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Abstract

This chapter provides an introduction to the use of Bayesian methods in labor economics and
related disciplines. Since the observed growth in Bayesian methods over the last two decades has
largely been driven by computational advances, this passage focuses primarily on illustrating
how such computations are performed in a selection of models that are relevant to applied work
in this area. The chapter begins by discussing posterior simulation via Markov Chain Monte
Carlo methods in the context of a binary choice model, which also contains an application
involving Body Mass Index (BMI) and analysis of the likelihood of being overweight. Next,
computation (i.e., posterior simulation) is discussed in a specification commonly encountered in
applied microeconomics: a treatment-response model or, more specifically, a linear model with
an endogenous right-hand side variable. The chapter closes with comments on the likely future
of this literature, including a discussion and application of nonparametric Bayesian methods via
the Dirichlet process.
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1 Introduction

When asking many economists about the differences between Bayesian and frequentist methods

for estimation and inference, most will probably cite the use of prior information by the former

and a lack of adopting such information by the latter. While the authors of this chapter agree

that Bayesian methods provide a formal role for the adoption of prior information and a coherent

framework for updating beliefs upon the arrival of data, they disagree that, in most cases, frequentist

methods are completely prior-free. In order to write any empirical paper, one must decide, among

other things, what set of covariates to potentially include in an analysis, what model specification

to adopt, whether or not to be concerned about problems of heteroscedasticity, endogeneity, or

error of measurement, etc. If you were to isolate ten different researchers in individual rooms,

each equipped with the same data set and each researcher posed with the same question, would

you anticipate all would arrive at the same answer, even if only classical estimation methods were

employed? It seems obvious, at least to this set of authors, that you would get a menu of different

point estimates and answers, as the models and methods employed by each researcher would be

the end result of a series of personal choices - choices often not documented or fully scrutinized

when results of the study are presented or published. Curiously, people often object when priors

are placed over parameters of a given model - priors that are typically non-informative relative to

the data and yield the same asymptotic properties as frequentist estimates - but don’t question

foundational modeling choices that are arguably far more important, as they cannot be revised by

the data.

At some level, the key distinction between Bayesian and frequentist inference is deeper than the

prior (or lack of prior), even if you were to argue that priors are likely at play in both paradigms.

Bayesian inference conditions on the observed data while frequentist inference involves averaging

over data sets that may potentially have been observed, but were not. The prior is a means to the

end of obtaining results that condition on the observed data.

In practice, the growing popularity of Bayesian methods in economics appears to have little to

do with a warming of the empirical community to the ideology of Bayes, but rather, owes to the

development of a variety of simulation-based tools that enable estimation and inference in models

that might otherwise be intractable. Foremost among these tools are so-called Markov Chain Monte

Carlo (MCMC) methods, which include the Gibbs sampler (see, e.g. Casella and George (1992))

and Metropolis-Hastings algorithms (see, e.g., Chib and Greenberg (1995)). Indeed, in some areas
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of economics, such as branches of empirical macro economics and finance, Bayesian methods have

grown to become the dominant framework in the profession.

Labor economics and related disciplines have also witnessed considerable growth in the application

of Bayesian methods. For example, a number of studies in health economics, including Li and Poirier

(2003a), (2003b), Munkin and Trivedi (2003), Geweke, Gowrisankaran and Town (2003) Deb,

Munkin and Trivedi (2006), (2006a) Bretteville-Jensen and Jacobi (2009) Hu, Munkin and Trivedi

(2015) and Jacobi and Sovinsky (2016), among others, have employed a Bayesian methodology.

Other studies, including Li, Poirier and Tobias (2003), Koop and Tobias (2004), Kline and Tobias

(2008), Li and Tobias (2011), Li, Mumford and Tobias (2012), Hoogerheide, Block and Thurik

(2012), Block, Hoogerheide and Thurik (2012) Früwirth-Schnatter et al (2012), (2016), (2018), and

Jacobi, Wagner and Früwirth-Schnatter (2016) have also explored labor-related topics. Researchers

wanting to know more about Bayesian methods beyond the limited introduction in this chapter

will find a wealth of information in popular texts on the subject, including Koop (2003), Lancaster

(2004), Geweke (2005) and Greenberg (2008). Chapter 14 of Koop, Poirier and Tobias (2007) and

Chan, Koop, Poirier and Tobias (2019) in particular, contains a detailed treatment of Bayesian

estimation of popular models in applied microeconometric work.

The purpose of this chapter is to review some of the basic machinery for Bayesian posterior inference

and to illustrate how those techniques work in models relevant for labor / microeconometric research

and labor-related applications. The following section shows how MCMC can be used to fit a

standard binary choice model. In section 3 that coverage is extended to review Bayesian estimation

of a model that is very widely used in labor applications: a standard treatment - response model,

i.e., a model with a right-hand side variable that is considered endogenous. Section 4 presents some

very recent Bayesian developments, including a discussion and application of nonparametric Bayes

based upon a Dirichlet process. Such models are particularly appealing in empirical labor work,

as they enable the researcher to flexibly model response (parameter) heterogeneity and flexibly

represent distributions without relying on rigid functional forms. The chapter concludes with a

summary in section 5.

2 Bayesian Methods for Binary Choice: The Probit

Not surprisingly, Bayesian analysis of the probit model begins with an application of Bayes’ theorem.

This theorem states that the posterior distribution of some unobserved vector of model parameters,
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say β, is proportional to the product of the prior for those parameters, denoted as p(β), and the

likelihood, denoted as p(y|β). Formally,

p(β|y) ∝ p(β)p(y|β). (1)

For those unfamiliar to Bayes, the delivery of results up to proportionality may seem strange and

possibly uncomfortable. The right-hand side of (1) is known and can be calculated: The researcher

specifies a functional form for the prior p(β), such as a normal distribution, and the likelihood is

assumed available. If the product of prior and likelihood in the right-hand side can be graphed, this

gives the shape of the posterior distribution, and the (unknown) normalizing constant is simply

the value that scales the posterior properly so that it integrates to one. This normalizing constant

can be difficult to calculate in problems of even moderate complexity, and that value often turns

out to be key to Bayesian approaches to model selection and comparison. In principle, however,

this normalizing constant can be determined; this determination turns out to be particularly easy

when the right-hand side is recognized as the kernel of a known distribution.

In the case of a probit model considered in this section, the likelihood function is well-known:

p(y|β) =
n∏
i=1

[
Φ(xiβ)yi(1− Φ(xiβ))1−yi

]
, (2)

thus yielding the joint posterior distribution:

p(β|y) ∝ p(β)

n∏
i=1

[
Φ(xiβ)yi(1− Φ(xiβ))1−yi

]
. (3)

In linear models, such as the familiar regression model, Gaussian likelihoods are known to combine

nicely with Gaussian priors to yield Gaussian posteriors. In such cases the prior is said to be

conjugate (or conditionally conjugate). The likelihood and prior in (3), however, do not combine

nicely due to nonlinearity of the binary choice model. As such, the right-hand side of (3) is difficult

to evaluate directly: it is hard, for example, to directly calculate posterior means, posterior standard

deviations and other quantities of interest for the components of β. The binary choice model is

therefore very useful as an intoductory example of modern Bayesian estimation and inference, as it

leads us to a discussion of powerful computational tools - useful in all kinds of models relevant for

labor economics and related fields - that facilitate estimation and inference when direct calculation

is either difficult or simply intractable.
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The probit model also can be represented in terms of a latent variable zi:

zi = xiβ + εi, ε|X ∼ N (0, In), (4)

yi = I(zi > 0). (5)

In the above, N (µ, σ2) represents a Gaussian (or normal) distribution with mean µ and variance

σ2. We previously mentioned that Gaussian linear models with Gaussian priors combine naturally;

the representation of the probit in (4) is seen as a linear model conditioned on z. This equivalent

representation of the model and the computational conveniences associated with conditioning on

z lead us to think about working with an augmented posterior distribution that treats the latent

data z in a similar manner to unknown coefficient vector β:

p(β, z|y) ∝ p(y,β, z)

= p(y|z,β)p(z,β)

= p(y|z,β)p(z|β)p(β).

Thus, the augmented posterior distribution (which also includes z) is proportional to the term

that links the observed and latent data, p(y|z,β), the “likelihood function” as if z were observed,

p(z|β), and the prior for β. The first of these terms is easy to determine, upon reflection: given

z, the system in (4) reveals that the values of y are known with certainty and β is superfluous: If

zi is positive, then yi = 1 and if zi is less than or equal to zero, then yi = 0. Given the assumed

independence across observations, the conditional density of y given z can be written as:

p(y|z,β) = p(y|z) =
n∏
i=1

(
I(yi = 0)I(zi ≤ 0) + I(yi = 1)I(zi > 0)

)
.

The term p(z|β) is implied by (4):

p(z|β) =
n∏
i=1

φ(zi;xiβ, 1),

where φ(x;µ, σ2) denotes the normal pdf for x with mean µ and variance σ2. Putting all of this

together, the augmented joint posterior follows:

p(β, z|y) ∝ p(β)
n∏
i=1

([I(yi = 0)I(zi ≤ 0) + I(yi = 1)I(zi > 0)]φ(zi;xiβ, 1)) . (6)

The reader may pause at this point and ask why the representation in (6) does anything other than

introduce unnecessary complications. If the posterior p(β|y) isn’t easily characterized, then surely

the augmented posterior in (6) must be even more unwieldy!
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While this is true, there remains a subtle advantage to working with this larger, augmented posterior

distribution. First, estimation will proceed by generating a series of draws from (6) rather than to

try and directly calculate its moments or other posterior features. These draws can then be used to

approximate whatever posterior statistic is desired: for example, the posterior mean of an element

of β can be approximated as the average of the samples of that element that are drawn from the

posterior. Second, it is recognized that conditioned on z the model is linear and one can easily

generate samples from the conditional posterior distribution p(β|y, z). This is essentially one-half of

what is required of the Gibbs sampler, a simulation scheme that iteratively cycles through complete

posterior conditional distributions of the model in order to generate samples from the joint posterior

distribution (see, e.g., Casella and George (1992)). The remaining distribution necessary in this

endeavor is p(z|y,β). In what follows, both of these distributions are described in detail.

From (6),

p(β|z,y) ∝ p(β, z|y) ∝ p(β)φ(z;Xβ, In).

This, as mentioned before, is simply a Gaussian linear model (since it conditions on z) together

with a prior for β. Suppose the following prior is employed:

β ∼ N (µβ,V β).

This combination of prior and likelihood is well-known to produce a normal conditional poste-

rior distribution (see, e.g., Lindley and Smith (1972) and Chan et al (2019), exercise 12.9), via

completion of the square in β:

β|z,y ∼ N (Dβdβ,Dβ), (7)

where

Dβ =
(
X ′X + V −1β

)−1
, dβ = X ′z + V −1β µβ.

For the remaining conditional posterior distribution, (6) again implies:

p(z|β,y) ∝ p(β, z|y) ∝
n∏
i=1

([I(yi = 0)I(zi ≤ 0) + I(yi = 1)I(zi > 0)]φ(zi;xiβ, 1)) .

Inspection of this expression reveals that each zi can be sampled independently (since the joint

conditional distribution is separable as a product of zi terms) and, specifically,

p(zi|β,y) ∝ [I(yi = 0)I(zi ≤ 0) + I(yi = 1)I(zi > 0)]φ(zi;xiβ, 1).
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That is, conditionally, zi has a normal distribution, but its support is truncated by the observed

value of yi. When yi = 1, zi > 0 and when yi = 0, zi ≤ 0. Formally,

zi|y,β ∼
{
T N (0,∞)(xiβ, 1) if yi = 1

T N (−∞,0](xiβ, 1) if yi = 0
, i = 1, 2, . . . , n, (8)

where, notationally, x ∼ T N (a,b)(µ, σ
2) denotes that x is a normally distributed random variable

with (untruncated) mean µ and (untruncated) variance σ2 which is then truncated to the interval

(a, b). This truncated density retains the shape of the normal density over (a, b), is zero outside

this interval, and is simply scaled up to integrate to one.

While one can generate draws from the truncated normal above by repeatedly drawing from a

N (xiβ, 1) distribution and simply waiting for a draw that falls in the desired orthant, this process

is quite inefficient. Samples from (8) can, however, be generated via the method of inversion (see,

e.g., Chan et al (2019), exercises 11.4 and 11.5) among other possibilities. Specifically, let

u ∼ U(0, 1)

be a draw from the uniform distribution on the unit interval. We can then form the variable w,

where

w = µ+ σΦ−1
(

Φ

(
a− µ
σ

)
+ u

[
Φ

(
b− µ
σ

)
− Φ

(
a− µ
σ

)])
, (9)

and simple derivations show that w ∼ T N (a,b)(µ, σ
2).

Note that posterior simulation in the probit therefore involves only two steps, and each of these

only involves sampling from a standard distribution (i.e., normal or truncated normal). A Gibbs

algorithm for fitting the probit model proceeds as follows: Start with an initial value of the β

vector. Given this initial β value, calculate Xβ and use this index to sample zi, for i = 1, 2, . . . , n

from (8), thus fully simulating the vector z. Next, sample a new β (use the z just drawn to

calculate an updated vector dβ ) from (7). The process repeats and converges to produce a set

of (correlated) draws from the joint posterior p(β, z|y). These post-convergence draws can then

be used to calculate point estimates, standard deviations and other quantities of interest. An

application of these methods is given in the following section.

2.1 Probit Model: Application

In this illustrative application, a data set from the British Cohort Study, as used by Kline and Tobias

(2008), is analyzed. The primary question of interest surrounds the identification of characteristics
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that are related to respondent Body Mass Index (BMI), and specifically, in predicting whether an

individual is overweight, defined as a BMI in excess of 25. Code used in this analysis is available

upon request, although the data source is restricted-use and thus cannot be similarly shared.

The analyzed sample consists of a set of male individuals with measured BMI (as opposed to self-

reports of BMI or height and weight). Given BMI, the binary overweight indicator is constructed.

Potential covariates include an intercept, BMI of the respondent’s mother (MotherBMI) and

father (FatherBMI), a marriage indicator (Married), an indicator denoting completion of a col-

lege degree (Degree) and an indicator denoting if the respondent reports to exercise regularly

(RegExercise). The model is fit using Gibbs sampling, as described in the previous section, using

the prior β ∼ N (0, 100I6). This corresponds to a prior that is quite flat (the marginal prior stan-

dard deviations all equal 10) and thus is weakly informative relative to the data. The sampler is

run for 26,000 iterations and the first 1,000 of those are discarded as the burn-in period. The final

25,000 simulations are used to calculate parameter posterior means, standard deviations and the

quantities reported in Table 1 below.

Table 1: Probit Analysis of BMI Data

Coefficients Marginal Effect
Variable E(·|y) Std(·|y) Pr(· > 0|y) E(·|y) Std(·|y)

Constant -2.95 .260 0 — —
FatherBMI .069 .009 1.00 .028 .004
MotherBMI .050 .007 1.00 .020 .003

Married .240 .049 1.00 .095 .019
Degree -.189 .061 .001 -.075 .024

RegExercise .048 .064 .771 .019 .026

The first three columns of the table present coefficient posterior means, posterior standard devi-

ations and posterior probabilities of being positive. Posterior means can be interpreted as point

estimates of the model parameters, and commonly are reported in this way, although it’s worth

noting that different loss structures can and do give rise to point estimates other than the posterior

mean. These point estimates are quantitatively very similar to frequentist maximum likelihood

estimates in this case, which is to be expected with a moderate sample size and reasonably dif-

fuse prior. Note that the third column of Table 1, the posterior probability that the coefficient is

positive, is easily calculated from the given samples from the joint posterior distribution:

̂Pr(βj > 0|y) =
1

M

M∑
m=1

I(βj,m > 0),
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where βj,m represents the mth posterior simulation of the parameter βj , I(·) denotes the standard

indicator function and, in this case, M = 25, 000. Note that this statistic answers a very useful

question: what is the probability that the covariate of interest has a positive effect on the likelihood

of being overweight? This quantity is easily explained and easily calculated from the posterior

simulations and is often the misinterpretation of the classical p−value. The latter should not be

interpreted as the probability that a hypothesis is false (or true), nor is such a question even well-

posed in the frequentist paradigm. The p−value addresses the sampling question of how likely it

would be to observe a value of a statistic that is at least as large as the one observed in the sample at

hand, assuming the null is true. Such a question places a central role on data that could have been

observed, but were not. The Bayesian approach, by contrast, conditions on the observed data and

directly provides a quantity that, arguably, is more useful for practitioners and easily interpreted.

In terms of the results of the application, all coefficients, perhaps with the exception ofRegExercise,

seem to operate in the expected direction. Parental BMI associates positively with the likelihood

of the respondent / child being overweight. Married respondents are more likely to be overweight,

while those with a college degree are less likely to be overweight. As the third column indicates,

results point to a high degree of confidence in the direction of these effects, as the posterior proba-

bilities reported there are either one (i.e., all posterior simulations of that coefficient were positive)

or near zero. The effect of regular exercise, however, is not precisely estimated. While one might

expect the coefficient to be negative, it could also be the case that being overweight might lead

someone to seek regular exercise.

In terms of marginal effects, a one-unit increase in father’s BMI is associated with a 2.8 percent

increase that the child is overweight. Marriage is associated with a 9.5 percent increase in the

likelihood of being overweight, while those with a college degree are approximately 7.5 percent less

likely to be overweight. Again, all of these calculations are easily performed given samples from

the joint posterior. For example, the marginal effect of a continuous covariate is given as φ(xβ)βj ,

which can be calculated for each β drawn from the posterior. Taking an average of these quantities

gives the fourth column of the table; the standard deviation provides the fifth.

Note as well that out-of-sample predictive quantities can be easily calculated. For example, suppose

it is of interest to predict the likelihood of being overweight for a male who is married, does not

exercise regularly, does not have a college degree and whose parents have BMIs of 30 (the clinical

threshold for obesity). Stacking all of this information into a vector xf , and letting yf be the
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associated unobserved overweight indicator, the following predictive probability is of interest:

Pr(yf = 1|xf ,y) =

∫
Pr(yf = 1|xf ,β,y)p(β|y)dβ

= Eβ|y [Pr(yf = 1|xf ,β,y)] ,

leading to

̂Pr(yf = 1|xf ,y) =
1

M

M∑
m=1

Φ(xfβm).

Based upon the simulations obtained from the joint posterior, such a male has an 81 percent chance

of being overweight (and the posterior standard deviation associated with Φ(xfβ) equals .024).

3 Endogeneity in Linear Models

The problem of endogeneity plays a central role in many, if not most, applications in labor economics

and related disciplines. These applications often share a common structure: The causal effect of a

key variable, say x, on some outcome y is sought, yet one recognizes that x is likely to be endogenous

- factors unobserved by the econometrician are likely to be simultaneously related to both x and y

(conditioned on x and other controls) . While most treatments of endogeneity in these literatures

are classical in nature, centered upon or employing IV, 2SLS or other approaches for estimation,

studies such as Drèze (1976), Geweke (1996), Kleibergen and Zivot (2003), Hoogerheide, Kleibergen

and van Dijk (2007) and Conley et al (2008) mark important Bayesian advances to this literature.

The importance of this issue is also suggested by the rather prominent and detailed treatment it

receives in many current Bayesian textbooks (e.g., Lancaster (2004) - Chapter 8; Rossi, Allenby

and McCulloch (2006) - Chapter 7; Koop, Poirier and Tobias (2007) and Chan, Koop, Poirier

and Tobias (2019) - Chapter 14) . Furthermore, numerous applications have been tackled from a

Bayesian point of view, often highlighting the ease with which MCMC methods can be adapted

to deal with endogeneity problems in many different kinds of models [e.g., Li (1998); Geweke,

Gowrisankaran and Town (2003); Li and Poirier (2003a), (2003b); Munkin and Trivedi (2003);

Deb, Munkin and Trivedi (2006a); Kline and Tobias (2008); , Chib et al. (2009), Kraay (2012),

Wiesenfarth et al (2014) and Chan and Tobias (2015)].

We discuss below a Bayesian treatment of endogeneity within the context of a linear regression

model, where one of the right-hand side variables is endogenous. While this is somewhat restrictive,

it is not terribly so, as simple generalizations can accommodate higher dimension endogeneity
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problems. Moreover, a recent study by Chernozhukov and Hansen (2008) suggests that this is

the modal model entertained in the literature and thus serves as a natural starting point for this

analysis.

Consider as a starting point the model:

yi = α0 + α1xi +α2wi + εi (10)

xi = β0 + β1zi + ui, (11)

where [
εi
ui

] ∣∣∣∣W ,Z
iid∼ N

[(
0
0

)
,

(
σ2ε σεu
σεu σ2u

)]
≡ N (0,Σ).

Interest typically focuses on the first equation and the primary object of interest is α1, the so-

called causal effect of x on y. Endogeneity here is synonymous with σεu 6= 0; unobserved factors

simultaneously correlate with x and y, leading to a confounding problem when trying to extract

the causal effect. The exogenous variables wi are covariates that enter the y-outcome equation

while zi enter the reduced form equation for x. As shown below, there can be (and almost always

is) overlap between these two sets of variables, yet identification will require the appearance of at

least one column of Z that is not contained in W . This identification issue is discussed in more

detail below.

Letting θ denote all the parameters of the model, the joint density of the errors can be decomposed

into a conditional times a marginal:

p(εi, ui|θ) = p(εi|ui,θ)p(ui|θ). (12)

Noting that the Jacobian of the transformation from (εi, ui) to (yi, xi) is unity, the joint density of

(yi, xi) follows:

p(yi, xi|θ) = φ

(
yi

∣∣∣∣α0 + α1xi +α2wi +
σεu
σ2u

(xi − β0 − β1zi), σ
2
ε (1− ρ2εu)

)
(13)

×φ(xi|β0 + β1zi, σ
2
u),

where ρεu ≡ σεu/[σεσu].

Note that (13) provides the likelihood function (or, at least, one observations’ contribution to the

likelihood function). It is instructive to pause and discuss identification in the context of this system

of equations. To this end, first consider the case where the set of exogenous covariates are common
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to both equations, i.e., zi = wi. In this case, (13) becomes:

p(yi, xi|θ) = φ

(
yi

∣∣∣∣[α0 − β0
σεu
σ2u

]
+

[
α1 +

σεu
σ2u

]
xi +

[
α2 − β1

σεu
σ2u

]
wi, σ

2
ε (1− ρ2εu)

)
(14)

×φ(xi|β0 + β1zi, σ
2
u).

Some quick accounting, then, shows that the likelihood is a function of just 7 (blocks of) parameters:

β0, β1, σ
2
u, ψ0 = [α0−β0

σεu
σ2u

], ψ1 = [α1+
σεu
σ2u

], ψ2 = [α2−β1

σεu
σ2u

] and ψ3 = σ2ε (1−ρ2εu), (15)

whereas the model is comprised of 8 distinct “structural” parameters:

α0, α1, α2, β0, β1, σ2u, σ2ε , and σεu. (16)

As a result, the quantities in (15) are identified by the likelihood yet the full set of structural

parameters in (16) is not identifiable. The researcher is, essentially, one equation short when

seeking to recover this information from the data. Importantly, note that the “causal effect” α1 -

the object that garners most attention in practice - is among the parameters that are not identifiable

when the set of covariates appearing in w and z are the same.

While several assumptions regarding the model can be used to achieve identification in this setting,

the most common one is to assume the presence of at least one element of z that is not contained

in w. That is, a careful understanding of the problem at hand leads to the determination of a set of

variables in zi that are not contained in wi and can be exploited for purposes of identification and

estimation. Indeed, (13) shows how such exclusion restrictions can be exploited for identification

purposes: The parameter β1 is identifiable from the marginal (reduced form) density of xi, and

the coefficient on the elements of z not contained in w in the conditional density y|x becomes

−[σεu/σ
2
u]β1. Together, these two pieces of information enable identification of the ratio σεu/σ

2
u,

which is attributable to the role of unobserved confounding. Once this ratio is known, the causal

effect α1 as well as the remaining parameters of the model clearly become identifiable, as is evident

from (13). This simple argument illustrates the value of instruments as vehicles for identification,

and also suggests potential difficulties in separating α1 from σεu/σ
2
u when the instruments are poor

(weak).
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3.0.1 Posterior Simulation in the Linear Endogenous Variable Model

Given the availability of a valid instrument, the variables of the model can be first stacked into

vectors and matrices by writing:

[
yi
xi

]
=

[
1 xi wi 0 0
0 0 0 1 zi

]
α0

α1

α2

β0
β1

+

[
εi
ui

]
(17)

or

ỹi = X̃iβ + ε̃i, (18)

with ỹi, X̃i, β and ε̃i defined in the obvious ways. Furthermore, suppose priors of the following

forms are employed:

β ∼ N (µβ,Vβ) (19)

Σ−1 ∼ W
[
(κR)−1, κ

]
. (20)

The first of these is the familiar normal (or Gaussian) distribution, while the latter may be less

familiar to some readers. The assumed prior for the inverse covariance matrix is a Wishart prior,

with degrees of freedom parameter κ and scale matrix R. The Wishart distribution can be thought

of as a multivariate generalization of the chi-square distribution, and several routines exist for

generating draws from the Wishart.

With this setup in hand, posterior simulation in the linear model with endogeneity follows in a

straightforward way. In particular, a simple two-block Gibbs algorithm can be employed that

iteratively samples from the following two conditional posterior distributions:

β|Σ,y,x ∼ N (Dβdβ,Dβ), (21)

where

Dβ =

(
V −1β +

n∑
i=1

X̃i
′
Σ−1X̃i

)−1
, dβ = V −1β µβ +

n∑
i=1

(
X̃i
′
Σ−1ỹi

)
(22)

and

Σ−1|β,y,x ∼W

[ n∑
i=1

ε̃iε̃i
′ + κR

]−1
, n+ κ

 . (23)

A posterior simulator for this model proceeds by iteratively sampling from (21) and (23). As

mentioned previously, both of these are easily obtained. Note that a sweep of the posterior simulator
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thus provides a sample of all of the structural parameters (α and β) as well as the variance and

covariance parameters via Σ. In classical approaches, discussion of the reduced-form equation for x

is typically muted, if not non-existent, apart perhaps from summary F -statistics that speak to the

strength of the instrument. Posterior simulations of σεu and the associated correlation ρεu (which

is easily calculated at each iteration) can also be used to speak to the degree of the endogeneity

problem in the application at hand; values of ρεu close to zero signal that endogeneity is weak and

single-equation analyses of y on x and w are likely to give similar results, while values closer to one

in absolute value signal the importance of controlling for endogeneity.

The model discussed here can easily be extended to account for, among other possibilities: multiple

endogenous right-hand side variables and outcomes / endogenous variables that are discrete-valued.

For the latter, latent variable representations again prove to be computationally useful, as described

in the previous section. The references listed at the outset of this section provide examples of such

generalizations. However, the canonical model analyzed in this section still relies on the assumption

of jointly normal error terms, an assumption that may be violated in practice and is unlikely to

satisfy the critical eyes of referees. The following section discusses, in general terms, nonparametric

Bayesian approaches to allow for flexible modeling of distribution functions.

4 An Introduction to Nonparametric Bayesian Modeling

In early applications of Bayesian econometric methods, particularly those prior to the computational

revolution that began in the early 1990s, it was common to assume that error terms followed a

particular parametric distribution. This practice may, in fact, remain common, at least for early

stages of exploratory data analysis.

As discussed earlier in this chapter, assuming that errors are normally distributed can be an ap-

pealing assumption to make, as it often proves mathematically convenient for posterior analysis

when coupled with the adoption of normal priors. Such rigid forms, however, are typically based on

computational convenience rather than application-at-hand-appropriateness and don’t fully allow

the data to speak for themselves, but instead require the researcher to (partially) speak on its

behalf. The general trend in applied econometric work in the profession is a movement toward ro-

bustness and remaining as agnostic as possible regarding modeling assumptions. Bayesian methods

have followed suit, and it seems quite reasonable to believe that future applied work in this area

will continue to be characterized by the adoption of flexible semiparametric and nonparametric
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methods. What follows is a discussion and illustration of one approach to Bayesian nonparametric

/ semiparametric modeling, focusing on the Dirichlet Process.

The Dirichlet Process (DP) and associated mixture model for observational data, termed the Dirich-

let Process Mixture Model (DPMM), offers an avenue for flexible modeling of distributions within

the Bayesian paradigm. The DP prior can be thought of as a prior distribution over a space of

distributions. Prior hyperparameters in this endeavor specify the base distribution - the expected

distributional realization - and a concentration parameter that controls how tightly any distribu-

tional draws will track the base distribution. As the prior is updated by the data, beliefs are

revised about the overall shape of the distribution. This, of course, differs in a fundamental way

from simply learning about a finite vector of parameters within an assumed distributional family.

The charge of this chapter is not to review specific technical details of DP modeling, but below

a brief introduction to the methods and an illustrative application are provided. The reader is

referred to seminal papers by Ferguson (1973), Sethuraman (1994) and Escobar and West (1995)

for further technical details. Applications of the methodology that follows in models relevant to

labor and related fields include Hirano (2002), Conley et al (2008), Chib and Greenberg (2010),

Wiesenfarth et al (2014), Hu, Munkin and Trivedi (2015), Chan et al (2017) and Kim and Wang

(2019), among others.

To explain a DPMM approach to nonparametric distributional modeling in broad terms, consider

the following hierarchical system of equations:

yi|θi ∼ F (θi)

θi|G ∼ G

G|α,G0 ∼ DP (α,G0).

The first equation of the above system looks like a typical parametric model that is commonly used

for data analysis, but is more general given that each observation contains its own parameter vector

θi. One can think of this first equation, like the example to be provided below, as a regression

equation where parameters of the conditional mean function vary across each observation. Density

estimation can be interpreted as a special case of this, where the “regression” just includes an

intercept and variance parameter, both of which vary across observations.

The second equation puts a prior on the θi and states that they are iid draws from some unknown

distribution G. The final equation places a prior on this unknown distribution and states that it
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follows a Dirichlet Process with base distribution G0 and concentration parameter α. At this stage

the technical details of the DP mixture model are far from clear - including what the DP actually

is - and perhaps all that the reader can take away is the spirit of what the nonparametric Bayesian

model seeks to do: put a prior over a space of prior distributions, and allow the data to inform the

shape of that distribution in a way that is not restricted to a particular parametric family.

An alternate representation of this model may provide some useful intuition. Sethuraman (1994)

shows that the DP can be represented as an infinite mixture. In the case where F is Gaussian, the

sampling model can be represented as follows:

yi|ω,θ ∼
∞∑
j=1

ωjN (yi;θj). (24)

In the above, N (x; δ) represents the normal distribution for x with parameters δ, and the ωj are

weights associated with the respective mixture components. These can be constructed via a “stick-

breaking” process whereby remaining portions of a stick of unit length are sequentially broken off.

Specifically, this equivalent representation of the model in (24) follows from Sethuraman’s (1994)

constructive definition of the DP:

G =
∞∑
j=1

ωjδθj , θj ∼ G0, ηj ∼ Beta(1, α), ωj = ηj
∏
l<j

(1− ηl), (25)

which shows that realizations from the DP are discrete with probability one, and the mass points

/ atoms θj are drawn from the base distribution G0 with weights ωj constructed from the stick

breaking procedure. In practice, the Dirichlet Process exhibits a clustering property whereby

the θi tend to concentrate on M < n different values. Thus, in DP modeling, the data are

used to determine an appropriate finite mixture without having to specify the number of needed

mixture components. One can therefore think of the Dirichlet process as allowing for parameter

(and distributional) heterogeneity, and the ability to learn about the nature of that heterogeneity

without requiring specific parametric forms to model its generation.

4.1 Application of Nonparametric Bayesian Modeling: Returns to Schooling

To illustrate application of the DPM model and reveal its potential use in uncovering unobserved

heterogeneity in models of interest in labor economics and related fields, a small illustrative ap-

plication is introduced involving returns to education. The data set analyzed consists of a .25%

random sample of observations from the 2016 American Community Survey. Specifically, outcomes
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of 888 working-age males who are employed full-time are analyzed. The specification considered is

given below:

yi = β0i + β1iEduci + σiεi, ε|Educ ∼ N (0, In) , (26)

where yi is the log wage received by individual i and Educi refers to years of schooling completed.

Each observation in (26), at least potentially, is associated with its own intercept, slope and variance

parameter. Although this specification seems at first glance to be unwieldy, excessively parameter

rich and simply not identifiable, structure is added by employing a Dirichlet process prior to θi =

[β0i β1i σi] to induce clustering and parsimony to the analysis, and to let the data speak to the

degree of response heterogeneity. The standard homogenous return-to-schooling model would, of

course, be produced if the analysis collapses to a single cluster, and the common β1 (abstracting from

obvious endogeneity concerns) would be interpreted as the treatment effect / return to education.

Departures from this single component model suggest the presence of heterogeneity in the data.

The prior specification continues as follows:

θi|G ∼ G

G ∼ DP (α,G0).

That is, the θi are assumed to follow some unknown distribution G and a DP prior is placed over

this unknown distribution. The distribution G0 represents the prior mean of G, and it is selected

as the familiar independent normal, inverse gamma distribution:

G0 = N (β;µβ,Vβ)× IG(σ2; a, b)

with

µβ = [3 .1]′, Vβ =

[
(22) 0

0 (.01)2

]
, a = 2.49, b = 1.92.

The choices of a and b set the prior mean of σ2 to .35, with an associated prior standard deviation

of .5. For the hyperparameters of the β, prior, the intercept of the base measure is centered at 3

and the return to schooling parameter is centered at .1, with standard deviations equal to 2 and

.1, respectively.

The parameter α tends to govern how many clusters or components will be present in the data.

Large values of α tend to produce many mass points with small weights. In these cases, draws

from G tend to resemble those of the base distribution G0 and the model will tend toward one

with a large number of components. On the other hand, realizations of G under small values of
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α will tend to produce just a few atoms with large weight assigned to them, and thus the model

will tend to concentrate on a small number of clusters or components. In practice, α is treated as

a parameter to be updated from the data rather than fixed a priori.

Details of the MCMC algorithm are not provided here, although it is noted that slice sampling is

employed to generate samples from the DP model. Interested readers are referred to Kalli, Griffin

and Walker (2011) for further details. The sampler is run for 50,000 iterations, and the first 10,000

of those are discarded as the burn-in period. Code and the data set employed in this analysis are

available upon request.

To begin, results associated with the number of distinct clusters (or mixture components) that

are supported by the data are provided. The number of active clusters is denoted as M , which

is produced for each post-convergence simulation. The table below provides posterior frequencies

associated with distinct values of M :

Table 2: Posterior
Frequencies of M

M Pr(M = ·|y)

1 0
2 .57
3 .30
4 .09
5 .02

As the table shows, no posterior simulations are associated with the benchmark single-component

Gaussian model, signaling a strong preference for some form of heterogeneity in outcomes across

individuals. Furthermore, most of the posterior mass concentrates around the adoption of 2 or 3

mixture components, and models that are more parameter-rich do not receive considerable support

from the data. Table 3 below provides more details associated with the regression and variance

parameters in these two and three component cases.
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Table 3: Posterior Summary Statistics
Associated with 2 and 3 Component Models

M = 2 M = 3

Intercept (β0) 1.37 1.84 1.37 1.78 2.51
(.171) (.970) (.169) (.970) (1.48)

Educ (β1) .122 .025 .122 .025 .074
(.012) (.055) (.012) (.056) (.085)

σ2 .295 .648 .294 .579 .386
(.028) (.362) (.025) (.337) (.421)

ω .919 .081 .926 .068 .006

Considering first those posterior simulations associated with the M = 2 case, it is seen that one

component receives a majority of the weight (approximately 92% of the weight). In this high-weight

component, the posterior mean estimate of the return to education is .122, consistent with a range

of findings in the literature. The smaller-weight second component is associated with a signifi-

cantly lower, though much noisier, return to schooling estimate, as well as a substantially higher

conditional variance σ2. Moving on to the M = 3 component case, a very similar pattern emerges.

Specifically, one component receives a majority of the weight, and posterior results associated with

that component are virtually identical to the high-weight component in the M = 2 case. The

remaining 8 percent (or so) of the mass is then divided over two components, both of which are

again associated with smaller returns to education and larger conditional variances.

These results point toward the overall need to control for heterogeneity, as M = 1 receives no

support from the data. A precise description of that heterogeneity, however, remains difficult to

fully characterize given that small-weight components in the M > 1 cases are associated with both

higher variances and lower returns to education. To shed some additional light on this issue, the

model is re-estimated, but this time β0 and σ2 are imposed to be common across observations

and the DP prior is placed over the return to schooling parameter only. When doing so, results

change substantially: the single-component (M = 1) specification now receives a majority of the

weight (i.e., Pr(M = 1|y) = .64), and most of the remaining mass is spread over the M = 2

and M = 3 component cases ( Pr(M = 2|y) = .23, Pr(M = 3|y) = .08). The two component

case is again associated with a high-weight component (E(ω|y) = .94) associated with a mean

return to schooling equal to .115 and a lower-weight component (E(ω|y) = .06) associated with a

return equal to .094. However, differences between these components is not stark, as the marginal

posterior distributions overlap considerably and the higher-weight component is associated with a

larger return to education only 68 percent of the time. A similar pattern is found within the M = 3
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case, as posterior means of β1 (and associated component weights w) are .116 (.880), .113 (.109)

and .078 (.011). Taken together, these results point toward a model with homogenous returns to

schooling: the single-component specification receives the most support from the data and results

allowing for additional heterogeneity often produce similar values of the slope parameter. The

primary reason for preferring heterogeneity in the more general model of Table 1 appears to be its

allowance for higher-variance outcomes, through heterogeneity in both β0 and σ2.

5 Summary

This chapter reviewed Bayesian approaches to the estimation of some models useful for research

in labor economics and related disciplines. As much of the appeal of Bayesian methods in modern

applications surrounds the computational tools they employ, this discussion began with an illustra-

tion of such tools in a simple binary choice setting. The chapter continued by showing how Markov

Chain Monte Carlo computational methods (namely, the Gibbs sampler) can be employed to esti-

mate a standard treatment-response model - a specification that underlies much work in this area.

Finally, the topic of nonparametric Bayesian modeling via the Dirichlet Process was introduced,

revealing how application of such methods can flexibly model unknown distributions and uncover

underlying parameter heterogeneity.
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