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Abstract

This article is motivated by the difficulty of applying standard simulation techniques when iden-
tification constraints or theoretical considerations induce covariance restrictions in multivariate
models. To deal with this difficulty, we build upon a decomposition of positive definite matrices
and show that it leads to straightforward Markov chain Monte Carlo samplers for restricted
covariance matrices. We introduce the approach by reviewing results for multivariate Gaussian
models without restrictions, where standard conjugate priors on the elements of the decom-
position induce the usual Wishart distribution on the precision matrix and vice versa. The
unrestricted case provides guidance for constructing efficient Metropolis-Hastings and accept-
reject Metropolis-Hastings samplers in more complex settings, and we describe in detail how
simulation can be performed under several important constraints. The proposed approach is
illustrated in a simulation study and two applications in economics. Supplemental materials for
this article (appendices, data, and computer code) are available online.

Keywords: Accept-reject Metropolis-Hastings algorithm; Bayesian estimation; Cholesky decompo-
sition; Correlation matrix; Markov chain Monte Carlo; Metropolis-Hastings algorithm; Multinomial
probit; Multivariate probit; Unconstrained parameterization; Wishart distribution.

1 Introduction

Theoretical and practical considerations frequently motivate the imposition of restrictions on co-
variance structures in a variety of multivariate statistical models, such as models for binary and
ordinal outcomes, simultaneous equation systems, Gaussian copulas, or models with incidental
truncation or endogenous treatment indicators. For example, multinomial probit (MNP) models
are usually estimated subject to the identification constraint that a diagonal element of the covari-
ance matrix (usually the first) is restricted to one, while multivariate probit (MVP), multivariate
ordinal probit (MOP), and Gaussian copula models are identified by requiring that the covariance
matrix is in correlation form, i.e., all diagonal elements are equal to one. Off-diagonal restrictions
appear frequently in empirical work as well, such as in systems of simultaneous equations, graphical
models, structural vector autoregressions, or in circumstances where parsimony may be desirable –
for instance, when the dimension of the covariance matrix is large relative to the sample size.
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Constructing Markov chain Monte Carlo (MCMC) samplers for models with covariance restric-
tions, however, is non-trivial owing to the non-standard form of the resulting conditional densities
and the positive definiteness requirement. Advances have been made in imposing a constraint on a
single diagonal element of the covariance matrix as in MNP models (McCulloch et al., 2000; Nobile,
2000; Imai and van Dyk, 2005), treatment models (Munkin and Trivedi, 2003; Chib, 2007), and
incidental truncation models (Chib et al., 2009). Unfortunately, those techniques are not readily
extendable to more general cases where additional diagonal or off-diagonal elements are constrained.
When such complications are present, samplers generally require a Metropolis-Hastings (MH) step
in which the specification of a suitable proposal density plays a crucial role. A number of MH simu-
lation approaches have been suggested in this context. To draw the elements of a correlation matrix
in MVP models, Chib and Greenberg (1998) use independence or random walk MH chains, while
Liu and Daniels (2006) consider a reparameterization in which a covariance matrix, drawn from
an inverse Wishart distribution, is subsequently translated to a correlation matrix that is passed
to an MH step. One-at-a-time MH sampling of the components of a correlation matrix has been
implemented in Gaussian copula models by Pitt et al. (2006) using the parameterization of Wong
et al. (2003), and in hierarchical shrinkage models by Barnard et al. (2000) using the griddy Gibbs
sampler (Ritter and Tanner, 1992). In the context of Gaussian graphical models, Atay-Kayis and
Massam (2005) and Carvalho et al. (2007) discuss estimation of precision matrices with off-diagonal
zero constraints implied by the graph of the model. Everson and Morris (2000) use accept-reject
sampling to simulate draws from Wishart distributions with eigenvalue restrictions.

In this article we study the applicability of a particular decomposition of the covariance matrix
that can accommodate both diagonal and off-diagonal restrictions. Specifically, since the covari-
ance matrix Σ is positive definite, one can uniquely factor it by a modified Cholesky decomposition
LΣL′ = D, or equivalently Σ−1 = L′D−1L, where L is a lower triangular matrix with ones on the
main diagonal and D a diagonal matrix with positive diagonal elements. This parameterization is
appealing because the free elements in L are unrestricted, while the positivity of the diagonal ele-
ments of D is easy to check and impose. Because of these features, the decomposition has recently
been employed in maximum likelihood estimation (Pourahmadi, 1999, 2000, 2007) and covariance
matrix modeling through partial autocorrelations (Daniels and Pourahmadi, 2008). The decompo-
sition is useful in Bayesian estimation since it produces the usual Wishart conjugate sampler in the
unrestricted case – in Section 2 we show that simple conjugate priors on D and L induce the usual
Wishart prior on the precision matrix Σ−1 (and vice versa, since the decomposition is one-to-one).
These results offer theoretical continuity as well as means for incorporating additional flexibility
in prior modeling by assuming other prior distributions for the elements of the decomposition so
as to yield classes of priors beyond the Wishart family. The desirability of such extensions was
advocated by Leonard and Hsu (1992) who modeled the matrix logarithm of the covariance matrix.
More importantly, however, the parameterization allows for straightforward Bayesian estimation
in a number of important cases involving restrictions on Σ. Specifically, the method provides a
natural proposal density for MH or accept-reject Metropolis-Hastings (ARMH) sampling (Tierney,
1994; Chib and Greenberg, 1995; Chib and Jeliazkov, 2005) that in many instances may minimize,
or entirely eliminate, the costs of tailoring by constrained optimization. (Appendix B in the on-
line supplemental materials offers details on the ARMH algorithm.) To illustrate the proposed
approach, we construct Markov chain samplers for models involving the following restrictions: (i)
the first diagonal element of Σ is one, (ii) all diagonal elements are ones, and (iii) any off-diagonal
elements are zeros.

The rest of this article is organized as follows. In Section 2, we present the conjugate priors on
the decomposition matrices and show that they induce a Wishart prior on the precision matrix.
The details of the proposed sampler are discussed and it is shown that the unrestricted case requires
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only direct sampling from known densities. The focus of Section 3 is on the handling of various
covariance matrix restrictions, using the unrestricted case as a guide in constructing efficient MH or
ARMH Markov chains. Section 4 illustrates the proposed method with simulated data experiments,
and Section 5 provides two real data applications concerning women’s labor force participation and
commuters’ scheduling of work trips. Section 6 offers brief concluding remarks.

2 An Alternative Parameterization of the Covariance Matrix

Suppose that we haveN independent and identically distributed observations from the p-dimensional

normal distribution ui
iid∼ N (0,Σ), i = 1, . . . , N , and the goal is to estimate the covariance matrix

Σ, which might involve certain diagonal or off-diagonal restrictions. Since Σ is positive definite,
there exist unique matrices L and D such that LΣL′ = D or equivalently Σ−1 = L′D−1L, where
L is a lower triangular matrix with ones on the diagonal and D a diagonal matrix with positive
diagonal elements (for a proof from first principles, see Golub and van Loan, 1983). A number of
other Cholesky-type decompositions have been used (see, for example, Pourahmadi, 2007, and the
references therein), but the one considered here lends itself well to simulation-based estimation. To
establish notation, let λk, k = 1, . . . , p denote the diagonal entries of D and let akj , 1 6 j < k 6 p
denote the free elements of the lower unitriangular matrix L, i.e.,

D ≡


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λp

 , L ≡


1 0 0 · · · 0
a21 1 0 · · · 0

a31 a32 1 · · ·
...

...
...

. . .
...

ap1 ap2 · · · 1

 .

Also define λ ≡ (λ1, . . . , λp)′, ak ≡ (ak1, . . . , ak,k−1)′, k = 2, . . . , p, and a ≡ (a′2, . . . ,a
′
p)
′. The

notation a and L (similarly λ and D) will be used interchangeably in the rest of the article. With
this parameterization, consider the priors

λk
ind∼ IG ((ν + k − p)/2, 1/2) , ν > p, k = 1, . . . , p, (1)

and
ak|λk

ind∼ N (0, λkIk−1), k = 2, . . . , p, (2)

where IG(·, ·) is the inverse gamma distribution. We then have the following result.

Theorem 1 Under the priors in (1) and (2), Σ−1 ≡ L′D−1L has a Wishart distribution Σ−1 ∼
W(ν, Ip). Moreover, the converse is also true. If Σ−1 ∼ W(ν, Ip), then the induced priors on λk,
k = 1, . . . , p and akj, 1 6 j < k 6 p are (1) and (2), respectively.

The theorem can be derived from the Bartlett decomposition, and a detailed proof is provided in
Appendix A in the supplemental materials. This result provides an important equivalence relation
for the case where Σ is unrestricted. It also offers several straightforward extensions. The first of
these follows from the re-scaling property of the Wishart distribution under the more general priors

λk
ind∼ IG (νk0/2, δk0/2) , k = 1, . . . , p, (3)

and
a|λ ∼ N (a0,A0) , (4)

where the elements of a0 need not necessarily be zero, and those of A0 are allowed to be freely
correlated and can possibly depend on λ. Then, we have the following result.
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Corollary 1 As a special case, the priors in (3) and (4) will induce a Wishart distribution for the
matrix Σ−1 ≡ L′D−1L, Σ−1 ∼ W(ν,R) with an arbitrary p × p symmetric positive definite scale
matrix R. More general hyperparameter settings in (3) and (4) will result in distributions for Σ−1

beyond the Wishart class.

A detailed proof of the corollary is given in Appendix A. While those derivations show that
the full spectrum of Wishart results can be recovered in this framework and that some additional
generality is possible in the modeling of the precision matrix, an important point to note is that in
principle one can place alternative, possibly non-conjugate, priors on λ and a to achieve yet more
flexible distributions for the resultant covariance matrix. Extensions are possible by specifying other
priors on the components of the decomposition, e.g. λ can be distributed as gamma, lognormal,
or log-t (the last two of which also allow correlation among the elements of λ); similarly, a can be
modeled more flexibly by mixtures or scale-mixtures of normals, which include the Student-t and
logistic distributions, among others.

In addition to the aforementioned results, parameterization in terms of a and λ can also be
shown to be, in fact, conjugate with respect to a multivariate Gaussian likelihood. Upon defining
wi ≡ Lui and u = (u′1, . . . ,u

′
N )′, and recognizing that |Σ−1| = |L′||D−1||L| = |D|−1 =

∏p
k=1 λ

−1
k ,

the likelihood can be written as

`(u|Σ) ∝ |Σ|−N/2 exp

{
−1

2

N∑
i=1

u′iΣ
−1ui

}

=

(
p∏

k=1

λ
−N/2
k

)
exp

{
−1

2

N∑
i=1

w′iD
−1wi

}

=

(
p∏

k=1

λ
−N/2
k

)
exp

{
−1

2
tr(D−1

N∑
i=1

wiw
′
i)

}

=
p∏

k=1

λ
−N/2
k exp

{
− sk

2λk

}
,

where sk is the (k, k)-element of
∑N

i=1wiw
′
i. Thus, under the inverse gamma prior in (3), for

k = 1, . . . , p, the full conditional distributions λk|u,a are also independent inverse gamma

λk|u,a
ind∼ IG

(
νk0 +N

2
,
δk0 + sk

2

)
. (5)

To obtain the full conditional density for a, observe that the elements aij enter the likelihood as
the coefficients in the regressions of uij on the negative values of {uik}k<j for j = 2, . . . , p. To see
this, note that since

Lui =


1 0 0 · · · 0
a21 1 0 · · · 0

a31 a32 1 · · ·
...

...
...

. . .
...

ap1 ap2 ap3 · · · 1




ui1
ui2
ui3
...
uip

 =


ui1

ui2 + a21ui1
ui3 + a31ui1 + a32ui2

...
uip +

∑p−1
k=1 apkuik

 ,

4



we can rewrite the likelihood as

`(u|Σ) ∝

(
p∏

k=1

λ
−N/2
k

)
exp

{
−1

2

N∑
i=1

(Lui)′D−1(Lui)

}

=

(
p∏

k=1

λ
−N/2
k

)
exp

{
−1

2

N∑
i=1

u2
i1

λ1

}
exp

{
−1

2

N∑
i=1

(ui2 + a21ui1)2

λ2

}
· · ·

· · · exp

{
−1

2

N∑
i=1

(uip +
∑p−1

k=1 apkuik)
2

λp

}
, (6)

which can in turn be written in a more familiar form in which a enters as a vector of regression
coefficients

`(u|Σ) ∝

(
p∏

k=1

λ
−N/2
k

)
exp

{
−1

2

N∑
i=1

(ui −U ia)′D−1(ui −U ia)

}
, (7)

with (note the negative sign)

U i = −



0 · · · · · · 0

ui1 0 · · ·
...

0 ui1 ui2 0 · · · 0

0 · · · 0 ui1 ui2 ui3 0 · · ·
...

... · · · . . . . . . · · · 0
0 · · · 0 · · · 0 ui1 · · · uip


.

Therefore, given the prior in (4), the full-conditional distribution becomes

a|u,λ ∼ N (â, Â), (8)

with Â =
(
A−1

0 +
∑N

i=1U iD
−1U i

)−1
and â = Â

(
A−1

0 a0 +
∑N

i=1U iD
−1ui

)
.

Because D is diagonal, if A0 happens to be diagonal or block-diagonal for the rows of L, i.e.

ak
ind∼ N (ak0,Ak0), k = 2, . . . , p, (9)

the derivations are simplified and the elements of a can be updated in a series of independent steps

ak|u, λk
ind∼ Nk(âk, Âk), k = 2, . . . , p, (10)

where, keeping in mind that Ak0 can possibly depend on λk, we have

Âk =
(
A−1
k0 + λ−1

k X
′
kXk

)−1
, âk = Âk

(
A−1
k0 ak0 + λ−1

k X
′
kzk
)
,

zk = (u1k, . . . , uNk)
′ , Xk = [z1 : · · · : zk−1] .

Given posterior draws a and λ (equivalently L and D) from (5) and (8) (or from (5) and (10)
if A0 is diagonal or block diagonal), a posterior draw of Σ can be obtained simply by computing
Σ = L−1D(L−1)′.

In this section we have considered a parameterization of Σ−1 that can be used as an alternative
to, or an extension upon, Wishart modeling. We have also presented full-conditional distributions
for the elements of the decomposition that can be used to form a straightforward Gibbs sampler
in this setting. In the next section, we turn to evaluating the usefulness of this representation for
estimating restricted versions of Σ. While direct sampling is still possible in some limited cases,
the results presented thus far serve as a helpful guide in constructing straightforward and efficient
Metropolis-Hastings or accept-reject Metropolis-Hastings algorithms for more general problems.
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3 Restrictions on the Covariance Matrix

An important advantage of the proposed approach lies in its ability to accommodate various co-
variance restrictions, both on and off the main diagonal, that are often found in empirical studies.
Here we discuss how this can be done within the framework discussed in Section 2. While a re-
stricted precision matrix can no longer be modeled through a Wishart prior, we emphasize that
prior information can still be incorporated into the analysis through priors on λ and a, although
such priors must depart from the unconstrained versions presented in Section 2 to reflect the de-
sired restrictions on the matrix. However, we also emphasize that in each of the following cases the
required modifications are conceptually straightforward.

In order to be able to deal with covariance restrictions, it is convenient to express each element
of Σ in terms of elements of D and L. By definition, Σ = L−1D(L−1)′ and therefore

σkk = λk +
k−1∑
j=1

λj(akj)2, k = 1, . . . , p, (11)

σkj = akjλj +
j−1∑
h=1

akhajhλh, 1 6 j < k 6 p, (12)

where {akj} are the lower diagonal elements of L−1 and σkj is the (k, j) element of Σ.

3.1 The first diagonal element is restricted to one

This restriction is easy to impose: we only need to observe that by (11), σ11 = λ1. Thus the
condition that the first diagonal element equals one, i.e. σ11 = 1 is the same as restricting λ1 = 1,
or equivalently Pr(λ1 = 1) = 1. For other diagonal elements λk, k = 2, . . . , p, the full-conditional
densities are as in (5), whereas the full-conditional density for a is as in (8) or (10). Hence, this case
only requires Gibbs sampling with direct simulation from known densities, similarly to approaches
using a decomposition of the inverse Wishart distribution such as in Dreze and Richard (1983),
McCulloch et al. (2000), Munkin and Trivedi (2003), and Chib et al. (2009).

3.2 All diagonal elements are restricted to ones

To impose the condition that all diagonal elements are ones, we first observe that from (11) it
follows that σ11 = · · · = σpp = 1 if and only if λi satisfies the recursive equations:

λ1 = 1, (13)

λk = 1−
k−1∑
j=1

(akj)2λj , k = 2, . . . , p. (14)

These equations reveal that under the restriction σ11 = · · · = σpp = 1, λ is a deterministic function
of a and its role is purely notational. It is simply a working parameter that will be used to keep the
notation concise and consistent throughout the paper and will also serve to simplify the derivation
of a reasonable MH proposal density below. Formally, the joint prior for λ and a takes the form

p(λ,a) ∝ p(a)p(λ|a)I(λ > 0), (15)

where p(a) is the density implied by either (4) or (9) depending on the prior specification, p(λ|a)
takes the values defined recursively by (13) and (14) with probability 1, and I(·) is the indicator
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function. This representation guarantees that all elements of λ are positive and satisfy (13) and
(14), so that the resulting Σ is both positive definite and in correlation form.

With the restriction σ11 = · · · = σpp = 1 imposed, the conditional density a|u does not belong
to a known family and a Metropolis-Hastings step is required. However, the results of Section 2
suggest a reasonable way to proceed. By analogy with (8) and (10), we consider MH proposal
densities of the form

f(a|u) = fT (a|µ, τV , κ), (16)

and
f(ak|u) = fT (ak|µk, τV k, κ), k = 2, . . . , p, (17)

where fT (·) is the multivariate-t density with mean µ, scale matrix τV with tuning parameter τ ,
and κ degrees of freedom. We build on the results in Section 2 by combining the expression for
p(a) in (15) with an approximation to (6) or (7) that uses pre-specified values λ̂ and D̂ = diag(λ̂)
(λ and D are unavailable since they are a deterministic function of the MCMC draw a(t) that
has yet to be sampled). Then, by analogy with (8), we have V = (A−1

0 +
∑N

i=1U iD̂
−1
U i)−1 and

µ = V (A−1
0 a0 +

∑N
i=1U iD̂

−1
ui), and by analogy with (10), we have V k = (A−1

k0 + λ̂−1
k X

′
kXk)−1

and µk = V k(A−1
k0 ak0 + λ̂−1

k X
′
kzk). A simple choice of λ̂ can be obtained by iterating a few times

between the expression for µ given here and the equations for λ in (13) and (14) (convergence
is usually achieved in three to four iterations). This choice of λ̂ has performed competitively in
our examples and tends to be fast and undemanding. Moreover, the values for µ and V discussed
above can be useful starting points for optimization when one is interested in finding the mode and
modal dispersion matrix of the posterior for a. Random walk versions of the proposal densities can
be obtained by centering the proposal at µ = a(t−1), where a(t−1) is the latest available draw in
the Markov chain.

The proposal densities in (16) and (17) can be used in MH or ARMH sampling (see Appendix B
for details on the latter algorithm). Once a candidate draw ac is available from the proposal density
f(a|λ̂,u), all terms in (15) and the likelihood in (6) (or equivalently (7)) can be easily evaluated
as a function of ac and the implied Σc = (Lc)−1Dc(L

′c)−1. A posterior draw of a (and therefore
Σ) is obtained by proceeding with an MH step, setting a(t) = ac with probability

min

{
1,

`(u|Σc)p(ac)I(λc > 0)f(a(t−1)|λ̂,u)

`(u|Σ(t−1))p(a(t−1))I(λ(t−1) > 0)f(ac|λ̂,u)

}

and returning a(t) = a(t−1) otherwise. Alternatively, if ARMH sampling is applied, the acceptance
probabilities are spelled out in Appendix B. The ARMH algorithm has the advantage of nesting MH
sampling and being more robust to irregular densities, which, at the cost of additional draws in the
AR step, can mitigate some of the difficulties with MH sampling when good approximations to the
target density are difficult to find, as is often the case in high-dimensional problems. Moreover, in
the current context ARMH simulation is useful because only draws for which I(λc > 0) is satisfied
pass through the accept-reject part of the algorithm, thus enabling better acceptance rates in the
MH part. For these reasons, draws from the ARMH algorithm generally tend to exhibit better
properties than those from similarly constructed MH samplers. We illustrate the application of the
MH and ARMH algorithms suggested above in several examples in Sections 4 and 5.

3.3 Some off-diagonal elements are restricted to zero

We now discuss how to impose the restriction σkj = 0, k > j (by symmetry, σjk is automatically
zero). Multiple restrictions of this type can be imposed similarly, and the examples we consider
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here and in Sections 4 and 5 provide illustration. By (12), it follows that σkj = 0 if and only if

akj = −λ−1
j

j−1∑
h=1

akhajhλh, (18)

where it is understood that the right hand side of the equation is zero when summing over an empty
set (i.e. ak1 = 0). The goal is to derive an equivalent condition on akj . Then we can incorporate
the restriction σkj = 0 into the prior of a in an analogous manner as in the previous case. To this
end, we first express each element of the inverse matrix L−1 in terms of elements of L. Denote
the columns of L−1 as L−1 = [l1 : · · · : lp]. By virtue of being the inverse, we have LL−1 = Ip,
i.e., Llk = ek, k = 1, . . . , p, where ek is a column of zeros except the kth element which is equal
to one. Since L is a lower triangular matrix, we can solve the above system of equations by back
substitution. In fact, one can easily check that we have the explicit formula for aij :

aij = −aij +
∑

j<k1<i

aik1ak1j −
∑

j<k1<k2<i

aik1ak1k2ak1j + . . .+ (−1)i+jai,i−1ai−1,i−2 . . . a21. (19)

For example, a52 is given by a52 = −a52 + (a54a42 + a53a32)− a54a43a32. By the above formula and
(18), we have the desired condition: σij = 0 if and only if

aij =
∑

j<k1<i

aik1ak1j −
∑

j<k1<k2<i

aik1ak1k2ak1j + . . .

+(−1)i+jai,i−1ai−1,i−2 · · · a21 + λ−1
j

j−1∑
k=1

aikajkλk.

Now, to impose the condition σij = 0, aij must be set to be equal the solution of the above expression
with probability 1. It is worth mentioning that the right hand side of the above expression might
involve aij (see the examples below). In general, a Metropolis-Hastings step is required as the
resulting full conditional densities are nonstandard, although, as in the previous case, a natural
proposal density is available based on the results in Section 2. In addition, for certain special cases,
only a Gibbs step is needed. For concreteness of discussion, we demonstrate the proposed algorithm
in two examples.

Example 1. Suppose we have a 4 × 4 covariance matrix and want to impose the conditions
σ31 = σ32 = 0. By (18), we have

σ31 = 0 ⇔ a31 = 0,
σ32 = 0 ⇔ a32 = −λ−1

2 a31a21λ1 = 0,

where the last equality holds because a31 = 0. Now by the formula for the inverse (19)

a31 = −a31 + a32a21,

a32 = −a32.

Combining all equations, we finally have σ31 = σ32 = 0 if and only if a31 = a32 = 0. Therefore,
to produce the restrictions σ31 = σ32 = 0, we have a31 = a32 = 0 with probability one. For the
purposes of illustration, suppose that the priors for the other parameters are a2|λ2 ∼ N1(0, λ2),

a4|λ4 ∼ N3(0, λ4I3), and λk
ind∼ IG ((ν + k − p)/2, 1/2), for ν > p and k = 1, . . . , p. Then the full

conditional densities for a2 and a4 are given in (10) while those of λ1, . . . , λp are given in (5). Notice
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that in this case only direct sampling is required, so that simulation-based estimation under these
restrictions turns out to be very simple with the proposed approach; in contrast, many existing
sampling approaches would be quite difficult to adapt to these restrictions.

Example 2. Suppose we have a 4 × 4 covariance matrix and want to impose the conditions
σ31 = σ42 = 0. By (18), we have

σ31 = 0 ⇔ a31 = 0,
σ42 = 0 ⇔ a42 = −λ−1

2 a41a21λ1.

By the formula for the inverse (19)

a21 = −a21,

a31 = −a31 + a32a21,

a41 = −a41 + a42a21 + a43a31 − a43a32a21,

a42 = −a42 + a43a32.

Combining these equations and solving for a31 and a42, we have σ31 = σ42 = 0 if and only if

a31 = a32a21, (20)

a42 =
a43a32 + λ1λ

−1
2 a21a41

1 + λ1λ
−1
2 a2

21

. (21)

For convenience, partition a into 2 sets: b = (a21, a32, a41, a43) and c = (a31, a42). Notice that
now c is a deterministic function of b and thus its role is purely notational. We incorporate the
restrictions σ31 = σ42 = 0 into the prior as follows: we let a31 = a32a21 and a42 = (a43a32 +
λ1λ

−1
2 a21a41)/(1 + λ1λ

−1
2 a2

21) with probability one while the priors for λ and other elements in a
(i.e., b) can be taken as in (1) and (2), respectively. Observe that given a, the full conditional
densities of λ3 and λ4 are exactly the same as (5). For λ1 and λ2, a Metropolis-Hastings step is
required and we consider a natural proposal density suggested by the results in Section 2

g(λ1, λ2|a,u) = fIG

(
λ1 |

N + ν + 1− p
2

,
s1 + 1

2

)
fIG

(
λ2 |

N + ν + 2− p
2

,
s2 + 1

2

)
, (22)

where fIG is the inverse gamma density, sk the (k, k)-element of
∑N

i=1wiw
′
i and wi ≡ Lui. Given

a candidate draw (λc1, λ
c
2), define Dc = diag(λc1, λ

c
2, λ3, λ4) and let Lc denote the matrix L with

a42 replaced by ac42 = (a43a32 + λc1(λc2)−1a21a41)/(1 + λc1(λc2)−1a2
21). Then the candidate draw is

accepted with probability

min
{

1,
`(u|Σc)p(λc1, λ

c
2)g(λ1, λ2|a,u)

`(u|Σ)p(λ1, λ2)g(λc1, λ
c
2|a,u)

}
.

To obtain a draw from a|λ,u, we utilize the proposal density

f(b|λ,u) = fT (a21|D2d2, D2, κ)fT (a32|D3d3, D3, κ)fT (a41, a43|D4d4,D4, κ), (23)

where, given our assumed priors,

D2 = λ2(1 +U ′1U1)−1, d2 = −U ′1U2/λ2,

D3 = λ3(1 +U ′2U2)−1, d3 = −U ′2U3/λ3,

D4 = λ4(I2 + [U1 : U3]′ [U1 : U3])−1, d4 = − [U1 : U3]′U4/λ4,

Uk = (u1k, · · · , uNk)′, k = 1, . . . , 4.
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Given a candidate draw bc, ac43 and ac32 are determined by equations (20) and (21). Then accept
the draw ac = {bc, cc} with probability

min
{

1,
`(u|Σc)p(bc)f(b|λ,u)
`(u|Σ)p(b)f(bc|λ,u)

}
.

Upon completion of these sampling steps, the resulting posterior draws for Σ = (Lc)−1Dc(L
′c)−1

satisfy the restriction σ31 = σ42 = 0. As suggested earlier, the MH proposal densities discussed
above can also be used as pseudo-dominating proposal densities in ARMH simulation.

4 Examples and Extensions

This section begins with three examples based on the discussion in Section 3 that illustrate the
performance of the proposed approach for dealing with covariance restrictions. We then suggest
techniques for addressing a number of complications that may arise in practice and present evidence
from a simulation study. The first three examples use a sample size of N = 700 observations and
MCMC runs of 11000 iterations of which the first 1000 are discarded as burn-in. To gauge the
performance of the MCMC algorithms, we also report the inefficiency factors for the sampled
parameters, which give a useful metric of the performance of the Markov chain. For a given scalar
parameter θ, the inefficiency factor approximates the ratio of the numerical variance of the posterior
mean from the MCMC output relative to that from hypothetical iid draws. To obtain an estimate of
the latter quantity, we use the method of batch means, where the m draws in the MCMC sample are
batched into v equal non-overlapping groups such that the respective batch means θ̄j , j = 1, . . . , v,
are approximately serially uncorrelated. Then the inefficiency factor is given by the ratio

var(θ|y)/m
var(θ̄|y)/v

,

where the numerator is computed with draws from the main MCMC run and the denominator gives
the variance of the overall mean as implied by the batch means. It can be easily seen that the ratio
will approach 1 as the posterior draws from the Markov chain become less serially correlated.

4.1 Illustrations

Illustration 1: A 4 × 4 covariance matrix with σ11 = σ22 = σ33 = σ44 = 1. In the first
example we generate data from ui

iid∼ N4(0,Σ), i = 1, . . . , 700, where

Σ ≡


σ11 σ12 σ13 σ14

σ21 σ22 σ23 σ24

σ31 σ32 σ33 σ34

σ41 σ42 σ43 σ44

 =


1 0.2 0.3 −0.4

0.2 1 0.6 0.2
0.3 0.6 1 −0.2
−0.4 0.2 −0.2 1

 .

We impose the condition σ11 = σ22 = σ33 = σ44 = 1 by the MH method discussed in Section 3.2.

We assume the following prior for ak: ak
ind∼ Nk−1(0, Ii−1), k = 2, . . . , p, while the priors for

λk, k = 1, . . . , p are determined by (13) and (14) together with the restriction that λk > 0.
The one-block MH algorithm for a described in Section 3.2 produces MCMC draws for which all
autocorrelations drop below 0.05 after a few lags (examples are given in Figure 1). We report the
true values, posterior means and standard deviations, together with the corresponding inefficiency
factors in Table 1.
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Figure 1: Examples of parameter autocorrelations in the first illustration.

Table 1: Simulation results for a 4× 4 correlation matrix where σ11 = σ22 = σ33 = σ44 = 1.
Parameter True Value Posterior Mean Posterior SD Inefficiency

σ21 0.2 0.195 0.035 2.6
σ31 0.3 0.298 0.032 2.6
σ41 -0.4 -0.382 0.030 2.4
σ32 0.6 0.589 0.021 2.1
σ42 0.2 0.216 0.032 2.5
σ43 -0.2 -0.205 0.032 2.6

Illustration 2: A 4× 4 covariance matrix with σ31 = σ32 = 0. In this example we generate

data from ui
iid∼ N4(0,Σ), i = 1, . . . , 700, where

Σ ≡


σ11 σ12 σ13 σ14

σ21 σ22 σ23 σ24

σ31 σ32 σ33 σ34

σ41 σ42 σ43 σ44

 =


1.2 0.9 0 0.5
0.9 1 0 0.3
0 0 0.9 0.2

0.5 0.3 0.2 1.1

 .

It is shown in Example 1 in Section 3.3 that the conditions σ31 = σ32 = 0 are equivalent to
a31 = a32 = 0. The details of the prior densities with the restrictions imposed, together with the
posterior densities are also given in that section. The simplicity of the resulting sampler in this
example can be rather surprising – despite the restrictions, only trivial Gibbs sampling is required
without any MH steps. In the simulation below all posterior autocorrelations drop below 0.05 after
the first lag. We report the true values, posterior means and standard deviations in Table 2.

Table 2: Simulated results for a 4× 4 covariance matrix with σ31 = σ32 = 0.
Parameter True Value Posterior Mean Posterior SD Inefficiency

σ11 1.2 1.200 0.064 1.00
σ21 0.9 0.897 0.054 1.00
σ41 0.5 0.491 0.047 1.00
σ22 1.0 1.001 0.053 1.00
σ42 0.3 0.302 0.041 1.00
σ33 0.9 0.891 0.048 1.00
σ43 0.2 0.191 0.035 1.00
σ44 1.1 1.121 0.060 1.00

Illustration 3: A 4× 4 covariance matrix with σ11 = 1 and σ31 = σ42 = 0. In this example

we generate data from ui
iid∼ N4(0,Σ), i = 1, . . . , 700, where

Σ ≡


σ11 σ12 σ13 σ14

σ21 σ22 σ23 σ24

σ31 σ32 σ33 σ34

σ41 σ42 σ43 σ44

 =


1 0.5 0 0.4

0.5 0.9 −0.2 0
0 −0.2 1.1 −0.3

0.4 0 −0.3 0.8

 .
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We impose the conditions σ11 = 1 and σ31 = σ42 = 0 by letting λ1 = 1, a31 = a32a21 and
a42 = (a43a32 + λ−1

2 a21a41)/(1 + λ−1
2 a2

21) with probability 1. A posterior simulator was discussed
in detail in example 2 of Section 3.3 – the acceptance rates in both MH steps of that sampler were
above 90%, and all posterior autocorrelations dropped below 0.05 after the first lag. We report the
true values, posterior means and standard deviations in Table 3.

Table 3: Simulated results for a 4× 4 covariance matrix with σ11 = 1 and σ31 = σ42 = 0.
Parameter True Value Posterior Mean Posterior SD Inefficiency

σ21 0.5 0.500 0.029 1.00
σ41 0.4 0.395 0.026 1.00
σ22 0.9 0.890 0.044 1.00
σ32 -0.2 -0.211 0.030 1.00
σ33 1.1 1.096 0.057 1.00
σ43 -0.3 -0.314 0.034 1.00
σ44 0.8 0.823 0.040 1.00

4.2 Practical caveats, extensions, and suggestions

The above three illustrations show that a variety of covariance restrictions can be handled by
adopting the proposed approach. However, we caution that practical applications often involve
one or more unfavorable factors that could impede the performance of the Markov chain. For
this reason, we now draw attention to such potential complications, point out their impact on the
simulation of the covariance matrix, and discuss practical solutions for addressing them.

One complication, which is of particular practical relevance, occurs because restricted covariance
matrices arise most commonly in discrete data models, where latent data augmentation is an
essential part of the sampling algorithm. However, in multivariate models, the latent data vector
y∗i that underlies the observed data vector yi (for example, in binary data models yij = I(y∗ij > 0)
for i = 1, . . . , N , j = 1, . . . , p) is sampled one-element-at-a-time by drawing from [y∗ij |y,y∗i,−j ] for
j = 1, ..., p (see, for example, Geweke, 1991; Robert, 1995). When the dimension of y∗i is large,
or when the correlations between its elements are high, the latent data draws mix slowly and as a
consequence also slow down the mixing of the entire chain, including the sampler for the covariance
matrix. In this case, even a well performing sampler for Σ can suffer because at every MCMC
iteration it may be conditioned on poorly mixing latent data. Such circumstances may require
longer MCMC chains to reduce the simulation standard errors of the posterior estimates.

A second obvious complicating factor is dimensionality. It can present serious difficulties since
the number of parameters in Σ grows quadratically with p. In cases that require MH sampling, the
problem of dimensionality can manifest itself through difficulties in tuning the proposal density –
approximations that work reasonably well for small p may deteriorate due to the compounding of
small discrepancies as p is increased. To deal with this problem, the parameters of the covariance
matrix can be sampled in a sequence of smaller, more manageable blocks as in Chib and Greenberg
(1998). Appropriate blocking and sequential sampling can be applied rather naturally in the current
context. For the setting in Section 3.2, blocking can take place according the rows of L as in (17),
where, in case A0 is not block diagonal, Ak0 and ak0 should be taken as the conditional, not
marginal, moments of the prior distribution given the other rows of L; in Section 3.3, it is more
sensible to block the parameters along the lines of a and λ. Such blocking offers a straightforward
way of extending the techniques of Sections 3.2 and 3.3 to larger matrices when the limitations of
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single-block MH sampling may become more pronounced as p is increased. These techniques are
applied in the examples in Section 5.

While appropriate blocking of the elements of Σ may be a useful way of dealing with high-
dimensional matrices, there are benefits to joint sampling of the entire covariance matrix in a
single block, especially when the parameters are correlated. In such cases, we argue in favor of
using tuned ARMH sampling, built upon the parameterization of Sections 2 and 3, as a way of
mitigating some of the pitfalls of high-dimensional MH samplers. Improvements in sampling can
be expected because, at the cost of additional tuning and simulation in the AR step, the MH
draws from the ARMH algorithm tend to exhibit better properties than similarly constructed MH
samplers. We study the performance of such an algorithm next.

To consider the impact of issues such as dimensionality, latent data augmentation, and magni-
tude of correlations in Σ, we focus on the case where Σ is a p× p correlation matrix and illustrate
the aforementioned issues with data from the model

y∗i = Xiβ + εi, εi ∼ Np(0,Σ), i = 1, . . . , N, (24)

where Xi is a p× k covariate matrix with entries sampled iid from a standard normal distribution,
and β is a k × 1 vector which we set to equal 0.3 ∗ 1. We let N = 1500 and k = 4, and study
the effect of dimensionality by varying p over three possible settings, namely p = 4, p = 6, and
p = 8. In order to elicit the effects of latent data augmentation, we fit the model (i) as if y∗i were
continuous observed data i.e. yi = y∗i and, (ii) as if y∗i were unobserved latent data underlying the
observed binary outcomes yi, where yij = 1{y∗ij > 0}, as in MVP models. We also consider a “high
correlation” case where

Σ[j, k] = max{0, (1− 0.25|j − k|)},

and a “low correlation” case where

Σ[j, k] =
{

(1/2)|j−k| if |j − k| ≤ 2
0 otherwise

.

In each case we estimate the p(p − 1)/2 free correlations in Σ through a single-block ARMH
algorithm. Parameterization of the correlation matrix is in terms of a as in Section 3.2. The pseudo-
dominating density in the algorithm is based on (16), with µ and V being determined by additional
quasi-Newton maximization starting with the approximations based on λ̂ that were discussed in
Section 3.2. The tuning parameters τ and κ in (16) are set at τ = 1.5 and κ = 10 in order to provide
a sufficiently heavy-tailed proposal since there is no guarantee that local features of the target, such
as its mode and modal dispersion, will be useful for addressing the potential for multimodality,
skewness, kurtosis, or other complications in the tails. In addition, we choose the constant c in
the AR step of the ARMH algorithm so that the degree of domination cfT (a|µ,τV ,κ)

`(u|β,Σ)fN (a|a0,A0) = 1.5
evaluated at a = µ. The sampling of β (and {y∗i } in the discrete data case) is done as in Chib and
Greenberg (1998).

Boxplots of the inefficiency factors for the elements of Σ under a number of different simulation
settings are presented in Figure 2. The four panels in that figure depict continuous and discrete
data cases under the “high correlation” and “low correlation” scenarios discussed above. From
the figure we see that as the dimension of Σ is increased within each panel (implying a larger
number of parameters to be estimated – 6 when p = 4, 15 when p = 6, and 28 when p = 8),
the inefficiency factors increase in both the continuous and discrete data settings. As one might
expect, the inefficiency factors in the discrete data panels of the figure are higher than those
in the continuous data panels. This is due, on the one hand, to the fact that binary data are
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less informative about covariate effects because the threshold-crossing nature of the discretization
transformation yij = 1{y∗ij > 0} only contains information on signs, and not on magnitudes; on the
other hand, the larger inefficiency factors in the binary case can be attributed in part to the fact
that the elements of y∗i are generally sampled one-at-a-time, conditionally on all other elements
in y∗i (Geweke, 1991; Robert, 1995). All else being equal, higher correlations in Σ and larger
p lead to larger inefficiency factors for the discrete data case, whereas the two continuous data
panels of Figure 2 reveal dependence of the inefficiency factors on p, but do not exhibit visible
inefficiency factor deterioration when the correlations in Σ are increased since in those panels
yi = y∗i , i = 1, . . . , N , need not be resampled at every MCMC iteration.

Figure 2: Inefficiency factors in the one-block sampling of correlation matrices of varying sizes in
continuous and binary data models with high or low correlations. The number of free parameters
in Σ is 6 when p = 4, 15 when p = 6, and 28 when p = 8.

To demonstrate the trade-off between numerical and statistical efficiency that is intrinsic in the
ARMH algorithm, we also report the acceptance rates in the AR and MH steps. When p = 4,
the AR acceptance rates were between 0.33 and 0.34, with corresponding MH acceptance rates of
1, indicating that the specific choices of τ , κ, and c produced a pure AR sampler in which the
proposal dominates the posterior. When p was increased to 6, the AR rates were in the range
0.52-0.54, whereas the MH rates dropped to 0.74-0.76. When p was further increased to 8, the
AR rates were in the range 0.67-0.7, and the MH acceptance rates were between 0.38 and 0.4.
This behavior of the acceptance rates is an indication that in high dimensions the proposal density
produces smaller regions of domination, that the posterior is not very well-behaved, and that it is
only roughly approximated by its mode and modal curvature. However, our implementation shows
that the applicability of such approximations can be largely extended because of the adaptability
of the ARMH algorithm, which has allowed us to sample the 28 parameters defining the covariance
matrix in a single block, despite the irregularities of the posterior surface.

In summary, we mention that in a number of cases the proposed approach has required no MH
steps. However, when such steps are required, the framework discussed in this paper leads to a
reasonable MH proposal density. When further complications are present (e.g. high dimensional-
ity, high correlations, discrete data), the approach allows for splitting of the parameters in Σ into
smaller, more manageable blocks that can be sampled sequentially. Grouping of the parameters
and extensions to high-dimensional structured matrices can often be facilitated by contextual con-
siderations such as the conditional independence restrictions occurring in graphical models (e.g.
Carvalho et al., 2007). Alternatively, single-block simulation can be pursued through a flexible
ARMH step when needed. In the next section, we apply these techniques to analyze two real data
applications.

5 Applications

5.1 Intertemporal labor force participation of married women

Our first application uses data from Chib and Jeliazkov (2006) to study the labor force participation
decisions (1=working, 0=not working) of 1545 married women in the age range 17-66 over a 7-year
period (1979-1985). Since the binary decision of whether or not to participate in the labor force is
expected to be correlated over time, we consider an MVP model with a 7 × 7 correlation matrix
containing a total of 21 unknown correlation parameters. Under the priors β ∼ N (0, I8), and
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a ∼ N (0, I21)I(a ∈ C), where a ∈ C if and only if the implied elements of λ are all positive, the
MCMC sampler is constructed by sequentially drawing from the distributions for the regression
parameters [β|y∗,a], the latent data [y∗|y,β,a], and the correlation matrix [a|y∗,β]. The first
two steps are identical to those in Chib and Greenberg (1998), whereas in the third step we sample
[a|y∗,β] and construct Σ−1 = L′D−1L as in Section 3.2. Since the covariance matrix is large, we
estimate it in two ways: (i) we split Σ into smaller blocks, following Chib and Greenberg (1998),
and sequentially draw from ak|y∗,β,a−k, k = 2, . . . , 7, where a−k denotes all parameters in a
except ak, and (ii) we sample Σ through a single-block ARMH algorithm as discussed in Section 4.
The samplers are run for 31000 iterations with the first 1000 discarded as burn-in. Summaries of
the posterior distribution for the model parameters are reported in Tables 4 and 5.

Table 4: Parameter estimates in the women’s labor force participation application.
Posterior

Parameter Covariate Mean SD
β1 Intercept (column of ones) -0.636 0.312
β2 Woman’s age in years 0.042 0.015
β3 Woman’s age squared, divided by 100 -0.001 0.000
β4 Race (1 if black, 0 otherwise) 0.270 0.069
β5 Attained education (in years) at time of survey 0.103 0.012
β6 Number of children aged 0-2 in that year -0.299 0.028
β7 Number of children aged 3-5 in that year -0.183 0.025
β8 Annual labor income of head of household -0.154 0.025

Table 4 contains the covariate effect estimates for the MVP model. It shows that conditional
on the covariates, black women, better educated women, and women whose husbands have low
earnings, are more likely to work. After controlling for the effects of the remaining covariates,
we see that the presence of children has a larger effect on the probability of working when the
children are younger, as expected. In addition, labor force participation is a concave function of
age, suggesting varying tastes and trade-offs over a woman’s life-cycle, but also capturing the fact
that age is revealing of social values, education type, experience, and human capital.

Table 5: Correlation estimates for the women’s labor force participation data.
Posterior Posterior Posterior

Parameter Mean SD Parameter Mean SD Parameter Mean SD
σ21 0.844 0.018 σ52 0.696 0.026 σ65 0.856 0.018
σ31 0.745 0.026 σ53 0.812 0.021 σ71 0.570 0.034
σ32 0.854 0.017 σ54 0.865 0.017 σ72 0.586 0.033
σ41 0.693 0.026 σ61 0.637 0.030 σ73 0.670 0.030
σ42 0.758 0.024 σ62 0.659 0.029 σ74 0.729 0.027
σ43 0.883 0.014 σ63 0.697 0.028 σ75 0.825 0.021
σ51 0.645 0.030 σ64 0.786 0.023 σ76 0.897 0.014

As can be seen from Table 5, the correlation parameters are all quite large and relatively
precisely estimated. The correlations decline as the distance between time periods grows larger,
which is consistent with the results in Chib and Jeliazkov (2006), who suggest that the correlations
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can eventually be explained by allowing for dependence on lagged responses and accounting for
heterogeneity in the intercept and the effects of children. The inefficiency factors for the MH and
ARMH samplers of Σ are shown in Figure 3, and, given the caveats on latent data augmentation
discussed in Section 4, indicate a good overall performance of these MCMC samplers. The figure
demonstrates that both samplers present viable options for estimation, but that the additional
tuning and simulation costs of ARMH sampling pay off through a reduction in inefficiency factors
relative to multi-block MH sampling.

Figure 3: Inefficiency factors for Σ in the MVP application. The first set of inefficiency factors is
obtained from a single-block ARMH sampler, whereas the second set comes from multi-block MH.

5.2 Scheduling of work trips

Our second application deals with the scheduling of work trips by 522 San Francisco Bay Area
commuters, which was studied by Small (1982) and Brownstne and Small (1989) using conditional
and nested logit models. In this example, we analyze these data using an MNP model and focus
on a parsimoniously parameterized covariance structure. The data set consists of commuters’ self-
reported regular time of arrival relative to the official work start time. For our purposes, the arrival
times are grouped into six 10-minute intervals because data deficiencies and parameter proliferation
in Σ preclude analysis with finer 5-minute arrival intervals. The observed 6× 1 multinomial vector
yi is modeled in terms of a 5× 1 latent representation

y∗i = Xiβ + εi, i = 1, . . . , N,

where yi[1] = I (max(y∗i ) ≤ 0) and yi[j+1] = I (y∗i [j] = max(y∗i )) I (max(y∗i ) > 0) andXi contains
the covariates for categories j = 2, . . . , 5 differenced with respect to the baseline category (j = 1). In
economics, this latent representation is usually given a utility interpretation in which y∗i represent
unobserved utility differences and economic agents choose the alternative that gives the largest
utility. To identify the scale of the model, Σ incorporates the identification restriction σ11 = 1.

One parsimonious model that is of interest in this application involves a tridiagonal covariance
matrix such that σij = 0 for i > j + 2 or j > i + 2. This choice is guided by the potential for
respondents to round off reported arrivals to within 10 or 15 minutes, thus creating correlation
between adjacent categories (see Small, 1982, who used reporting error dummies to address this
possibility). On a practical level, this covariance structure is useful because it captures correlations
between “close substitutes” while keeping the number of unknown parameters manageable (Σ
involves 8, instead of 14, unknown parameters).

To impose the condition σ11 = 1, we let λ1 = 1 as in Section 3.1. We then partition a =
(a21, a31, a32, . . . , a10,9) into two sets: b ≡ {ai+1,i : i = 1, . . . , 5} and c ≡ {aij : i > j + 2} and
apply the method outlined in Section 3.3 to impose the tridiagonal structure. Specifically, by
condition (18), it follows that σij = 0⇔ aij = 0 for i > j+ 2, and upon using (19), aij must satisfy

aij = ai,i−1ai−1,j , i = 3, . . . , 5, 1 6 j 6 i− 2. (25)

Therefore, with a tridiagonal covariance structure, each element in c equals a known function of
elements in b with probability 1, so that the role of c is purely notational. For other parameters, we

consider proper informative priors centered around an identity matrix λk
ind∼ IG ((ν + k − p)/2, ν/2),

k = 2, . . . , 5, b ∼ N (0, ν−1I), where ν = 50. Prior informativeness is very important given the
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small data set (N = 522), the potential for poor likelihood identification (e.g. Geweke et al., 1997),
and the fact that the data set is not well balanced (the first and last categories in this example
involve only 2.5% and 1.5% of the outcomes, respectively).

The MCMC sampler is constructed by sequentially drawing from 4 full-conditional densities:
[y∗|y,β,a,λ], [β|a,λ,y∗], [λ|β,a,y∗] and [b|β,λ,y∗]. The first two steps are standard (McCulloch
et al., 2000). The third step is obtained by (5) with λ1 set to 1. Lastly, even though the conditional
density [b|β,λ,y∗] is nonstandard, a natural proposal density is given by

f(b|y∗,β, â) =
5∏
i=2

φi−1(Didi,Di),

where

Di = λi(1 +U ′i−1U i−1)−1, di = −U ′i−1(U i +
i−2∑
j=1

âijU j)/λi,

Uk = (u1k, . . . , uNk)′, uik = y∗ik − x′ikβ,

and âij , i = 2, . . . , 5, j = 1, . . . , i − 2, can simply be set to the current value of aij in the Markov
chain. Given a candidate draw bc, elements in cc are determined by (25). The draw ac = (bc, cc)
is accepted with probability

min
{

1,
`(y∗|Σc,β)p(bc)f(b|y∗,β, â)
`(y∗|Σ,β)p(b)f(bc|y∗,β, â)

}
,

where `(·) is the complete data likelihood function and Σc = (Lc)−1Dc(Lc
′
)−1.

Table 6: Parameter estimates in the MNP application. Analysis is based on the variables: schedule
delay SD = {−40,−30,−20,−10, 0, 10} (arrival minus work start time rounded to 10 minutes);
travel time TIM (in minutes); SDE = max{−SD, 0}; SDL = max{SD, 0}; D1L = 1{SD ≥ 0};
reported arrival time flexibility FLEX; D2L = 1{SD ≥ FLEX}; SDLX = max{SD−FLEX, 0};
dummies for one-person household SGL, carpool CP , and white collar worker WC.

Posterior
Parameter Covariate Mean SD

β1 TIM 0.005 0.006
β2 TIM · SGL -0.003 0.009
β3 TIM · CP -0.010 0.007
β4 SDE -0.007 0.005
β5 SDE · SGL -0.005 0.008
β6 SDE · CP 0.009 0.006
β7 SDL -0.958 0.552
β8 SDL ·WC 0.797 0.552
β9 SDLX -0.093 0.054
β10 D1L ·WC 0.968 0.150
β11 D2L -0.551 0.155

Summaries of the posterior distribution for the model parameters are reported in Tables 6 and 7.
The strongest effects in Table 6 indicate that white collar workers are more likely to report arriving
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at work late, even after accounting for any flexibility in the starting time. Moreover, Table 7
shows that two correlation parameters are relatively large, suggesting a reasonably strong degree of
substitutability between two of the arrival categories and presenting an interesting item for future
research.

Table 7: Parameter estimates for the work trip scheduling data.
posterior posterior

parameter mean SD parameter mean SD Pr(σi+1,i > 0|Data)
σ22 1.211 0.199 σ21 -0.025 0.158 0.431
σ33 1.178 0.215 σ32 -0.179 0.157 0.125
σ44 1.479 0.343 σ43 -0.241 0.183 0.084
σ55 1.124 0.242 σ54 0.019 0.206 0.529

The inefficiency factors for the MH sampler of the restricted Σ are shown in Figure 4 together
with inefficiency factors from a Gibbs sampler for the unrestricted (except for σ11 = 1) MNP
model as in Section 3.1 and McCulloch et al. (2000) under comparable priors. The figure illustrates
similar overall performance of the MCMC algorithms, but also shows that the more profligately
parameterized MNP model exhibits slightly slower mixing in this setting. One possible reason
is that, given the small sample size, identification may deteriorate somewhat as the number of
unknown parameters in Σ is increased; another possibility is that with a tridiagonal Σ, the full-
conditional distribution [y∗ij |y,y∗i,−j ] is determined only by latent data that are adjacent to y∗ij ,
whereas with non-zero covariances [y∗ij |y,y∗i,−j ] is determined by the entire vector y∗i,−j , which
increases the serial dependence in the latent data draws and subsequently slows down the mixing
of the entire Markov chain.

Figure 4: Inefficiency factors for the restricted and unrestricted versions of Σ in the MNP applica-
tion.

6 Concluding Remarks

This article has studied a parameterization of covariance matrices that allows for flexible modeling
and straightforward MCMC-based estimation. The proposed approach is related to standard prior-
posterior modeling and MCMC sampling methods in the unrestricted case, where simple conjugate
priors on the elements of the alternative parameterization can lead to the usual conjugate Wishart
prior on the precision matrix. This link is then exploited to facilitate simulation-based inference
when covariance restrictions are imposed. Several illustrations with simulated data and two appli-
cations from economics demonstrate the handling of various diagonal and off-diagonal restrictions
that are frequently encountered in practice, and show that the proposed methods are practical and
can help address important problems in modeling and estimation.

Supplemental Materials

Supplemental materials for this article are available online. All of these materials are contained in
a zip archive that can be obtained in a single download.
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CJ-supplement: The package contains Appendices A and B, as well as the data sets and computer
code used in the examples. (Zipped file)
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