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1 Introduction

Financial time series often exhibit properties that depart from the usual assumptions of
serial independence and normality. These include volatility clustering, heavy-tailedness
and serial dependence. A voluminous literature on different approaches for modeling
these empirical regularities has emerged in the last decade. In this paper we review the
estimation of a variety of highly flexible stochastic volatility models, and introduce some
efficient algorithms based on recent advances in state space simulation techniques. These
estimation methods are illustrated via empirical examples involving precious metal and
foreign exchange returns. The corresponding Matlab code is also provided.1

The remaining of the paper is structured as follows. Section 2 first discusses the ba-
sic stochastic volatility model and its estimation. In particular, we provide details of
the auxiliary mixture sampler and the precision sampler for linear Gaussian state space
models. In Section 3 we extend the basic stochastic volatility model to allow for moving
average errors. We then discuss an efficient estimation method based on fast band matrix
routines.

Lastly, Section 4 considers another extension—instead of the conventional assumption
of a Gaussian error distribution, we discuss some heavy-tailed distributions that can be
written as scale mixtures of Gaussian distributions. We demonstrate the relevance of
these heavy-tailed stochastic volatility models through an empirical example.

2 Stochastic Volatility Model

In financial time series, it is often observed that large changes in observations tend to
be followed by large changes, while small changes are followed by small changes—the
phenomenon that is referred to as volatility clustering. For instance, during financial
crises movements in financial asset returns tend be large (of either sign), whereas in
“normal periods” the same asset returns might exhibit little time variation.

As an example, Figure 1 depicts the AUD/USD daily returns from January 2005 to
December 2012. For a long stretch of time from early 2005 to mid-2007, the daily returns
mostly fluctuate between ±2%. However, during the global financial crisis of 2007-2008,
the volatility of the daily returns increases dramatically—often reaching as high as ±4%,
sometimes even larger.

Models that assume constant variance, by definition, cannot accommodate time-varying
volatility, and therefore cannot model volatility clustering that is a prominent feature in
a wide variety of financial data. In this section we introduce a class of state space models
that allow for this important feature. Extensions of these simple models are discussed in
later sections.

1Matlab code is available at http://people.anu.edu.au/joshua.chan.
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Figure 1: AUD/USD daily returns from January 2005 to December 2012.

We focus our discussion on modeling the variance of the time series, and for the moment
assume that the observations have a zero mean; a constant mean or a suitable conditional
mean process such as an AR(p) component can be added later on, as is done in the
empirical example in Section 2.3. Specifically, under the stochastic volatility model,
the observation at time t is given by

yt = e
1

2
htεt (1)

for t = 1, . . . , T , where εt ∼ N (0, 1). Hence, the conditional variance of yt is V ar(yt |ht) =
eht , and the state ht is often called the log-volatility. The states are assumed to evolve
according to a stationary process

ht = µh + φh(ht−1 − µh) + ζt (2)

for t = 2, . . . , T , where ζt ∼ N (0, σ2
h) and is independent of εt at all leads and lags. Here

we assume that |φh| < 1, and the states are initialized with h1 ∼ N (µh, σ
2
h/(1 − φ2

h)),
which is the stationary distribution of the process.

To complete the model specification, we assume independent prior distributions for µh,
φh and σ2

h, i.e., p(µh, φh, σ
2
h) = p(µh)p(φh)p(σ

2
h). In particular, consider the following

independent prior distributions:

µh ∼ N (µh0, Vµh), φh ∼ N (φh0, Vφh)1(|φh| < 1), σ2
h ∼ IG(νh, Sh), (3)

where 1(·) denotes the indicator function and IG(·, ·) represents the inverse-gamma dis-
tribution. Note that we impose the stationarity condition |φh| < 1 through the prior
distribution of φh.

The stochastic volatility model is an example of a nonlinear state space model where the
measurement equation (1) is nonlinear in the state. One major challenge of estimating this
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nonlinear model is that the joint conditional density of the states h = (h1, . . . , hT )
′ given

the model parameters and the data is high-dimensional and nonstandard—in contrast
to a linear Gaussian state space model where the conditional density of the states is
Gaussian. Consequently, Bayesian estimation using MCMC becomes more difficult.

2.1 Auxiliary Mixture Sampler

In this subsection we discuss a popular approach—the so-called auxiliary mixture
sampler [13]—for estimating the stochastic volatility model (1)–(2). In a nutshell, the
idea is to approximate the nonlinear stochastic volatility model using a mixture of linear
Gaussian models, where the estimation of the latter models is standard. Specifically, we
first transform the observation yt so that the measurement equation becomes linear in
the log-volatility ht. More precisely, we square both sides of (1) and take the logarithm:

y∗t = ht + ε∗t , (4)

where y∗t = log y2t and ε∗t = log ε2t . In practice, we often set y∗t = log(y2t + c) for some
small constant c, say, c = 10−4, to avoid numerical problems when yt is close to zero.
Then, (2) and (4) define a linear state space model in ht. Note, however, that the error
ε∗t no longer has a Gaussian distribution—in fact, it follows a log-χ2

1 distribution—and
the machinery for fitting linear Gaussian state space models cannot be directly applied.

To tackle this difficulty, the second step of the auxiliary mixture sampling approach is
to obtain an appropriate Gaussian mixture that well approximates f(ε∗t ), the density
function of ε∗t . More precisely,

f(ε∗t ) ≈
n∑

i=1

pi ϕ(ε
∗
t ; µi, σ

2
i ), (5)

where ϕ(x ; µ, σ2) denotes the Gaussian density with mean µ and variance σ2, pi is the
probability of the i-th mixture component, and n is the number of components.

We can equivalently write the mixture density in (5) in terms of an auxiliary random
variable st ∈ {1, . . . , n} that serves as the mixture component indicator (hence, the name
of the approach):

(ε∗t | st = i) ∼ N (µi, σ
2
i ), (6)

P (st = i) = pi. (7)

Using this representation, we have a linear Gaussian model conditional on the component
indicator st and the simulation techniques for estimating such a model can be applied.

The only missing piece is a suitable Gaussian mixture. By matching the moments of the
log-χ2

1 distribution, [13] propose a seven-component Gaussian mixture

f(x) =
7∑

i=1

pi ϕ(x ; µi − 1.2704, σ2
i ),
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Table 1: A seven-component Gaussian mixture for approximating the log-χ2
1 distribution.

component pi µi σ2
i

1 0.00730 −10.12999 5.79596
2 0.10556 −3.97281 2.61369
3 0.00002 −8.56686 5.17950
4 0.04395 2.77786 0.16735
5 0.34001 0.61942 0.64009
6 0.24566 1.79518 0.34023
7 0.25750 −1.08819 1.26261

where the values of the parameters are given in Table 1. We emphasize that these values
are fixed and do not depend on any unknown parameters. Hence, this approximation
does not require any additional computation time in the estimation.

In summary, using the Gaussian mixture approximation in (6) and (7), the model (2) and
(4) is now conditionally linear Gaussian given the component indicators s = (s1, . . . , sT )

′.
For later reference, let y∗ = (y∗1, . . . , y

∗
T )

′, and similarly define h, ζ and ε∗. Bayesian analy-
sis can be performed using a sample from the joint posterior distribution p(h, s, µh, φh, σ

2
h |y).

Posterior draws can be obtained via a Gibbs sampler that cycles through

1. p(h |y∗, s, µh, φh, σ
2
h);

2. p(s |y∗,h, µh, φh, σ
2
h) = p(s |y∗,h);

3. p(µh |y,h, s, φh, σ
2
h) = p(µh |h, φh, σ

2
h);

4. p(φh |y,h, s, µh, σ
2
h) = p(φh |h, µh, σ

2
h);

5. p(σ2
h |y,h, s, µh, φh) = p(σ2

h |h, µh, φh).

These MCMC draws are from the approximate model, and one can reweight the draws
using importance sampling weights to get the exact posterior moments under the orig-
inal model. However, this step is often skipped in practice as reweighting makes little
difference; see also the discussion in [13].

2.2 Precision Sampler for Linear Gaussian State Space Models

Given the prior distributions in (3), the conditionally linear Gaussian model in (2), (4),
(6) and (7) can be estimated using standard MCMC techniques. In particular, one
can simulate from the joint distribution of the log-volatilities p(h |y∗, s, µh, φh, σ

2
h) using

Kalman filter-based algorithms such as those discussed in [2, 9, 7, 8].

Instead, here we apply a new algorithm that exploits the special structure of the model.
Specifically, we will show below that the precision matrix—inverse of the covariance
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matrix—of p(h |y∗, s, µh, φh, σ
2
h) is a band matrix. That is, it contains only a small

number of nonzero elements along a diagonal band. As such, computations involving
band matrices can be done much faster compared to those involving full matrices.

For instance, obtaining the Cholesky decomposition of a band T × T matrix with fixed
bandwidth involves only O(T ) operations (see, e.g., [11], pp. 156) as opposed to O(T 3)
for a full matrix of the same size. A similar reduction in computations holds for other
operations such as multiplication and forward-backward substitution for solving linear
systems. These band matrix algorithms are implemented in standard packages such as
Matlab, Gauss and R.

The idea of exploiting band precision matrices to speed up computations can be traced
back to [20], who discusses simulation of Gaussian Markov random fields; [4] and [17]
propose similar algorithms for linear Gaussian state space models, which are later used
in various applications in, e.g., [1, 5, 6, 12].

We first derive the joint distribution of the states p(h |y∗, s, µh, φh, σ
2
h). To that end, we

rewrite (4) in matrix notation:
y∗ = h+ ε∗,

where
(ε∗ | s) ∼ N (d,Σy∗),

with d = (µs1 − 1.2704, . . . , µsT − 1.2704)′, Σy∗ = diag(σ2
s1
, . . . , σ2

sT
), and the fixed pa-

rameters µ1, . . . , µ7 and σ2
1, . . . , σ

2
7 are given in Table 1. By a simple change of variable,

we have (y∗ | s,h) ∼ N (h+ d,Σy∗). It follows that

log p(y∗ | s,h) = −
1

2
(y∗ − h− d)′Σ−1

y∗ (y∗ − h− d) + c1, (8)

where c1 is a normalization constant.

Next, rewrite the state equation (2) in matrix form:

Hφhh = α̃+ ζ,

where ζ ∼ N (0,Σh), Σh = diag(σ2
h/(1− φ2

h), σ
2
h, . . . , σ

2
h), and

α̃ =




µh
(1− φh)µh

...
(1− φh)µh


 , Hφh =




1 0 0 · · · 0
−φh 1 0 · · · 0
0 −φh 1 · · · 0
...

. . . . . . . . .
...

0 · · · 0 −φh 1



.

Here Hφh is a band matrix with determinant |Hφh | = 1 for all values of φh. By a change
of variable, we have

(h |µh, φh, σ
2
h) ∼ N (α, (H′

φh
Σ−1

h Hφh)
−1),
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where α = H−1
φh
α̃. Noting that |(H′

φh
Σ−1

h Hφh)
−1| = |Σh| = (σ2

h)
T/(1− φ2

h), we have

log p(h |µh, φh, σ
2
h) = −

1

2
log

(
(2πσ2

h)
T

1− φ2
h

)
−

1

2
(h−α)′H′

φh
Σ−1

h Hφh(h−α). (9)

Notice that in this case the precision matrix H′
φh
Σ−1

h Hφh is also band; in fact, it is
tridiagonal.

Since p(h |y∗, s, µh, φh, σ
2
h) ∝ p(y∗ | s,h)p(h |µh, φh, σ

2
h), using the expressions in (8) and

(9), we have

log p(h |y∗, s, µh, φh, σ
2
h)

= −
1

2
(y∗ − h− d)′Σ−1

y∗ (y∗ − h− d)−
1

2
(h−α)′H′

φh
Σ−1

h Hφh(h−α) + c2

= −
1

2

[
h′(H′

φh
Σ−1

h Hφh + Σ−1
y∗ )h

−2h′(H′
φh
Σ−1

h Hφhα+ Σ−1
y∗ (y∗ − d))

]
+ c3, (10)

where c2 and c3 are constants not depending on h. Since this log-density is quadratic in
h, it is Gaussian and we have

(h |y∗, s, µh, φh, σ
2
h) ∼ N (ĥ,K−1

h )

for some mean vector ĥ and precision matrix Kh. To determine ĥ and Kh, compare (10)
with the log-density

log p(h |y∗, s, µh, φh, σ
2
h) = −

1

2
(h′Khh− 2h′Khĥ) + c4

for some normalization constant c4. Hence, we have

Kh = H′
φh
Σ−1

h Hφh + Σ−1
y∗ , ĥ = K−1

h (H′
φh
Σ−1

h Hφhα+ Σ−1
y∗ (y∗ − d)).

Next, we discuss an efficient method to sample from the high-dimensional Gaussian dis-
tribution N (ĥ,K−1

h ) by exploiting the special structure of the precision matrix Kh. More

specifically, since Kh is a band matrix, ĥ can be obtained quickly by solving the linear
system

Khx = H′
φh
Σ−1

h Hφhα+ Σ−1
y∗ (y∗ − d)

for x, which avoids computing the inverse K−1
h .

To get a draw from N (ĥ,K−1
h ), we first obtain the Cholesky factor Ch of Kh, i.e, Kh =

ChC
′
h. Again, this operation can be done quickly as Kh is a band matrix. Next, we

obtain T independent N (0, 1) draws U = (U1, . . . , UT )
′, and return V = ĥ + (C′

h)
−1U.

It is easy to check that the mean vector of V is ĥ and its covariance matrix is

(C′
h)

−1((C′
h)

−1)′ = (C′
h)

−1(Ch)
−1 = (ChC

′
h)

−1 = K−1
h .
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We note that once again (C′
h)

−1U can be computed quickly by solving a suitable linear
system without computing the inverse (C′

h)
−1. This completes Step 1 of the Gibbs

sampler for the stochastic volatility model.

To implement Step 2, note that p(s |y∗,h) =
∏T

t=1 p(st | y
∗
t , ht), and therefore we can

sample each st independently conditional on y∗ and h. Since st is a discrete random
variable that follows a seven-point distribution, it can be easily sampled via the inverse-
transform method (see, e.g., Algorithm 3.2 in [16]), provided we can compute P (st =
i | y∗t , ht) for i = 1, . . . , 7. In fact, we have

P (st = i | y∗t , ht) =
1

ct
pi ϕ(y

∗
t ; ht + µi − 1.2704, σ2

i ),

where ct =
∑7

j=1 pj ϕ(y
∗
t ; ht + µj − 1.2704, σ2

j ) is a normalization constant.

Steps 3 and 5 can be done easily, as both conditional distributions are standard. In
particular,

(µh |h, φh, σ
2
h) ∼ N (µ̂h, Dµh),

where Dµh = (V −1
µh

+ X′
µh
Σ−1

h Xµh)
−1 and µ̂h = Dµh(V

−1
µh
µh0 + X′

µh
Σ−1

h zµh) with Xµh =
(1, 1 − φh, . . . , 1 − φh)

′, zµh = (h1, h2 − φhh1, . . . , hT − φhhT−1)
′ and Σh = diag(σ2

h/(1 −
φ2
h), σ

2
h, . . . , σ

2
h). In addition, we have

(σ2
h |h, µh, φh) ∼ IG(νh + T/2, S̃h),

where S̃h = Sh + [(1− φ2
h)(h1 − µh)

2 +
∑T

t=2(ht − µh − φh(ht−1 − µh))
2]/2.

Finally, it follows from (2) and (3) that

p(φh |h, µh, σ
2
h) ∝ p(φh)g(φh)e

− 1

2σ2

h

∑T
t=2

(ht−µh−φh(ht−1−µh))
2

,

where g(φh) = (1 − φ2
h)

1/2 exp(− 1
2σ2

h

(1 − φ2
h)(h1 − µh)

2) and p(φh) is the truncated nor-

mal prior given in (3). The conditional density p(φh |h, µh, σ
2
h) is nonstandard, and we

implement an independence-chain Metropolis-Hastings step with proposal distribution
N (φ̂h, Dφh)1(|φh| < 1), where Dφh = (V −1

φh
+ X′

φh
Xφh/σ

2
h)

−1 and φ̂h = Dφh(V
−1
φh
φh0 +

X′
φh
zφh/σ

2
h), withXφh = (h1−µh, . . . , hT−1−µh)

′ and zφh = (h2−µh, . . . , hT−µh)
′. Then,

given the current draw φh, a proposal φ
∗
h is accepted with probability min(1, g(φ∗

h)/g(φh));
otherwise the Markov chain stays at the current state φh.

2.3 Empirical Example: Modeling AUD/USD Returns

We illustrate the estimation of the stochastic volatility model using the data depicted in
Figure 1—AUD/USD daily returns from January 2005 to December 2012. More specifi-
cally, we allow for a constant conditional mean in the measurement equation

yt = µ+ e
1

2
htεt
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for t = 1, . . . , T , where εt ∼ N (0, 1). The state equation is again given in (2).

We assume the same independent prior distributions for µh, φh and σ2
h as in (3). In

particular, we set µh0 = 0, Vµh = 5, φh0 = 0.95, Vφh = 1, νh = 10 and Sh = 0.19. These
values imply relatively diffuse priors with prior means E(µh) = 0, E(φh) = 0.95 and
E(σ2

h) = 0.02. For µ we assume the normal prior distribution N (µ0, Vµ), where µ0 = 0
and Vµ = 5. Again this prior is relatively diffuse with prior mean E(µ) = 0.

To estimate the model with the constant conditional mean µ, we simply need an extra
block to sample from the conditional distribution p(µ |y,h), and modify the Gibbs sam-
pler discussed in Section 2.2 by replacing yt with yt − µ. In particular, it can be checked
that

(µ |y,h) ∼ N (µ̂, Dµ),

where Dµ = (V −1
µ +

∑T
t=1 e

−ht)−1 and µ̂ = Dµ(V
−1
µ µ0 +

∑T
t=1 e

−htyt).

2005 2006 2007 2008 2009 2010 2011 2012
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Figure 2: Posterior means (solid line) and 90% credible intervals (dash lines) of the
time-varying standard deviation exp(ht/2); AUD/USD daily returns data.

We obtain 20000 draws from the posterior distribution using the Gibbs sampler outlined
above, after a burn-in period of 1000. Figure 2 depicts the posterior means and quantiles
of the time-varying standard deviation exp(ht/2). As the figure shows, there is substantial
time-variation in the volatility. In particular, between 2005 and early 2007, the estimated
standard deviation mostly fluctuates around 0.5%. It increases to about 1% in mid-2007
and peaks at 3% during the global financial crisis. Although it goes down substantially
after 2009, it is still much higher than the pre-crisis level.

The posterior means, standard deviations and quantiles of the model parameters are
reported in Table 2. For instance, over the period from January 2005 to December 2012,
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Table 2: Posterior means, standard deviations and quantiles of model parameters;
AUD/USD daily returns data.

parameter posterior mean posterior std. dev. 5%-tile 95%-tile
µ −0.029 0.013 −0.051 −0.006
µh −0.748 0.351 −1.275 −0.229
φh 0.989 0.004 0.982 0.995
σ2
h 0.017 0.003 0.012 0.023

the average daily return is estimated to be −0.029%. The posterior mean of the AR(1)
coefficient of the state equation is 0.989, indicating a very high level of persistence.

3 Moving Average Stochastic Volatility Model

We now discuss an extension of the plain vanilla stochastic volatility model introduced in
Section 2. Specifically, the model (1)–(2) assumes the errors in the measurement equation
are serially independent given the log-volatilities. This is often an appropriate assumption
for modeling financial data if we expect that the market is in some sense efficient. Of
course, this assumption can be tested, for example, by building a model that allows for
persistence via moving average errors.

To that end, we consider a variant of the moving average stochastic volatility models
proposed in [3]. More precisely, we expand the stochastic volatility model (1)–(2) by
allowing the errors in the measurement equation to follow an MA(q) process:

yt = µ+ ut, (11)

ut = εt + ψ1εt−1 + · · ·+ ψqεt−q, (12)

ht = µh + φh(ht−1 − µh) + ζt, (13)

where εt ∼ N (0, eht) and ζt ∼ N (0, σ2
h) are independent of each other, and ε0 = ε−1 =

· · · = ε−q+1 = 0. For identification, we impose the invertiblilty conditions—the roots
of the characteristic polynomial associated with the MA coefficients ψ = (ψ1, . . . , ψq)

′

are all outside the unit circle. As before, we assume that |φh| < 1 and the states are
initialized with h1 ∼ N (µh, σ

2
h/(1 − φ2

h)). It is obvious that if ψ1 = · · · = ψq = 0, the
model (11)–(13) reduces to the standard stochastic volatility model discussed in Section 2.

Recall that under the standard stochastic volatility model (1)–(2), the conditional vari-
ance of the observation yt is simply eht . Here, under the moving average variant, the
conditional variance of yt is given by

V ar(yt |µ,ψ,h) = eht + ψ2
1e
ht−1 + · · ·+ ψ2

qe
ht−q .

That is, the conditional variance is time-varying through two channels: first, it is a moving
average of the q + 1 most recent variances eht , . . . , eht−q ; and second, the log-volatilities
also evolve according to the stationary AR(1) process in (13).
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Compared to the standard stochastic volatility model, another difference is that yt is no
longer serially independent (even after conditioning on the log-volatilities). In fact, its
conditional autocovariances are given by

Cov(yt, yt−j |µ,ψ,h) =

q−j∑

i=0

ψi+jψie
ht−i

for j = 1, . . . , q and 0 for j > q, where ψ0 = 1. Due to the presence of the time-varying
log-volatilities, the autocovariances of yt are also time-varying.

To complete the model specification, we assume independent prior distributions for µ,
ψ, µh, φh and σ2

h, i.e., p(µ,ψ, µh, φh, σ
2
h) = p(µ) p(ψ) p(µh) p(φh) p(σ

2
h). For ψ, we

assume a multivariate normal prior with support in the region where the invertibility
conditions on ψ hold. For other model parameters, we assume the following independent
prior distributions: µ ∼ N (µ0, Vµ), µh ∼ N (µh0, Vµh), φh ∼ N (φh0, Vφh)1(|φh| < 1) and
σ2
h ∼ IG(νh, Sh).

The next section discusses an efficient algorithm to estimate this moving average model
that exploits the band structure of covariance matrix of y. Then in Section 3.2 we illustrate
the algorithm and the relevance of the extension through an empirical example that
involves Philippine peso returns during the global financial crisis.

3.1 Estimation

We consider an efficient sampler—that builds upon band matrix algorithms—for esti-
mating the moving average stochastic volatility model in (11)–(13). A key ingredient of
this sampler is a quick way to evaluate the likelihood function that exploits the band
structure of the covariance matrix of y—instead of using conventional methods based on
the Kalman filter (see, e.g., [10]).

To obtain the likelihood function, we derive the joint distribution of the observations y.
First rewrite (12) as:

u = Hψε, (14)

where Hψ is a T × T lower triangular matrix with ones on the main diagonal, ψ1 on first
lower diagonal, ψ2 on second lower diagonal, and so forth. For example, for q = 2, we
have

Hψ =




1 0 0 0 · · · 0
ψ1 1 0 0 · · · 0
ψ2 ψ1 1 0 · · · 0
0 ψ2 ψ1 1 · · · 0
...

. . . . . . . . .
...

0 0 · · · ψ2 ψ1 1




.

Since ε ∼ N (0,Sy) with Sy = diag(eh1 , . . . , ehT ), we have u ∼ N (0,Σy), where Σy =
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HψSyH
′
ψ. It follows from (11) and (14) that

(y |µ,ψ,h) ∼ N (µ1,Σy),

where 1 is a T × 1 column of ones.

Note that even though Hψ is a T × T matrix that contains T 2 elements, only (T −
q/2)(q + 1) < T (q + 1) of those elements are nonzero. In addition, since Sy is diagonal,
the covariance matrix Σy is a band matrix. This band structure is again exploited to
speed up computations by using band matrix routines.

Furthermore, noting that |Hψ| = 1 for any ψ, we have |Σy| = |Sy| = exp
(∑T

t=1 ht

)
.

The log-density of y is therefore given by

log p(y |µ,ψ,h) = −
T

2
log(2π)−

1

2

T∑

t=1

ht −
1

2
(y − µ1)′Σ−1

y (y − µ1). (15)

Once again, the product Σ−1
y (y − µ1) can be obtained by solving a linear system of

equations without computing the inverse of Σ−1
y . Therefore, the log-likelihood function

(15) can be evaluated quickly.

Next, posterior draws can be obtained by sequentially sampling from:

1. p(µ |y,h,ψ, µh, φh, σ
2
h) = p(µ |y,h,ψ);

2. p(h |y, µ,ψ, µh, φh, σ
2
h);

3. p(ψ |y,h, µ, µh, φh, σ
2
h) = p(ψ |y,h, µ);

4. p(µh |y,h, µ,ψ, φh, σ
2
h) = p(µh |h, φh, σ

2
h);

5. p(φh |y,h, µ,ψ, µh, σ
2
h) = p(φh |h, µh, σ

2
h);

6. p(σ2
h |y,h, µ,ψ, µh, φh) = p(σ2

h |h, µh, φh).

Step 1 can be easily done by drawing from

(µ |y,h,ψ) ∼ N (µ̂, Dµ),

where Dµ = (V −1
µ + 1′Σ−1

y 1) and µ̂ = Dµ(V
−1
µ µ0 + 1′Σ−1

y y). For Step 2, first note that

if we define ỹ = H−1
ψ (y − µ1), then

(ỹ |µ,ψ,h) ∼ N (0,Sy)

with Sy = diag(eh1 , . . . , ehT ). Hence, the auxiliary mixture sampler discussed in Sec-
tion 2.1 can be directly applied to sample from p(h |y, µ,ψ, µh, φh, σ

2
h).
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To implement Step 3, observe that given the prior p(ψ), the conditional posterior density
is given by p(ψ |y, µ,h) ∝ p(ψ) p(y |µ,ψ,h), where both densities on the right-hand side
can be evaluated quickly at any ψ. Here we maximize log p(ψ |y, µ,h) numerically and

obtain the mode and the negative Hessian evaluated at the mode, denoted as ψ̂ and Kψ,
respectively. Then, draws from p(ψ |y, µ,h) can be obtained using an independence-chain

Metropolis-Hastings step with proposal density N (ψ̂,K−1
ψ ).

Finally, we can sample from the densities p(µh |h, σ
2
h, φh), p(φh |h, µh, σ

2
h) and p(σ

2
h |h, µh, φh)

in the same way as discussed in Section 2.2.

3.2 Empirical Example: Modeling PHP/USD Returns during
Crisis

Figure 3 depicts the daily returns of the Philippine peso against the US dollar from the
beginning of the global financial crisis, specifically from July 2007 to December 2012.
We fit the data using the moving average stochastic volatility model in (11)–(13). In
particular, we consider the MA(1) process ut = εt + ψεt−1. Recall that this moving
average variant reduces to the standard stochastic volatility model when ψ = 0. Hence,
one main focus is to investigate if the posterior density of ψ has mass concentrated around
zero.

2007 2008 2009 2010 2011 2012 2013
−2

−1.5

−1

−0.5

0

0.5

1

1.5

Figure 3: PHP/USD daily returns from July 2007 to December 2012.

For the prior hyperparameters, we set µ0 = 0, Vµ = 5, µh0 = 0, Vµh = 5, φh0 = 0.95, Vφh =
1, νh = 10 and Sh = 0.19. These values imply relatively diffuse priors with prior means
E(µ) = 0, E(µh) = 0, E(φh) = 0.95 and E(σ2

h) = 0.02. For ψ we assume the truncated
normal prior distribution N (ψ0, Vψ)1(|ψ| < 1) with ψ0 = 0 and Vψ = 1.
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Posterior analysis is based on 20000 draws from the posterior distribution obtained via
the sampler described in Section 3.1, after a burn-in period of 1000. We report the
posterior means, standard deviations and quantiles of the model parameters in Table 3.
The average daily return over the sample period is estimated to be −0.009%. Compared
to the results for AUD/USD daily returns data (see Table 2), PHP/USD daily returns
exhibit much lower volatility, although φh is estimated to be about the same magnitude.

Table 3: Posterior means, standard deviations and quantiles of model parameters;
PHP/USD daily returns data.

parameter posterior mean posterior std. dev. 5%-tile 95%-tile
µ −0.009 0.010 −0.024 0.007
µh −2.187 0.290 −2.589 −1.793
φh 0.983 0.008 0.970 0.994
σ2
h 0.018 0.004 0.012 0.025
ψ 0.141 0.026 0.098 0.184

The MA(1) coefficient ψ is quite precisely estimated with posterior mean around 0.141.
In addition, a 90% credible interval is (0.098, 0.184)—which excludes zero—indicating
that ψ is highly unlikely to be around zero. To investigate this issue further, we compute
the posterior density p(ψ |y) as follows. Since this density has support in (−1, 1) and is
known up to a normalization constant, it can be evaluated on a grid and renormalized
such that the area under the curve is one. We can then estimate p(ψ |y) using the Monte
Carlo average

p̂(ψ |y) =
1

R

R∑

i=1

p(ψ |y, µ(i),h(i))

by summing over the posterior draws µ(i) and h(i) for i = 1, . . . , R.
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Figure 4: Estimate of p(ψ |y); PHP/USD daily returns data.

The result is reported in Figure 4. The plot shows that most of the mass for ψ is
concentrated between 0.05 and 0.25, with virtually no mass around zero. This highlights
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the relevance of extending the standard stochastic volatility model to allow for moving
average errors. To formally compare the moving average model with the standard variant,
we perform a Bayesian model comparison exercise by computing the Bayes factor (see,
e.g., [14] pp. 3–4) of the two models.

Since the models are nested—the standard stochastic volatility model can be recovered by
setting ψ = 0—the Bayes factor in favor of the moving average model against the standard
variant can be obtained using the Savage-Dickey density ratio (see, e.g., [21]): BF =
p(ψ = 0)/p(ψ = 0 |y). That is, we evaluate the marginal prior and posterior densities
for ψ at zero, and their ratio gives the relevant Bayes factor. The numerator density is
a univariate truncated normal density that can be easily evaluated. The denominator

density is nonstandard form, but it can be estimated using ̂p(ψ = 0 |y). Using this
approach, the Bayes factor is estimated to be 49600, indicating overwhelming evidence
in favor of the moving average stochastic volatility model.

4 Stochastic Volatility Models with Heavy-Tailed Er-

ror Distributions

In addition to volatility clustering, another prominent feature in typical financial data is
the presence of outliers. The conventional assumption of a Gaussian error distribution
might be inappropriate in this context as Gaussian distributions have exponentially de-
caying tails. Consequently they have little mass for more extreme values. In this section,
we discuss some heavy-tailed distributions that can be used to address this issue. In
particular, these distributions can be written as scale mixtures of Gaussian distributions,
which facilitates estimation via data augmentation. Specifically, consider the model

yt = µ+ e
1

2
htλ

1

2

t εt, (16)

ht = µh + φh(ht−1 − µh) + ζt, (17)

where εt ∼ N (0, 1), ζt ∼ N (0, σ2
h) and λt are independent of each other. As before, we

assume |φh| < 1 and h1 ∼ N (µh, σ
2
h/(1− φ2

h)).

Different distributional assumptions of the scale mixture variable λt leads to different
error distributions. For example, if we assume that λt has an exponential distribution
with mean parameter 2, i.e., λt ∼ E(1/2), then the error ε̃t = λ

1/2
t εt follows the double-

exponential distribution with density function (see [16] pp. 118-119)

f(x) =
1

2
e−|x|.

Note that even though the tails of this density function are exponentially decaying, they
decay at a rate that is slower than those of Gaussian distributions.

Another example is the normal log-normal distribution. More precisely, if

(log λt | τ) ∼ N (−0.5τ 2, τ 2),
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then ε̃t = λ
1/2
t εt follows the normal log-normal distribution; for more details see [19].

A third example is the well-known Student-t distribution: if

(λt | ν) ∼ IG(ν/2, ν/2), (18)

then ε̃t = λ
1/2
t εt has a standard Student-t distribution with degree of freedom parameter

ν. For a textbook treatment, see [15] pp. 254–255; for applications involving stochastic
volatility models, see [18] and [22].

Hence, the stochastic volatility model with Student-t errors are defined by (16), (17) and
(18). To complete the model specification, we assume independent prior distributions
for µ, ν, µh, φh and σ2

h. More specifically, consider: µ ∼ N (µ0, Vµ), ν ∼ U(0, ν̄), µh ∼
N (µh0, Vµh), φh ∼ N (φh0, Vφh)1(|φh| < 1) and σ2

h ∼ IG(νh, Sh). In particular, ν follows a
uniform distribution with mean ν̄/2 and support (0, ν̄).

4.1 Estimation

We now discuss the estimation of the stochastic volatility model with a Student-t error
distribution in (16), (17) and (18). The algorithm is illustrated in Section 4.2 via an
empirical example involving daily returns on the silver spot price.

Let λ = (λ1, . . . , λT )
′. Posterior draws can be obtained via the following sampler that

cycles through:

1. p(µ |y,h,λ, ν, µh, φh, σ
2
h) = p(µ |y,h,λ);

2. p(h |y,λ, µ, ν, µh, φh, σ
2
h) = p(h |y,λ, µ, µh, φh, σ

2
h);

3. p(λ |y,h, µ, ν, µh, φh, σ
2
h) =

∏T
t=1 p(λt | yt, ht, µ, ν);

4. p(ν |y,h,λ, µ, µh, φh, σ
2
h) = p(ν |λ);

5. p(σ2
h |y,h,λ, µ, ν, µh, φh) = p(σ2

h |h, µh, φh);

6. p(µh |y,h,λ, µ, ν, φh, σ
2
h) = p(µh |h, φh, σ

2
h);

7. p(φh |y,h,λ, µ, νµh, σ
2
h) = p(φh |h, µh, σ

2
h).

For Step 1, we only need to modify the corresponding step in the standard stochastic
volatility model. More precisely, we have

(µ |y,h,λ) ∼ N (µ̂, Dµ),

where Dµ = (V −1
µ +

∑T
t=1 e

−htλ−1
t )−1 and µ̂ = Dµ(V

−1
µ µ0 +

∑T
t=1 e

−htλ−1
t yt).
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To implement Step 2, we first transform the data ˜̃y = Λ− 1

2 (y − µ1), where Λ− 1

2 =

diag(λ
− 1

2

1 , . . . , λ
− 1

2

T ). Then,

(˜̃y |µ,h,λ) ∼ N (0,Sy)

with Sy = diag(eh1 , . . . , ehT ). Therefore, we can directly apply the auxiliary mixture
sampler in Section 2.1 to simulate (h |y,λ, µ, µh, φh, σ

2
h).

Next, since λ1, . . . , λT are conditionally independent given the model parameters and the
data, we can sample each of them sequentially. In fact, we have

(λt | yt, ht, µ, ν) ∼ IG

(
ν + 1

2
,
ν + e−ht(yt − µ)2

2

)
.

To implement Step 4, we first derive the log-density log p(ν |λ): it follows from (18) and
the prior assumption ν ∼ U(0, ν̄) that

log p(ν |λ) =
Tν

2
log(ν/2)− T log Γ(ν/2)−

(ν
2
+ 1

) T∑

t=1

log λt −
ν

2

T∑

t=1

λ−1
t + c5

for 0 < ν < ν̄, where c5 is a normalization constant. It is easy to check that the first and
second derivatives of the log-density with respect to ν are given by

d log p(ν |λ)

dν
=

T

2
log(ν/2) +

T

2
−
T

2
Ψ(ν/2)−

1

2

T∑

t=1

log λt −
1

2

T∑

t=1

λ−1
t

d2 log p(ν |λ)

dν2
=

T

2ν
−
T

4
Ψ′(ν/2),

where Ψ(x) = d
dx

log Γ(x) and Ψ′(x) = d
dx
Ψ(x) are respectively the digamma and trigamma

functions.

Since the first and second derivatives can be evaluated quickly, we can maximize log p(ν |λ)
using, e.g., Newton-Raphson method and obtain the mode and the negative Hessian
evaluated at the mode, denoted as ν̂ and Kν , respectively. Then, we implement an
independence-chain Metropolis-Hastings step with proposal distribution N (ν̂, K−1

ν ).

Finally, sampling from the densities p(µh |h, φh, σ
2
h), p(φh |h, µh, σ

2
h) and p(σ

2
h |h, µh, φh)

can be done as discussed in Section 2.2.

4.2 Empirical Example: Modeling Daily Returns on the Silver
Spot Price

In Figure 5 we plot the daily returns on the silver spot price from January 2005 to
December 2012. The data exhibit volatility clustering as expected from financial data.
In addition, there are numerous more extreme returns—as large as ±15%—indicating
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that even after allowing for stochastic volatility, the assumption of a Gaussian error
distribution might not be appropriate.
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Figure 5: Daily returns on the silver spot price from January 2005 to December 2012.

To accommodate the presence of extreme returns, we fit the data using a stochastic
volatility model with Student-t errors. In addition, we also allow for persistence through
an MA(1) error process:

yt = µ+ ut,

ut = εt + ψεt−1,

where εt ∼ N (0, λte
ht), ε0 = 0 and |ψ| < 1. The log-volatilities evolve according to the

state equation (17), and the distribution for the scale mixture variables is given in (18).

For the prior hyperparameters, we set µ0 = 0, Vµ = 5, ψ0 = 0 and Vψ = 1, µh0 = 0, Vµh =
5, φh0 = 0.95, Vφh = 1, νh = 10 and Sh = 0.19. These values imply relatively diffuse priors
with prior means E(µ) = 0, E(ψ) = 0, E(µh) = 0, E(φh) = 0.95 and E(σ2

h) = 0.02. The
prior distribution for ν is U(0, ν̄) with ν̄ = 50, implying a prior mean of 25.

Estimation of the model can proceed by combining the samplers in Sections 3.1 and 4.1.
More specifically, if we define z = H−1

ψ y, then

(z |h,λ,ψ, µ) ∼ N (µH−1
ψ 1,Σz),

where Σz = diag(λ1e
h1 , . . . , λT e

hT ). Hence, the sampler in Section 4.1 can be applied to
z to sample from the full conditional distributions of h, λ, µ, ν, µh, φh and σ2

h. Moreover,
we can quickly evaluate the density of z, which can be used for a Metropolis-Hastings
step for simulating from the full conditional distribution of ψ.
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Table 4: Posterior means, standard deviations and quantiles of model parameters; silver
spot price daily returns data.

parameter posterior mean posterior std. dev. 5%-tile 95%-tile
µ 0.125 0.037 0.064 0.186
µh 1.102 0.232 0.744 1.436
φh 0.984 0.006 0.974 0.993
σ2
h 0.017 0.005 0.011 0.024
ψ −0.088 0.022 −0.120 −0.050
ν 6.675 1.235 5.071 8.894

We obtain 20000 draws from the posterior distribution, after a burn-in period of 1000.
Table 4 reports the posterior means, standard deviations and quantiles of the model
parameters. For example, the average daily return over the sample period is estimated to
be 0.125%. The estimates for µh, φh and σ2

h are similar to those obtained in the previous
two empirical examples.

The posterior mean of the MA(1) coefficient ψ is −0.088 with a 90% credible interval
(−0.12,−0.05)—which excludes 0—indicating some persistence in the errors. Moreover,
the degree of freedom parameter ν is estimated to be about 6.7. This shows that the
error distribution seems to have heavier tails than those of a Gaussian distribution.
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Figure 6: Estimates of p(ν |y) (left panel) and p(ψ |y) (right panel); silver spot price
daily returns data.

The right panel of Figure 6 depicts the estimate of the marginal density p(ψ |y). The
density plot indicates that the value 0 is highly unlikely given the data. The left panel
shows the density plot of p(ν |y), in which most of its mass is concentrated between 5
and 10, highlighting the relevance of the extension to a Student-t error distribution.
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