e
hT−2 + ehT−1 ψ1e

hT−1

0 · · · 0 ψ1e
hT−1 ψ2

1e
hT−1 + ehT




.

Empirical work that uses this moving average stochastic volatility framework includes

Nonejad (2015) and Dimitrakopoulos and Kolossiatis (2017).2

While the modeling framework in (1)–(2) is flexible and includes various recently pro-

posed models as special cases, it is important to understand its limitations. One crucial

assumption embedded in (2) is that each element of the innovation ut must have the

same univariate time series model (though their variances can be different). That means

our framework cannot accommodate, for example, a general MA(1) process of the form

ut = εt +Ψ1εt−1,

where Ψ1 is an n×n matrix of coefficients. This is because in this case the covariance ma-

trix of vec(U) does not have a Kronecker structure. Consequently, some of the analytical

results we derive next would not hold.

3 Bayesian Estimation

In this section we discuss the estimation of the proposed BVARs with the covariance

structure in (2) using MCMC methods. We first introduce a fast and simple way to

jointly sample both the VAR coefficients A and the cross-sectional covariance matrix Σ

for an arbitrary serial covariance matrix Ω. In Online Appendix A we take up various

2In Online Appendix A we will discuss how one can construct Ω efficiently from elementary matrices.
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examples of Ω and provide estimation details for tackling each case.

First, note that the likelihood implied by the model in (1)–(2) is given by

p(Y |A,Σ,Ω) = (2π)−
Tn
2 |Σ|−

T
2 |Ω|−

n
2 e−

1

2
tr(Σ−1(Y−XA)′Ω−1(Y−XA)), (4)

where tr(·) is the trace operator. Consider a prior of the form p(A,Σ,Ω) = p(A,Σ)p(Ω),

i.e., the parameter blocks (A,Σ) and Ω are a priori independent. For (A,Σ), we adopt

a standard normal-inverse-Wishart prior (see, e.g., Kadiyala and Karlsson, 1997):

Σ ∼ IW(S0, ν0), (vec(A) |Σ) ∼ N (vec(A0),Σ⊗VA)

with joint density function

p(A,Σ) ∝ |Σ|−
ν0+n+k

2 e−
1

2
tr(Σ−1

S0)e−
1

2
tr(Σ−1(A−A0)′V

−1

A
(A−A0)). (5)

The prior covariance matrix VA is chosen to induce shrinkage. The exact form is given

in Section 4. Here we leave it unspecified.

Given the natural conjugate prior for (A,Σ), posterior draws can be obtained by se-

quentially sampling from: 1) p(A,Σ |Y,Ω); and 2) p(Ω |Y,A,Σ). Depending on the

covariance structure Ω, additional blocks might be needed to sample some extra hierar-

chical parameters. These steps are typically easy to implement as they amount to fitting

a univariate time series model. Various examples are given in Online Appendix A.

Here we describe how one can implement Step 1 of sampling from the high-dimensional

density p(A,Σ |Y,Ω) efficiently. It is well known that when Ω = IT , (A,Σ |Y) has a

normal-inverse-Wishart distribution—in this case analytical results are available and no

simulation is necessary. It turns out that the same derivations go through even with an

arbitrary covariance matrix Ω. To see this, it follows from (4) and (5) that

p(A,Σ |Y,Ω) ∝|Σ|−
ν0+n+k+T

2 e−
1

2
tr(Σ−1

S0)e−
1

2
tr(Σ−1((A−A0)′V

−1

A
(A−A0)+(Y−XA)′Ω−1(Y−XA)))

=|Σ|−
ν0+n+k+T

2 e−
1

2
tr(Σ−1

S0)e−
1

2
tr(Σ−1(A′

0
V

−1

A
A0+Y′Ω

−1
Y−Â′KAÂ))

× e−
1

2
tr(Σ−1(A−Â)′KA(A−Â)),

where KA = V−1
A

+X′Ω−1X and Â = K−1
A
(V−1

A
A0 +X′Ω−1Y), and we have used the
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fact that

(A−A0)
′V−1

A
(A−A0) + (Y −XA)′Ω−1(Y −XA)

=(A− Â)′KA(A− Â) +A′

0V
−1
A
A0 +Y′Ω−1Y − Â′KAÂ.

In other words, (A,Σ |Y,Ω) has a normal-inverse-Wishart distribution with parameters

ν0 + T , Ŝ, Â and K−1
A
, where

Ŝ = S0 +A′

0V
−1
A
A0 +Y′Ω−1Y − Â′KAÂ.

Hence, we can sample (A,Σ |Y,Ω) in two steps. First, we sample Σ marginally from

(Σ |Y,Ω) ∼ IW(Ŝ, ν0 + T ). Then, given the Σ drawn we sample

(vec(A) |Y,Σ,Ω) ∼ N (vec(Â),Σ⊗K−1
A
).

Since the covariance matrix Σ⊗K−1
A

is of dimension nk = n(np+1), sampling from this

high-dimensional density using conventional methods would involve O(n6p3) operations.

This can be very time consuming when n is large. We adopt a computational shortcut

considered in Carriero et al. (2016) to our setting, which is based on an efficient sampling

algorithm to draw from the matrix-variate normal distribution.3 More specifically, they

exploit the Kronecker structure Σ ⊗ K−1
A

to speed up computation. Consequently, the

complexity of the problem can be drastically reduced to O(n3p3) operations. We further

improve upon this approach by avoiding the computation of the inverse of the k × k

matrix KA.

To that end, we introduce the following notations: given a lower (upper) triangular

non-singular matrix B and a conformable vector c, let B\c denote the unique solu-

tion to the triangular system Bz = c obtained by forward (backward) substitution, i.e.,

B\c = B−1c.4 The number of operations needed is of the same order as computing the

multiplication Bc. Now, we first obtain the Cholesky decomposition CKA
of KA such

that CKA
C′

KA
= KA. Then compute

C′

KA
\(CKA

\(V−1
A
A0 +X′Ω−1Y))

3This algorithm is well-known, and is described in the textbook by Bauwens, Lubrano, and Richard
(1999, p.320). More recently, this algorithm is used to estimate dynamic matrix-variate graphical models
in Carvalho and West (2007) and Wang, Reeson, and Carvalho (2011).

4Forward and backward substitutions are implemented in standard packages such as Matlab, Gauss

and R. In Matlab, for example, it is done by mldivide(B,c) or simply B\c.
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by forward followed by backward substitution. By construction,

C−1′

KA
(C−1

KA
(V−1

A
A0 +X′Ω−1Y)) = (C′

KA
CKA

)−1(V−1
A
A0 +X′Ω−1Y) = Â.

Next, let CΣ be the Cholesky decomposition of Σ. Then, compute

W1 = Â+ (C′

KA
\Z)C′

Σ
,

where Z is a k × n matrix of independent N (0, 1) random variables. In the Online

Appendix we show that vec(W1) ∼ N (vec(Â),Σ⊗K−1
A
) as desired.

In what follows, we comment on a few computational details. First, one need not compute

the T×T inverseΩ−1 to obtainKA, Â and Ŝ. For example, one can calculateX′Ω−1X by

X̃′X̃, where X̃ = CΩ\X and CΩ is the Cholesky factor of Ω such that CΩC
′

Ω
= Ω. This

approach would work fine for an arbitraryΩ with dimension, say, less than 1000—this case

includes most quarterly and monthly macroeconomic datasets. For a larger T , computing

the Cholesky factor of Ω and performing the forward and backward substitution is likely

to be time-consuming.

Fortunately, for many interesting cases, Ω (or Ω−1) are band matrices—i.e., sparse matri-

ces whose nonzero elements are confined to a diagonal band. For example, Ω is diagonal

for both t innovations and the case of a common stochastic volatility. Moreover, Ω is

banded for MA innovations and Ω−1 is banded for AR innovations. We discuss these

examples in more detail in Online Appendix A. This special structure of Ω (or Ω−1) can

be exploited to speed up computation. For instance, obtaining the Cholesky factor of a

band T ×T matrix with fixed bandwidth involves only O(T ) operations (e.g., Golub and

van Loan, 1983, p.156) as opposed to O(T 3) for a full matrix of the same size.5 We refer

the readers to Chan (2013) for a more detailed discussion on computation involving band

matrices.

4 Application

To illustrate the usefulness of the proposed BVARs with a variety of flexible covariance

structures, we consider an application using two datasets, each of which consists of 20

5Similar computational savings can be generated for operations such as multiplication, forward and
backward substitution by using band matrix routines, which are implemented in standard packages such
as Matlab, Gauss and R.
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variables at quarterly frequency. We first present full sample estimation results and

show that the proposed extensions of standard BVARs fit the data substantially better

(even after taking into account the added model complexity). Then, in a recursive out-of-

sample forecasting exercise we compare the forecast performance of the BVARs at various

forecast horizons.

4.1 Competing Models

We consider a variety of BVARs that fall within the proposed framework. All the models

have the same conditional mean as specified in (1)—they only differ in the distributional

assumptions on the innovations U. In particular, we consider three types of innovations:

non-Gaussian, heteroscedastic and serially dependent innovations. Following standard

practice we fix the lag length to p = 4.

For non-Gaussian innovations, we choose the multivariate t distribution as it is a popular

specification that can better handle outliers than the Gaussian distribution. As discussed

in Cúrdia et al. (2014), models that can generate rare but very large shocks might be

useful to understand an event like the Great Recession. Specifically, the innovations

ut are assumed to be independent N (0, λtΣ) distributed with λt ∼ IG(ν/2, ν/2). For

heteroscedastic innovations, we consider the common stochastic volatility model in Car-

riero et al. (2016): ut ∼ N (0, ehtΣ), where the log volatility follows an AR(1) process:

ht = ρht−1+ ε
h
t . This specification allows the variances of all the innovations to be scaled

up by a common factor. Since the volatility of macroeconomic variables tends to move

together, this might be a reasonable approximation. Finally, for serially dependent in-

novations, we consider a simple MA(1) structure: ut = εt + ψεt−1, where εt ∼ N (0,Σ).

Allowing for MA(1) innovations could in principle handle misspecification better (e.g.,

omitted variables). Empirically it could also allow more shrinkage of the VAR coefficients

as illustrated in Section 4.4.

We also include different combinations of the three error covariance structures. More

specifically, we denote a standard BVAR with iid Gaussian innovations as simply BVAR.

BVARs with t innovations have a suffix -t. We use suffixes -CSV and -MA to denote

models with a common stochastic volatility and MA(1) innovations, respectively. For

example, BVAR-t-CSV represents a BVAR that has a common stochastic volatility and

t innovations: ut ∼ N (0, λte
htΣ), where λt ∼ IG(ν/2, ν/2) and ht follows an AR(1)

process. We summarize all the specifications in Table 1.
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Table 1: A list of competing models.

Model Description
BVAR standard BVAR with iid Gaussian innovations
BVAR-t BVAR with t innovations
BVAR-CSV BVAR with a common stochastic volatility
BVAR-MA BVAR with MA(1) Gaussian innovations
BVAR-t-CSV BVAR with a common SV and t innovations
BVAR-t-MA BVAR with MA(1) t innovations
BVAR-CSV-MA BVAR with a common SV and MA(1) Gaussian innovations
BVAR-t-CSV-MA BVAR with a common SV and MA(1) t innovations

4.2 Data and Priors

In our empirical application we use two datasets, each consists of 20 variables at quarterly

frequency. For the full sample estimation and model comparison results reported in

Section 4.4 and Section 4.5 respectively, we use a dataset that includes a variety of

standard macroeconomic and financial variables such as GDP, inflation, interest rates,

unemployment and money supply. It covers the quarters from 1959Q1 to 2013Q4 and

is sourced from the Federal Reserve Bank of St. Louis. These variables are commonly

used in applied work and are similar to the variables included in the medium-size VARs

in Banbura et al. (2010) and Koop (2013). A detailed description of the variables and

their transformations are provided in Online Appendix B. For the recursive forecasting

exercise in Section 4.6, a real-time dataset sourced from the Federal Reserve Bank of

Philadelphia is used. It covers a similar set of macroeconomic and financial variables,

and the sample period is from 1964Q1 to 2015Q4. A detailed description of the data is

also given in Online Appendix B.

For easy comparison, we choose exactly the same priors for the common parameters

across models. In particular, for all models we adopt the normal-inverse-Wishart prior

for (A,Σ): Σ ∼ IW(S0, ν0), and (vec(A) |Σ) ∼ N (vec(A0),Σ ⊗VA). We set A0 = 0,

and the covariance matrix VA is assumed to be diagonal with diagonal elements vA,ii =

κ1/(l
2ŝr) for a coefficient associated to lag l of variable r and vA,ii = κ2 for an intercept,

where ŝr is the sample variance of an AR(4) model for the variable r. Further we set

ν0 = n + 3, S0 = In, κ1 = 0.22 and κ2 = 102. These hyperparameters are similar to

those used in Carriero et al. (2016) and are standard in the literature. Intuitively, the

coefficient associated to a lag l variable is shrunk more heavily to zero as the lag length

increases, but intercepts are not shrunk to zero. For a more detailed discussion of this
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natural conjugate prior, see, e.g., Koop and Korobilis (2010) or Karlsson (2013).

For the MA coefficient ψ, we assume the truncated normal prior ψ ∼ N (ψ0, Vψ)1l(|ψ| < 1)

so that the MA process is invertible. We set ψ0 = 0 and Vψ = 1. The prior thus

centers around 0 and has support within the interval (−1, 1). Given the large prior

variance, it is also relatively noninformative. We assume independent priors for σ2
h and

ρ: σ2
h ∼ IG(νh0, Sh0) and ρ ∼ N (ρ0, Vρ)1l(|ρ| < 1), where we set νh0 = 5, Sh0 = 0.04,

ρ0 = 0.9 and Vρ = 0.22. These values imply that the prior mean of σ2
h is 0.12 and ρ is

centered at 0.9. Finally, we consider a uniform prior on (2, 100) for the degree of freedom

parameter ν, i.e., ν ∼ U(2, 100). In Online Appendix C, we provide estimation results

from a small Monte Carlo experiment using the most complex model BVAR-t-CSV-MA.

The estimates obtained from the proposed algorithms are generally close to the true

values.

4.3 Computation Efficiency

In this section we briefly discuss some computation issues and the scalability of the

proposed algorithms. In the context of large BVARs, the most time-consuming step

is the joint sampling of A and Σ. Using the Kronecker structure Σ ⊗ Ω—even with

arbitrary covariance matrices Σ and Ω—one can substantially speed up the computation.

In particular, instead of manipulating covariance matrices of dimension nk × nk with

k = np + 1, the dimension of the problem is reduced to k × k. For n = 100 and p = 4,

the latter involves computing Cholesky factors of 401×401 matrices—which can be done

fairly quickly—instead of 40100×40100 matrices. In other words, the proposed algorithms

can handle over n = 100 variables.

In the time dimension, if we leave Ω to be an arbitrary T × T covariance matrix, the

proposed algorithms can easily handle T < 1000 observations, which includes most quar-

terly and monthly datasets. For higher-frequency data with T > 1000, manipulating

arbitrary T ×T covariance matrix can be time-consuming. In those cases one would need

to impose more structure on Ω, such as an ARMA model for the time series structure.

Then, Ω or its inverse can be decomposed into band matrices. Since manipulating band

matrices involves only O(T ) operations, in this case there is essentially no limitation on

the dimension T .

To assess the efficiency of the proposed samplers, we compute the inefficiency factors of

the posterior draws, defined as 1 + 2
∑L

l=1 rl, where rl is the sample autocorrelation at
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lag length l and L is chosen to be large enough so that the autocorrelation tapers off. In

the ideal case where the posterior draws are independent, the corresponding inefficiency

factor is 1. In general, the inefficiency factor measures how many extra draws are needed

to give results equivalent to this ideal case. For example, an inefficiency factor of 50

indicates that roughly 5000 posterior draws are required to give the same information as

100 independent draws.

As an example, we report in Figure 1 the inefficiency factors corresponding to the posterior

draws of A, Σ, λ = (λ1, . . . , λT )
′ and h = (h1, . . . , hT )

′ under the BVAR-t-CSV model.

Note that there are nk inefficiency factors associated with A, n(n + 1)/2 values for

Σ, and T values for each λ and h. To present the information visually, boxplots are

reported, where the middle line of the box denotes the median, while the lower and

upper lines represent respectively the 25- and the 75-percentiles. The whiskers extend to

the maximum and minimum.
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Figure 1: Boxplots of the inefficiency factors corresponding to the posterior draws of A,
Σ (Sigma), h and λ (lambda) under the BVAR-t-CSV model.

For example, the boxplot associated with h indicates that more than 75% of the log

volatilities have inefficiency factors less than 10, and the maximum is less than 30. These

values are comparable to those obtained from a standard univariate stochastic volatility

model estimated by the auxiliary mixture sampler of Kim, Shepherd, and Chib (1998).

The inefficiency factors of the model parameters ν, ρ and σ2
h are 34, 11 and 46, respectively.

All in all, these results suggest that the proposed sampler is quite efficient in terms of

producing posterior draws that are not highly autocorrelated.

In what follows we document the computation times to fit the various models listed in
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Table 1. As a benchmark for comparison, we note that Carriero et al. (2016) estimate a

14-variable BVAR with 4 lags and a common stochastic volatility. They report that their

algorithm takes about 40 minutes to obtain 10000 posterior draws.6 For all our models

we have 20 variables and 4 lags. All the algorithms are implemented using Matlab on

a desktop with an Intel Core i7-870 @2.93 GHz processor. The results are reported in

Table 2.

As is evident from the results, the proposed approach is very fast. For example, obtaining

10000 posterior draws for the common stochastic volatility model takes only half a minute.

More complex models take only slightly over a minute. Hence, the proposed algorithms

are applicable to very high-dimensional BVARs.

Table 2: Time taken to obtain 10000 posterior draws for various BVARs with 20 variables
and 4 lags.

Model Time (minutes) Model Time (minutes)

BVAR 0.21 BVAR-t-CSV 0.68
BVAR-t 0.46 BVAR-t-MA 1.17
BVAR-CSV 0.46 BVAR-CSV-MA 1.16
BVAR-MA 0.83 BVAR-t-CSV-MA 1.38

Our proposed sampler is different from that in Carriero et al. (2016) in three main ways.

First, we sample A and Σ jointly, whereas they sample A given Σ followed by drawing Σ

given A. Second, they sample the log volatilities using the auxiliary mixture sampler of

Kim, Shepherd, and Chib (1998). In the case of a common stochastic volatility, there are

n measurement equations with Tn additional auxiliary variables. In contrast, we sample

the log volatilities directly using an independence-chain Metropolis-Hastings step as in

Chan (2017). Lastly, we vectorize all the operations, as this approach is much faster in

programming environments optimized for matrix operations, such as Matlab, Gauss

and R. Comparing the inefficiency factors in Table 1 to those reported in Carriero et al.

(2016), both samplers are equally efficient in terms of low autocorrelations in the MCMC

draws. The main advantage of the proposed sampler is its superior speed.

Recently, Carriero et al. (2015b) develop an algorithm that can be applied to a more

general class of large VARs. In particular, it can handle a standard stochastic volatility

specification such as the one in Cogley and Sargent (2005). While their algorithm is

6The authors have indicated that if some supplementary calculations—such as storage and computing
quantities for the marginal likelihood—are removed, the computation time can be substantially reduced.
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applicable to a wider class of models, the cost is longer computation time: their algorithm

could take hours, whereas the proposed algorithms here would take only minutes.

4.4 Full Sample Estimation Results

In this section we first present the empirical results for the BVARs listed in Table 1,

obtained using the full sample from 1959Q1 to 2013Q4. It is then followed by a formal

model comparison exercise using the marginal likelihood. In Section 4.6 we compare the

models in a recursive out-of-sample forecasting exercise.

All the estimates below are based on 30000 posterior draws after a burn-in period of

5000. A key parameter of interest is the MA coefficient ψ—if the posterior density of

ψ is concentrated around zero, it would indicate that the MA component might not be

necessary. Figure 2 reports the marginal posterior densities of ψ, i.e., p(ψ |Y), for the

four models that have the MA component. These densities are estimated using the Monte

Carlo methods described in Chan (2013).

0 0.2 0.4
0

5

10

15

20

0 0.2 0.4
0

5

10

15

20

0 0.2 0.4
0

5

10

15

20

0 0.2 0.4
0

5

10

15

20

Figure 2: Posterior densities of the MA(1) coefficient ψ under (from left to right) BVAR-
MA, BVAR-t-MA, BVAR-CSV-MA, and BVAR-t-CSV-MA.

The results are very similar across all models despite differences in the covariance struc-

ture. In particular, all the posterior modes are around 0.2, and there is essentially no

mass around zero. The importance of the MA component might seem puzzling given that

there are already 4 lags in the dependent variables. In fact, it is not the case that the

residuals from the standard BVAR exhibit a high level of autocorrelation.7 Rather, by

including the MA component, the VAR coefficients need not be as large as otherwise—the

7If we fit a univariate MA(1) model to each of the 20 residual series, only 2 MA estimates are larger
than 0.1.
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MA model allows additional shrinkage of the VAR coefficients. This point is illustrated in

Figure 3, which presents a scatter plot of the VAR coefficients (excluding the intercepts)

under the BVAR-MA against the standard BVAR. Compared to the BVAR, the BVAR-

MA estimates are generally smaller in absolute value. The MA component provides a

more parsimonious way to model serial correlation—instead of increasing the absolute

values of multiple VAR coefficients, the model can now adjust the MA coefficient to

achieve a similar goal.
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Figure 3: Scatter plot of VAR coefficients under BVAR-MA against BVAR.

Next, Figure 4 presents the posterior means of the common stochastic volatility—in stan-

dard deviations exp(ht/2)—for the four models: BVAR-CSV, BVAR-CSV-MA, BVAR-t-

CSV and BVAR-t-CSV-MA. The estimates obtained under the BVAR-CSV and BVAR-

CSV-MA models are almost identical, and they are similar to those obtained in Carriero

et al. (2016). In particular, we also find substantial time-variation in the common stochas-

tic volatility—volatility is relatively high in the 1970s and early 1980s, and it drops grad-

ually throughout the 1980s and 1990s, until it picks up again during the Global Financial

Crisis.

The estimates under BVAR-t-CSV and BVAR-t-CSV-MA are almost identical to each

other, but they are similar to those of the previous two models only in low-volatility

periods. During high-volatility periods, the estimates for BVAR-t-CSV and BVAR-t-

CSV-MA are substantially smaller. For instance, during the Global Financial Crisis, the

volatility estimates for BVAR-t-CSV are less than 2, compared to about 3.5 for BVAR-

CSV. These contrasting results highlight how different models accommodate large shocks.

More specifically, both BVAR-CSV and BVAR-CSV-MA have only one main channel to

handle large shocks—by increasing the volatility. In contrast, BVAR-t-CSV and BVAR-

t-CSV-MA have the extra channel of making the tails of the distribution heavier—by
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allowing ‘outliers’ to appear more often. Our results are broadly similar to the findings

in Cúrdia, Del Negro, and Greenwald (2014)—under their dynamic stochastic general

equilibrium (DSGE) model they also find that heavy tails reduce the amount of variation

in the stochastic volatility estimates.

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
0

0.5

1

1.5

2

2.5

3

3.5

4

BVAR-CSV
BVAR-CSV-MA
BVAR-t-CSV
BVAR-t-CSV-MA

Figure 4: Posterior means of the common stochastic volatility—in standard deviations
exp(ht/2)—under (from left to right) BVAR-CSV, BVAR-CSV-MA, BVAR-t-CSV, and
BVAR-t-CSV-MA.

These two channels have different implications on the occurrence of large shocks. For

instance, if the volatility in the current period is high, large shocks are more likely to

occur in the next period as next period’s volatility also tends to be high (due to the AR(1)

log volatility process). On the other hand, the probability of the occurrence of ‘outliers’

is time-invariant. The results in Figure 2 suggest that BVAR-t-CSV and BVAR-t-CSV-

MA use both of these channels to accommodate large shocks—it increases the volatility

moderately and makes the tails heavier than those of the Gaussian (see also below for

the results on the degree of freedom parameter ν).

In Figure 5 we plot the marginal posterior densities of the degree of freedom parameter ν,

i.e., p(ν |Y), for the four models with t innovations. The results for BVAR-t and BVAR-t-

MA are similar. Specifically, most of the mass for both densities is concentrated between

5 and 10, indicating that the occurrence of outliers is relatively frequent. This is not

surprising in light of the above discussion on the common stochastic volatility estimates—

given that the volatility has changed over time, both BVAR-t and BVAR-t-MA that
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assume constant variance accommodates large shocks in high-volatility periods by making

the tails of the distribution heavier.
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Figure 5: Posterior densities of the degree of freedom parameter ν under (from left to
right) BVAR-t, BVAR-t-CSV, BVAR-t-MA, and BVAR-t-CSV-MA.

In contrast, for BVAR-t-CSV and BVAR-t-CSV-MA that allow for a common stochastic

volatility, the posterior density of ν is concentrated between 10 and 30. By allowing

for time-varying volatility, the occurrence of outliers becomes less frequent—even though

the tails are still heavier than those of the Gaussian. This mirrors the results reported

in Figure 4—models with Gaussian innovations drastically increase the volatility during

periods of large shocks, whereas the volatility estimates for BVAR-t-CSV and BVAR-

t-CSV-MA are substantially smaller for the same periods. We present further evidence

below that both features—time-varying volatility and heavy tails—are favored by the

data.

4.5 Model Comparison

The above estimation results may be viewed as suggestive evidence showing the empirical

relevance of the more general covariance structures. In what follows, we consider a

formal Bayesian model comparison exercise to compare various BVARs using the marginal

likelihood.8 For the standard BVAR with the natural conjugate prior, the marginal

likelihood is available analytically (see, e.g., Karlsson, 2013). For other BVARs, the

8The marginal likelihood has a built-in penalty for complexity. In fact, it trade-offs between model
fit vs model complexity and it does not always favor the most general model. For more details, see, e.g.,
the discussion in Koop (2003).
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marginal likelihoods are estimated using the Chib’s method (Chib, 1995).9

For latent variable models, such as stochastic volatility models, the Chib’s method can

be implemented in two ways: one involves the conditional likelihood—the conditional

density of the data given the latent variables; the other uses the integrated likelihood—

the marginal density of the data obtained by integrating out the latent variables. In many

applications the first approach is adopted as the conditional likelihood is often easy to

evaluate, whereas the integrated likelihood is not. However, some recent papers, such as

Frühwirth-Schnatter and Wagner (2008) and Chan and Grant (2015), have pointed out

that marginal likelihood estimates based on the conditional likelihood can be extremely

inaccurate, whereas those based on the integrated likelihood seem to perform well.10 As

such, our marginal likelihood estimates are based on the integrated likelihood. Details of

integrated likelihood evaluation for various BVARs are given in Online Appendix A.

We compute the marginal likelihood of the eight models listed in Table 1. For comparison,

we also include the BVAR in Carriero, Clark, and Marcellino (2015b) with a standard

stochastic volatility specification, which we denote as BVAR-SV. The marginal likelihood

estimates reported in Table 3 are based on 10 parallel chains each of which is of length

10000.

Table 3: Estimated log marginal likelihoods and the associated numerical standard errors
for various BVARs.

Model Log ML NSE Model Log ML NSE
BVAR −8727 – BVAR-t-MA −8515 0.73
BVAR-t −8545 1.12 BVAR-CSV-MA −8484 0.27
BVAR-CSV −8513 0.50 BVAR-t-CSV-MA −8469 0.47
BVAR-MA −8704 0.04 BVAR-SV −8498 2.80
BVAR-t-CSV −8500 0.51

First, compared to a standard BVAR with independent, homoscedastic Gaussian inno-

vations, the three extensions BVAR-t, BVAR-CSV and BVAR-MA all fit the data sub-

stantially better. The most important improvement is to allow for a common stochastic

volatility, followed by using t innovations and adding an MA component. For example,

the log Bayes factor in favor of BVAR-CSV against the standard BVAR is about 215.

9Even though some of the full conditional densities are non-standard, they can still be quickly evalu-
ated. For instance, the full conditional density of the MA coefficient ψ can be evaluated using the Monte
Carlo methods described in Chan (2013).

10In the related context of computing the deviance information criterion, Li, Zeng, and Yu (2012) give
theoretical arguments why the conditional likelihood should not be used.
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In other words, if two models are equally probable a priori, the posterior probability

of BVAR-CSV is 2.4 × 1093 times larger than that of the standard BVAR, indicating

overwhelming evidence in favor of allowing for time-varying volatility.

Second, one can further improve the model performance of BVAR-CSV by allowing for

heavier tails via t innovations. In particular, the log Bayes factor in favor of BVAR-t-

CSV against BVAR-CSV is about 13. The same conclusion holds when one compares

BVAR-t-MA to BVAR-MA and BVAR-t-CSV-MA to BVAR-CSV-MA. Hence, there is

clear evidence that the data prefer the variants with t innovations. This is consistent

with the results in Cúrdia et al. (2014), who find that in the context of DSGE models,

allowing for t innovations further improves model-fit even in the presence of stochastic

volatility.

Third, consistent with the estimates of ψ reported in Figure 2, there is strong support

for the MA component. For instance, the log Bayes factors comparing the three pairs—

BVAR-CSV-MA against BVAR-CSV, BVAR-t-MA against BVAR-t and BVAR-t-CSV-

MA against BVAR-t-CSV—are all about 30, indicating overwhelming evidence in favor

of allowing for the MA dynamics. Finally, comparing BVAR-CSV and BVAR-SV, the

data favor the latter that has a more general stochastic volatility specification. However,

extending BVAR-CSV in other dimensions, such including an MA component, seems

to provide even better model-fit, as indicated by the larger log marginal likelihood of

BVAR-CSV-MA compared to that of BVAR-SV.

Overall, the three additional features—heavy-tailedness, common stochastic volatility

and serial dependence—are all empirically important. Models with these features sub-

stantially fit the data better. In the next section, we show that these features also help

improve both point and density forecasts.

4.6 Forecasting Results

In this section we perform a recursive out-of-sample forecasting exercise to evaluate the

performance of the proposed BVARs in terms of both point and density forecasts. We

use a real-time dataset of 20 quarterly macroeconomic and financial variables; a detailed

description of the data is given in Online Appendix B. We forecast all 20 variables, but

in this section we focus on four main variables: real GDP growth, unemployment rate,

Fed funds rate and PCE inflation.
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We use each of the BVARs listed in Table 1 to produce both point and density m-step-

ahead iterated forecasts with m = 1, 2, 3 and 5. Due to reporting lags, the real-time

data vintage available at time t contains observations only up to quarter t − 1. Hence,

the forecasts are, respectively, current quarter nowcasts, as well as one-quarter-ahead,

two-quarter-ahead and one-year-ahead forecasts. The evaluation period is from 1975Q1

to 2015Q4, and we use the 2017Q3 vintage to compute the actual outcomes.

Given the data up to time t, denoted as Y1:t, we implement the MCMC samplers

in Section 3 to obtain posterior draws given Y1:t. Then, we compute the predictive

mean E(yi,t+m |Y1:t) as the point forecast for variable i, and the predictive density

p(yi,t+m |Y1:t) as the density forecast for the same variable. Next, we move one period

forward and repeat the whole exercise with data Y1:t+1, and so forth. These forecasts are

then evaluated for t = t0, . . . , T−m. For general BVARs, neither the predictive mean nor

the predictive density of yi,t+m can be computed analytically. Instead, they are obtained

using predictive simulation; see, e.g., Chan (2013) for more details. As for forecast eval-

uation metrics, let yoi,t+m denote the actual value of the variable yi,t+m. The metric used

to evaluate the point forecasts is the root mean squared forecast error (RMSFE) defined

as

RMSFE =

√∑T−m

t=t0
(yoi,t+m − E(yi,t+m |Y1:t))2

T −m− t0 + 1
.

To evaluate the density forecast p(yi,t+m |Y1:t), one natural measure is the predictive

likelihood p(yi,t+m = yoi,t+m |Y1:t), i.e., the predictive density of yi,t+m evaluated at the

actual value yoi,t+m. Clearly, if the actual outcome yoi,t+m is likely under the density

forecast, the value of the predictive likelihood will be large, and vise versa. See, e.g.,

Geweke and Amisano (2011) for a more detailed discussion of the predictive likelihood

and its connection to the marginal likelihood. We evaluate the density forecasts using

the average of log predictive likelihoods (ALPL):

ALPL =
1

T −m− t0 + 1

T−m∑

t=t0

log p(yi,t+m = yoi,t+m |Y1:t).

For this metric, a larger value indicates better forecast performance. For easy compar-

ison, we report below the ratios of RMSFEs of a given model to those of the standard

BVAR. Hence, values smaller than unity indicate better forecast performance than the

benchmark. For the average of log predictive likelihoods, we report differences from that

of the standard BVAR. In this case, positive values indicate better forecast performance
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than the benchmark.

Table 4 presents the overall density forecast performance of jointly forecasting all the 20

variables. The more flexible models all outperform the standard BVAR for all forecast

horizons. In particular, the BVAR-CSV model of Carriero et al. (2016) with a common

stochastic volatility forecasts substantially better than the benchmark. However, the

overall best models are BVAR-t and BVAR-t-MA, highlighting the empirical relevance of

allowing for heavy-tailed innovations.

Table 4: Overall density forecast performance relative to the standard BVAR.

m = 1 m = 2 m = 3 m = 5
BVAR-t 166 176 191 222
BVAR-CSV 151 164 182 215
BVAR-MA 4 5 7 8
BVAR-t-CSV 165 175 190 220
BVAR-t-MA 166 176 191 222
BVAR-CSV-MA 152 164 181 214
BVAR-t-CSV-MA 164 174 189 220

Tables 5 and 6 report the point and density forecast results for the two nominal variables:

Fed funds rate and PCE inflation. It is evident that BVARs with more flexible covari-

ance structures tend to outperform the standard BVAR at various forecast horizons.

For instance, the BVAR-CSV model forecasts the Fed funds rate substantially better

than the benchmark for both point and density forecasts—e.g., it reduces the RMSFE of

BVAR by about 5% for nowcasts. This is consistent with the results in numerous stud-

ies, such as Clark (2011), D’Agostino, Gambetti, and Giannone (2013) and Clark and

Ravazzolo (2015), which find that small BVARs with stochastic volatility outperform

their counterparts with only constant variance. Moreover, for nowcasting Fed funds rate,

the performance of BVAR-CSV can be further improved by adding an MA component

for both point and density nowcasts—i.e., the RMSFE of BVAR-CSV-MA can be further

reduced to about 90% of that of BVAR for nowcasts. 11

For comparison we also include a 4-variable VAR (Fed funds rate, PCE inflation, real

GDP growth and unemployment rate) with a standard stochastic volatility specification—

which we denote as BVAR-SV-small—to assess the value of using a large dataset. While

BVAR-SV-small tends to forecast PCE inflation well, the large BVARs with flexible

11Since the Fed funds rate essentially hits the zero lower bound after 2007, in Online Appendix D we
present results for a sample ending in 2007Q4. The main results and conclusions remain the same.
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covariance matrices tend to forecast Fed funds rate better.

Table 5: Forecast performance relative to the standard BVAR; Fed funds rate.

relative RMSFE relative ALPL
m = 1 m = 2 m = 3 m = 5 m = 1 m = 2 m = 3 m = 5

BVAR-t 0.96 0.87 0.86 0.84 0.19 0.22 0.16 0.12
BVAR-CSV 0.95 0.84 0.83 0.82 0.19 0.30 0.24 0.15
BVAR-MA 0.96 0.98 0.97 0.98 0.04 0.02 0.02 0.01
BVAR-t-CSV 0.95 0.84 0.83 0.83 0.18 0.28 0.21 0.14
BVAR-t-MA 0.90 0.85 0.83 0.82 0.27 0.24 0.18 0.14
BVAR-CSV-MA 0.90 0.85 0.84 0.82 0.24 0.29 0.23 0.14
BVAR-t-CSV-MA 0.89 0.84 0.84 0.82 0.25 0.28 0.21 0.13
BVAR-SV-small 0.94 0.88 0.89 0.86 0.45 0.34 0.20 0.11

Table 6: Forecast performance for relative to the standard BVAR; PCE inflation.

relative RMSFE relative ALPL
m = 1 m = 2 m = 3 m = 5 m = 1 m = 2 m = 3 m = 5

BVAR-t 1.01 0.99 0.98 0.98 0.09 0.06 0.02 0.01
BVAR-CSV 1.03 0.99 0.96 0.96 0.08 0.08 0.03 −0.01
BVAR-MA 1.01 1.00 1.00 1.01 -0.01 0.01 0.01 −0.01
BVAR-t-CSV 1.03 0.99 0.97 0.97 0.08 0.07 0.02 −0.01
BVAR-t-MA 1.01 1.00 0.98 0.99 0.09 0.05 0.01 0.00
BVAR-CSV-MA 1.01 0.99 0.96 0.96 0.09 0.07 0.03 −0.02
BVAR-t-CSV-MA 1.01 0.99 0.97 0.97 0.09 0.06 0.01 −0.02
BVAR-SV-small 0.98 0.97 0.94 0.91 0.13 0.11 0.09 0.11

Next, we present in Tables 7 and 8 the point and density forecast results for the two real

variables: real GDP growth and unemployment rate. For forecasting the unemployment

rate, no models can consistently outperform the benchmark in terms of point and density

forecasts. However, for GDP growth, BVARs with more flexible covariance structures

again tend to compare more favorably to the standard BVAR. In particular, BVAR-CSV

and BVAR-t-CSV tend to provide the best point and density forecasts at all horizons.

Moreover, they also outperform BVAR-SV-small, highlighting the value of additional

macroeconomic and financial data in refining GDP forecasts.
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Table 7: Forecast performance relative to the standard BVAR; real GDP growth.

relative RMSFE relative ALPL
m = 1 m = 2 m = 3 m = 5 m = 1 m = 2 m = 3 m = 5

BVAR-t 0.95 0.98 0.97 0.93 0.07 0.04 0.05 0.08
BVAR-CSV 0.92 0.94 0.95 0.90 0.11 0.09 0.07 0.06
BVAR-MA 1.01 0.99 0.99 0.99 0.00 0.00 0.00 0.00
BVAR-t-CSV 0.92 0.94 0.95 0.90 0.12 0.09 0.07 0.07
BVAR-t-MA 0.95 0.96 0.97 0.91 0.07 0.06 0.06 0.09
BVAR-CSV-MA 0.93 0.93 0.95 0.90 0.11 0.08 0.07 0.05
BVAR-t-CSV-MA 0.93 0.93 0.94 0.90 0.11 0.09 0.08 0.07
BVAR-SV-small 0.99 0.96 0.95 0.95 0.03 0.05 0.06 0.04

Table 8: Forecast performance relative to the standard BVAR; unemployment rate.

relative RMSFE relative ALPL
m = 1 m = 2 m = 3 m = 5 m = 1 m = 2 m = 3 m = 5

BVAR-t 1.06 1.01 1.00 1.03 0.01 0.04 0.06 0.10
BVAR-CSV 1.22 1.07 1.05 1.06 −0.12 0.02 0.08 0.12
BVAR-MA 1.00 1.00 1.00 0.99 0.00 −0.01 −0.02 0.05
BVAR-t-CSV 1.20 1.06 1.05 1.06 −0.12 0.00 0.03 0.08
BVAR-t-MA 1.05 1.03 1.03 1.05 0.00 0.01 0.03 0.09
BVAR-CSV-MA 1.25 1.14 1.12 1.12 −0.13 −0.04 0.02 0.11
BVAR-t-CSV-MA 1.24 1.13 1.12 1.12 −0.13 −0.05 0.00 0.04
BVAR-SV-small 1.08 1.05 1.05 1.01 −0.09 −0.11 −0.20 −0.58

Overall, these results show that the more flexible BVARs can deliver substantial improve-

ments in both point and density forecasts at various horizons relative to the standard

BVAR. While BVAR-CSV tends to forecast very well, in some instances its forecast

performance can be further improved by adding an MA component.

5 Concluding Remarks and Future Research

With the aim of expanding the toolkit for empirical macroeconomists, we have introduced

a new class of large BVARs that allows for non-Gaussian, heteroscedastic and serially

dependent innovations. In general it is challenging to estimate large BVARs due to the

high-dimensional VAR coefficients. The main advantage of the proposed framework is

that the implied likelihood has a certain Kronecker structure that can be exploited to

vastly speed up computation.
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We have demonstrated the empirical relevance of this new class of models with an ap-

plication using 20 macroeconomic and financial variables. The model comparison results

show that the data overwhelmingly favor these more flexible BVARs over the standard

variant with independent, homoscedastic Gaussian innovations. In a recursive forecasting

exercise, we find that the new models also deliver improvements in both point and density

forecasts.

For future research, it would be worthwhile to further extend these models to allow

for richer covariance structures. More specifically, in our framework all the variables

need to have the same time series model to preserve the Kronecker structure in the

likelihood. One possible way forward is to incorporate a factor model to induce a richer

serial dependence structure, while maintaining the Kronecker structure so that the same

type of computation shortcut can be applied.
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Online Appendix

Appendix A: Estimation Details

A1: Sampling (A,Σ)

Suppose we wish to sample from N (vec(Â),Σ⊗K−1
A
). Let CKA

and CΣ be the Cholesky

decompositions of KA and Σ respectively. We wish to show that if we construct

W1 = Â+ (C′

KA
\Z)C′

Σ
,

where Z is a k×n matrix of independent N (0, 1) random variables, then vec(W1) has the

desired distribution. To that end, we make use of some standard results on the matrix

normal distribution (see, e.g., Bauwens, Lubrano, and Richard, 1999, pp. 301-302).

A p× q random matrix W is said to have a matrix normal distribution MN (M,Q⊗P)

for covariance matrices P and Q of dimensions p × p and q × q, respectively, if and

only if vec(W) ∼ N (vec(M),Q ⊗ P). Now suppose W ∼ MN (M,Q ⊗ P) and define

V = CWD+ E. Then, V ∼ MN (CMD+ E, (D′QD)⊗ (CPC′)).

Recall that Z is a k × n matrix of independent N (0, 1) random variables. Hence, Z ∼

MN (0, In ⊗ Ik). Using the previous result with C = C−1′

KA
, D = C′

Σ
and E = Â, it

is easy to see that W1 ∼ MN (Â,Σ ⊗K−1
A
). Finally, by definition we have vec(W1) ∼

N (vec(Â),Σ⊗K−1
A
).

A2: Sampling Other Parameters

In this section we consider various specific examples ofΩ and discuss how one can augment

the general sampling scheme above to handle each case.
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Example 1. Independent t innovations

As discussed in Section 3 of the main text, the case of iid t distributed innovations falls

within the proposed framework. Specifically, if we assume Ω = diag(λ1, . . . , λT ) and each

λt follows an inverse-gamma distribution (λt | ν) ∼ IG(ν/2, ν/2), then marginally ut has

a t distribution with degree of freedom parameter ν. Note that in this case Ω is diagonal

and Ω−1 = diag(λ−1
1 , . . . , λ−1

T ).

Let p(ν) denote the prior of ν. Then, posterior draws can be obtained by sequentially

sampling from: 1) p(A,Σ |Y,Ω, ν); 2) p(Ω |Y,A,Σ, ν); and 3) p(ν |Y,A,Σ,Ω). Step 1

can be implemented exactly as before. For Step 2, note that

p(Ω |Y,A,Σ, ν) =
T∏

t=1

p(λt |Y,A,Σ, ν) ∝
T∏

t=1

λ
−
n
2

t e
−

1

2λt
u′

tΣ
−1

ut × λ
−( ν

2
+1)

t e
−

ν
2λt

In other words, each λt is conditionally independent given other parameters and has an

inverse-gamma distribution: (λt |Y,A,Σ, ν) ∼ IG((n+ ν)/2, (u′

tΣ
−1ut + ν)/2).

Lastly, ν can be sampled by an independence-chain Metropolis-Hastings step with the

proposal distribution N (ν̂, K−1
ν ), where ν̂ is the mode of log p(ν |Y,A,Σ,Ω) and Kν is

the negative Hessian evaluated at the mode. For implementation details of this step, see

Chan and Hsiao (2014).

Example 2. Independent innovations with a common stochastic volatility

Next, consider the common drifting volatility model proposed in Carriero et al. (2016):

ut ∼ N (0, ehtΣ), where ht follows an AR(1) process in (3), which is reproduced here for

convenience: ht = ρht−1 + εht , where ε
h
t ∼ N (0, σ2

h). This model falls within the proposed

framework with Ω = diag(eh1 , . . . , ehT ), which is also diagonal.

We assume independent truncated normal and inverse-gamma priors for ρ and σ2
h: ρ ∼

N (ρ0, Vρ)1(|ρ| < 1) and σ2
h ∼ IG(νh, Sh). Then, posterior draws can be obtained by
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sampling from: 1) p(A,Σ |Y,Ω, ρ, σ2
h); 2) p(Ω |Y,A,Σ, ρ, σ2

h); 3) p(ρ |Y,A,Σ,Ω, σ
2
h);

and 4) p(σ2
h |Y,A,Σ,Ω, ρ).

Step 1 again can be implemented exactly as before. For Step 2, note that

p(Ω |Y,A,Σ, ρ, σ2
h) = p(h |Y,A,Σ, ρ, σ2

h) ∝ p(h | ρ, σ2
h)

T∏

t=1

p(yt |A,Σ, ht),

where p(h | ρ, σ2
h) is a Gaussian density implied by the state equation,

log p(yt |A,Σ, ht) = ct −
n

2
ht −

1

2
e−htu′

tΣ
−1ut

and ct is a constant not dependent on ht. It is easy to check that

∂

∂ht
log p(yt |A,Σ, ht) = −

n

2
+
1

2
e−htu′

tΣ
−1ut,

∂2

∂h2t
log p(yt |A,Σ, ht) = −

1

2
e−htu′

tΣ
−1ut.

Then, one can implement a Newton-Raphson algorithm to obtain the mode of the log

density log p(h |Y,A,Σ, ρ, σ2
h) and the negative Hessian evaluated at the mode, which

are denoted as ĥ and Kh, respectively. Using N (ĥ,K−1
h
) as a proposal distribution, one

can sample h directly using an acceptance-rejection Metropolis-Hastings step. We refer

the readers to Chan (2017) for details. Finally, Steps 3 and 4 are standard and can be

easily implemented (see., e.g., Chan and Hsiao, 2014).

Example 3. MA(1) innovations

We now consider an example where Ω is not diagonal and we construct Ω using band

matrices. More specifically, suppose each element of ut follows the same MA(1) process:

uit = ηit + ψηi,t−1,

where |ψ| < 1, ηit ∼ N (0, 1), and the process is initialized with ui1 ∼ N (0, 1 + ψ2).
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Stacking ui = (ui1, . . . , uiT )
′ and ηi = (ηi1, . . . , ηiT )

′, we can rewrite the MA(1) process

as

ui = Hψηi,

where ηi ∼ N (0,Oψ) with Oψ = diag(1 + ψ2, 1, . . . , 1), and

Hψ =




1 0 · · · 0

ψ 1 · · · 0

...
. . . . . .

...

0 · · · ψ 1




.

It follows that the covariance matrix of ui is HψOψH
′

ψ. That is, Ω = HψOψH
′

ψ is a

function of ψ only. Moreover, both Oψ and Hψ are band matrices. Notice also that for

a general MA(q) process, one only needs to redefine Hψ and Oψ appropriately and the

same procedure would apply.

Let p(ψ) be the prior for ψ. Then, posterior draws can be obtained by sequentially

sampling from: 1) p(A,Σ |Y, ψ) and 2) p(ψ |Y,A,Σ). Again, Step 1 can be carried

out exactly the same as before. In implementing Step 1, we emphasize that when one

computes products of the form X′Ω−1X or X′Ω−1Y, one needs not obtain the inverse

Ω−1, which is a time-consuming step. Instead, since in this case Ω is a band matrix, its

Cholesky factor CΩ can be obtained in O(T ) operations. Then, to compute X′Ω−1X,

one simply return X̃′X̃, where X̃ = CΩ\X.

For Step 2, p(ψ |Y,A,Σ) is non-standard, but it can be evaluated quickly using the direct

method in Chan (2013), which is more efficient than using the Kalman filter. Specifically,

since the determinant |Hψ| = 1, it follows from (4) that the likelihood is given by

p(Y |A,Σ, ψ) = (2π)−
Tn
2 |Σ|−

T
2 (1 + ψ2)−

n
2 e−

1

2
tr(Σ−1

Ũ′O
−1

ψ
Ũ)),
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where Ũ = H−1
ψ (Y−XA), which can be obtained in O(T ) operations since Hψ is a band

matrix. Therefore, p(ψ |Y,A,Σ) ∝ p(Y |A,Σ, ψ)p(ψ) can be evaluated quickly. Then,

ψ is sampled using an independence-chain Metropolis-Hastings step as in Chan (2013).

Example 4. AR(1) Innovations

Here we consider an example where Ω is a full matrix, but Ω−1 is banded. Specifically,

suppose each element of ut follows the same AR(1) process:

uit = φui,t−1 + ηit,

where |φ| < 1, ηit ∼ N (0, 1), and the process is initialized with ui1 ∼ N (0, 1/(1 − φ2)).

Stacking ui = (ui1, . . . , uiT )
′ and ηi = (ηi1, . . . , ηiT )

′, we can rewrite the AR(1) process as

Hφui = ηi,

where ηi ∼ N (0,Oφ) with Oφ = diag(1/(1− φ2), 1, . . . , 1), and

Hφ =




1 0 · · · 0

−φ 1 · · · 0

...
. . . . . .

...

0 · · · −φ 1




.

Since the determinant |Hφ| = 1 6= 0, Hφ is invertible. It follows that the covariance

matrix of ui is H−1
φ OφH

−1′

φ , or Ω−1 = H′

φO
−1
φ Hφ, where both Oφ and Hφ are band

matrices.

Suppose we assume the truncated normal prior φ: φ ∼ N (φ0, Vφ)1(|φ| < 1). Then, pos-

terior draws can be obtained by sampling from: 1) p(A,Σ |Y, φ); and 2) p(φ |Y,A,Σ).

In implementing Step 1, products of the form X′Ω−1X can be computed easily as the

inverse Ω−1 is a band matrix.
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For Step 2, p(φ |Y,A,Σ) is non-standard, but a good approximation can be obtained

easily without numerical optimization. To that end, recall that

ut = φut−1 + εt,

where εt ∼ N (0,Σ), and the process is initialized by u1 ∼ N (0,Σ/(1 − φ2)). Then,

consider the Gaussian proposal N (φ̂, K−1
φ ), where Kφ = 1/Vφ +

∑T

t=2 u
′

t−1Σ
−1ut−1 and

φ̂ = K−1
φ (φ0/Vφ+

∑T

t=2 u
′

t−1Σ
−1ut). With this proposal distribution, we can then imple-

ment an independence-chain Metropolis-Hastings step to sample φ.

The above are only a few simple examples of BVARs which fall within the proposed

framework. More elaborate models can be estimated by combining different examples

given above.

A3: Integrated Likelihood Evaluation

In this section we discuss how one can evaluate the integrated likelihoods of the proposed

BVARs. To that end, we first introduce some generic notations. Let θ denote the model

parameters and let z be the latent variables or states.12 Then, the integrated likelihood

or observed-data likelihood is defined as

p(Y |θ) =

∫
p(Y |θ, z)p(z |θ)dz,

where f(Y |θ, z) is the conditional likelihood. In most latent variable models, the con-

ditional likelihood is easy to evaluate by construction, whereas the evaluation of the

integrated likelihood is typically difficult due to the high-dimensional integration.

First, the integrated likelihood of BVAR-MA is available analytically as there are no

12One crucial difference between model parameters and latent variables is that the number of param-
eters does not increase with T , whereas the number of latent variables does.
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latent variables. In this case, θ consists of A, Σ and ψ. It follows from (4) that the

likelihood is given by

p(Y |A,Σ, ψ) = (2π)−
Tn
2 |Σ|−

T
2 (1 + ψ2)−

n
2 e−

1

2
tr(Σ−1

Ũ′O
−1

ψ
Ũ)),

where Ũ = H−1
ψ (Y −XA), Oψ = diag(1 + ψ2, 1, . . . , 1), and

Hψ =




1 0 · · · 0

ψ 1 · · · 0

...
. . . . . .

...

0 · · · ψ 1




.

Next, we derive the integrated likelihood of BVAR-t-MA. For this modelΩ = HψOλ,ψH
′

ψ,

where Oλ,ψ = diag((1 + ψ2)λ1, λ2, . . . , λT ). Using our generic notations, in this case θ

consists of A, Σ and ν, while the latent variables are z = λ = (λ1, . . . , λT )
′. It follows

from (4) that the conditional likelihood is given by

p(Y |λ,A,Σ) = (2π)−
Tn
2 |Σ|−

T
2 (1 + ψ2)−

n
2

T∏

t=1

(
λ
−
n
2

t e
−

1

2λt
ũ′

tΣ
−1

ũt

)
,

where ũ′

t is the t-th row of Ũ for t = 2, . . . , T , and ũ′

1 is the first row of Ũ divided

by
√
1 + ψ2. Given the prior (λt | ν) ∼ IG(ν/2, ν/2), the integrated likelihood can be

computed as follows:

p(Y |A,Σ, ν) =

∫
p(Y |λ,A,Σ, ν)p(λ | ν)dλ

= (2π)−
Tn
2 |Σ|−

T
2 (1 + ψ2)−

n
2

(
ν
2

)Tν
2

Γ
(
ν
2

)T
∫ T∏

t=1

(
λ
−(n+ν

2
+1)

t e
−

1

2λt
(ũ′

tΣ
−1

ũt+ν)
)
dλ

= (νπ)−
Tn
2 |Σ|−

T
2 (1 + ψ2)−

n
2

(
Γ
(
n+ν
2

)

Γ
(
ν
2

)
)T T∏

t=1

(
1 +

1

ν
ũ′

tΣ
−1ũt

)
−
n+ν
2

,
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where Γ(·) is the gamma function, and we have used the fact that

∫
λ
−(n+ν

2
+1)

t e
−

1

2λt
(ũ′

tΣ
−1

ũt+ν)dλt = Γ

(
n+ ν

2

)(
ν + ũ′

tΣ
−1ũt

2

)−
n+ν
2

.

Note that the integrated likelihood of BVAR-t can be obtained simply by setting ψ = 0.

Now, we move on to the integrated likelihood of BVAR-CSV. Using our generic notations,

in this model θ consists of A, Σ, ρ and σ2
h, while the latent variables are z = h =

(h1, . . . , hT )
′. That is, to obtain the integrated likelihood we need to integrate out h.

Unfortunately, this cannot be done analytically. Instead, we estimate the integrated

likelihood using the importance sampling approach in Chan and Grant (2016). To do

so, we need three ingredients: the prior p(h | ρ, σ2
h) implied by the state equation (3), the

conditional likelihood p(Y |A,Σ,h) and a good importance sampling density.

First, p(h | ρ, σ2
h) is Gaussian, and an explicit expression can be found in, e.g., Chan and

Grant (2016). Next, it follows from (4) that the conditional likelihood is given by

p(Y |A,Σ,h) = (2π)−
Tn
2 |Σ|−

T
2 e−

n
2

∑T
t=1

hte−
1

2
e−htu′

tΣ
−1

ut .

For the choice of the importance sampling density, note that the ideal zero-variance

importance sampling density for estimating the integrated likelihood is the conditional

density p(h |Y,A,Σ, ρ, σ2
h). However, this density cannot be used directly as the normal-

izing constant is unknown. To proceed, we approximate this conditional density using a

Gaussian density. Let ĥ and Kh denote respectively the mode and the negative Hessian

evaluated at the mode of log p(h |Y,A,Σ, ρ, σ2
h). Then, we use the N (ĥ,K−1

h
) density

as the importance sampling density. The parameters ĥ and Kh can be obtained as dis-

cussed in the last subsection. With all these ingredients, we can then use the importance

sampling approach in Chan and Grant (2016) to evaluate the integrated likelihood of

BVAR-CSV.
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Next, to evaluate the integrated likelihood of BVAR-CSV-MA, only small modifications

are needed. In this case, the prior p(h | ρ, σ2
h) is exactly the same as before. Now,

Ω = HψOh,ψH
′

ψ, where Oh,ψ = diag((1 + ψ2)eh1 , eh2 , . . . , ehT ). Then, the conditional

likelihood is given by

p(Y |A,Σ,h) = (2π)−
Tn
2 |Σ|−

T
2 (1 + ψ2)−

n
2 e−

n
2

∑T
t=1

hte−
1

2
e−ht ũ′

tΣ
−1

ũt ,

where ũt is defined as above. Moreover, a Gaussian approximation of the full condi-

tional density p(h |Y,A,Σ, ψ, ρ, σ2
h) can be obtained similarly, which is then used as the

importance sampling density.

For the integrated likelihood evaluation of BVAR-t-CSV, we need to integrated out both

λ and h. It turns out we can integrate out λ analytically, and h is then integrated out by

importance sampling as discussed before. First, the prior p(h | ρ, σ2
h) is exactly the same

as before. Using a similar derivation as in the BVAR-t-MA case, the partial conditional

likelihood (marginal of λ) is given by

p(Y |h,A,Σ, ν) = (νπ)−
Tn
2 |Σ|−

T
2 e−

n
2

∑T
t=1

ht

(
Γ
(
n+ν
2

)

Γ
(
ν
2

)
)T T∏

t=1

(
1 +

1

ν
e−htu′

tΣ
−1ut

)
−
n+ν
2

.

The last ingredient we need is an importance sampling density. In this case, the ideal zero-

variance importance sampling density is the conditional density p(h |Y,A,Σ, ν, ρ, σ2
h)

marginal of λ. As before, we approximate this with a Gaussian density with mean vector

ĥ and precision matrix Kh, where ĥ and Kh are respectively the mode and the negative

Hessian evaluated at the mode of log p(h |Y,A,Σ, ν, ρ, σ2
h).

Finally, for the integrated likelihood evaluation of BVAR-t-CSV-MA, we can simply

modify the algorithm for BVAR-t-CSV. In particular, the partial conditional likelihood

(marginal of λ) is the same as before if we replace ut by ũt.
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Appendix B: Data

The first dataset is sourced from the Federal Reserve Bank of St. Louis and covers the

quarters 1959Q1 to 2013Q4. Table 9 lists the 20 quarterly variables and describes how

they are transformed. For example, ∆ log is used to denote the first difference in the logs,

i.e., ∆ log x = log xt − log xt−1.

Table 9: Description of variables used in the full sample estimation.

Variable Transformation
Real gross domestic product 400∆ log
Consumer price index 400∆ log
Effective Federal funds rate no transformation
M2 money stock 400∆ log
Personal income 400∆ log
Real personal consumption expenditure 400∆ log
Industrial production index 400∆ log
Civilian unemployment rate no transformation
Housing starts log
Producer price index 400∆ log
Personal consumption expenditures: chain-type price index 400∆ log
Average hourly earnings: manufacturing 400∆ log
M1 money stock 400∆ log
10-Year Treasury constant maturity rate no transformation
Real gross private domestic investment 400∆ log
All employees: total nonfarm 400∆ log
ISM manufacturing: PMI composite index no transformation
ISM manufacturing: new orders index no transformation
Business sector: real output per hour of all Persons 400∆ log
Real stock prices (S& P 500 index divided by PCE index) 100∆ log

The second is a real-time dataset. It includes 13 macroeconomic variables that are fre-

quently revised and 7 financial/survey variables that are not revised. The list of variables

is given in Table 10. They are sourced from the Federal Reserve Bank of Philadelphia

and cover the quarters from 1964Q1 to 2015Q4. All monthly variables are converted to

quarterly frequency by averaging the three monthly values within the quarter.
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Table 10: Description of variables used in the recursive forecasting exercise.

Variable Transformation
Real GNP/GDP 400∆ log
Real Personal Consumption Expenditures: Total 400∆ log
Real Gross Private Domestic Investment: Nonresidential 400∆ log
Real Gross Private Domestic Investment: Residential 400∆ log
Real Net Exports of Goods and Services no transformation
Nominal Personal Income 400∆ log
Industrial Production Index: Total 400∆ log
Unemployment Rate no transformation
Nonfarm Payroll Employment 400∆ log
Indexes of Aggregate Weekly Hours: Total 400∆ log
Housing Starts 400∆ log
Price Index for Personal Consumption Expenditures, Constructed 400∆ log
Price Index for Imports of Goods and Services 400∆ log
Effective Federal Funds Rate no transformation
1-Year Treasury Constant Maturity Rate no transformation
10-Year Treasury Constant Maturity Rate no transformation
Moody’s Seasoned Baa Corporate Bond Minus Federal Funds Rate no transformation
ISM Manufacturing: PMI Composite Index no transformation
ISM Manufacturing: New Orders Index no transformation
S&P 500 400∆ log
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Appendix C: A Monte Carlo Experiment

In this appendix we present results from a small Monte Carlo experiment to assess how

well the algorithm works. We first generate a dataset of n = 20 variables and T = 300

observations from BVAR-t-CSV-MA using parameters obtained as follows. The inter-

cepts are generated independently from the N (0, 5) distribution. The diagonal elements

of the first VAR coefficient matrix are independent U(−0.4, 0.4) and the off-diagonal ele-

ments are U(−0.2, 0.2). Elements of higher-order VAR coefficient matrices are all drawn

independently from the N (0, 0.12) distribution. The error covariance matrix Σ is drawn

from the IW(In, 30) distribution. Finally, we set ψ = 0.2, ρ = 0.9, σ2
h = 0.1 and ν = 10.

The following results are based on 50000 posterior draws after a burn-in period of 1000.

Figure 6 plots the histograms of the posterior draws of four parameters: ψ, ρ, σ2
h and ν.

The posterior distributions are all centered around the true parameter values.
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Figure 6: Histograms of the posterior draws of ψ, ρ, σ2
h and ν. The true values are

represented by the solid lines.

Next, Figure 7 displays the posterior estimates and true parameter values of the VAR

coefficients and the unique elements in the covariance matrix. The estimates of VAR

coefficients show a modest degree of shrinkage—they tend to be closer to zero than the

true values.
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Figure 7: Posterior estimates and the true parameter values of the VAR coefficients and
the unique elements in the covariance matrix.

Finally, Figure 8 plots the posterior estimates of the common stochastic volatility ex-

pressed as standard deviations. All in all, the estimates are close to the true values and

this indicates that the algorithm seems to work well.
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Figure 8: Posterior estimates and the true values of exp(ht/2).
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Appendix D: Additional Forecasting Results

In this appendix we present additional forecasting results for various BVARs. In partic-

ular, Table 11 reports the Fed funds rate forecast performance of the new BVARs using

a sample that ends in 2007Q4.

Table 11: Forecast performance relative to the standard BVAR; Fed funds rate. The end
of the evaluation period is 2007Q4.

relative RMSFE relative ALPL
m = 1 m = 2 m = 3 m = 5 m = 1 m = 2 m = 3 m = 5

BVAR-t 0.97 0.88 0.86 0.84 0.19 0.23 0.18 0.15
BVAR-CSV 0.98 0.87 0.86 0.83 0.14 0.27 0.21 0.16
BVAR-MA 0.98 1.00 0.99 0.99 0.02 0.00 0.01 0.00
BVAR-t-CSV 0.98 0.86 0.86 0.83 0.14 0.26 0.20 0.16
BVAR-t-MA 0.92 0.87 0.85 0.82 0.25 0.24 0.18 0.15
BVAR-CSV-MA 0.95 0.89 0.88 0.84 0.18 0.24 0.18 0.14
BVAR-t-CSV-MA 0.94 0.88 0.88 0.83 0.20 0.25 0.18 0.13
BVAR-SV-small 1.03 0.96 0.95 0.87 0.35 0.29 0.19 0.16
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