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Abstract
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for estimating the observed-data likelihoods for a variety of stochastic volatility
models. This is motivated by the problem of computing the deviance informa-
tion criterion (DIC)—a popular Bayesian model comparison criterion that comes
in a few variants. While the DIC based on the conditional likelihood—obtained
by conditioning on the latent variables—is widely used for comparing stochastic
volatility models, recent studies have argued against its use on both theoretical and
practical grounds. Indeed, we show via a Monte Carlo study that the conditional
DIC tends to favor overfitted models, whereas the DIC based on the observed-data
likelihood—calculated using the proposed importance sampling algorithms—seems
to perform well. We demonstrate the methodology with an application involving
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1 Introduction

Stochastic volatility models are widely used for modeling financial time series, and have
more recently become important in macroeconometric modeling following the seminal
work of Cogley and Sargent (2005) and Primiceri (2005). As a result, there is now a
large and growing family of flexible stochastic volatility models.1 Given the wide range
of model candidates, it has become increasingly important to be able to discriminate
between competing models for a given application.

One popular metric for Bayesian model comparison is the deviance information criterion
(DIC) proposed by Spiegelhalter, Best, Carlin, and van der Linde (2002). For latent vari-
able models, Celeux, Forbes, Robert, and Titterington (2006) point out that there are nu-
merous alternative definitions of the DIC depending on different concepts of the likelihood.
In particular, the DIC based on the conditional likelihood—obtained by conditioning on
the latent variables—has been widely used for comparing stochastic volatility models due
to its easy computation and its implementation in standard statistical packages, includ-
ing WinBUGS.2 In contrast, the DIC based on the observed-data likelihood—obtained
by integrating out the latent variables—is rarely used as the observed-data likelihoods
for stochastic volatility models are generally difficult to evaluate.

We propose importance sampling algorithms—based on fast band matrix routines—for
evaluating the observed-data likelihoods under a variety of stochastic volatility models,
with the aim of obtaining observed-data DICs for these models. This is motivated by
recent studies that argue against the use of the conditional DIC on both theoretical and
practical grounds. Li, Zeng, and Yu (2012) argue that the conditional likelihood of the
augmented data is nonregular and hence invalidates the standard asymptotic arguments
that are needed to justify the DIC. On practical grounds, Millar (2009) provides a Monte
Carlo study using Poisson models in which the conditional DIC almost always favors an
overfitted model. Using examples that involve macroeconomic and financial data, Chan
and Grant (2014) show that the numerical standard errors of the conditional DICs are
typically too large to be useful for comparing models.

A key feature of our approach is that it draws on recent advances in band matrix al-
gorithms rather than using the conventional Kalman filter. This approach builds upon
earlier work on Markov chain Monte Carlo (MCMC) algorithms for linear Gaussian state
space models (Rue, 2001; Chan and Jeliazkov, 2009; McCausland, Miller, and Pelletier,
2011) and various nonlinear state space models (McCausland, 2012; Chan, Koop, and
Potter, 2013; Djegnéné and McCausland, 2014). Instead of posterior simulation, we con-
struct efficient importance sampling estimators for the observed-data likelihood. In this

1See, e.g., Chib, Nardari, and Shephard (2002), Koopman and Hol Uspensky (2002), Jensen and
Maheu (2010), Nakajima and Omori (2012), Chan (2013), Mumtaz and Zanetti (2013), Eisenstat and
Strachan (2014) and Carriero, Clark, and Marcellino (2015), to name but a few examples.

2This version of the DIC has been used to compare a wide variety of stochastic volatility models
in empirical applications; recent studies include Berg, Meyer, and Yu (2004), Yu and Meyer (2006),
Abanto-Valle, Bandyopadhyay, Lachos, and Enriquez (2010), Vo (2011), Mumtaz and Surico (2012),
Tsiotas (2012), Brooks and Prokopczuk (2013) and Wang, Choy, and Chan (2013).

2



paper we focus on stochastic volatility models, but the proposed approach is applicable
more broadly to general nonlinear state space models. Using these importance sampling
estimators, we show that the observed-data DIC can be accurately estimated. This there-
fore extends our earlier work (Chan and Grant, 2014) on evaluating the observed-data
DIC for linear Gaussian state space models to nonlinear settings.

We show in a Monte Carlo study that the conditional DIC tends to prefer overfitted
stochastic volatility models. This is an important finding given that the conditional DIC
is widely used in empirical applications. In contrast, the observed-data DIC based on the
proposed importance sampling estimators seems to be able to select the correct model.
This result is not surprising as standard asymptotic arguments for justifying the DIC
apply to the observed-data DIC.

In the empirical application that involves daily returns on the S&P 500, we find that
according to the observed-data DIC, the leverage effect, t innovations, volatility feedback
and moving average components all seem to be useful additions to the standard stochastic
volatility model. The same conclusion holds if the marginal likelihood is used as the model
selection criterion.

The rest of this paper is organized as follows. Section 2 first discusses the marginal
likelihood and then outlines two definitions of the DIC. In Section 3 we discuss various
stochastic volatility models that are widely used in the literature and their estimation. In
Section 4 we propose importance sampling algorithms for estimating the observed-data
likelihoods for stochastic volatility models. The proposed methods are demonstrated via a
Monte Carlo study in Section 5. Moreover, the behavior of the conditional and observed-
data DICs are examined. Section 6 illustrates the methodology with an application
involving daily returns on the S&P 500. Further applications and directions for future
research are discussed in Sections 7 and 8.

2 Bayesian Model Comparison Criteria

In this section we give an overview of two popular Bayesian model comparison criteria—
the marginal likelihood and the deviance information criterion. To set the stage, suppose
we wish to compare a collection of models {M1, . . . ,MK}, where each model Mk is for-
mally defined by a likelihood function p(y |θk,Mk) and a prior on the model-specific
parameter vector θk denoted by p(θk |Mk). A natural Bayesian model comparison crite-
rion is the marginal likelihood, defined as:

p(y |Mk) =

∫
p(y |θk,Mk)p(θk |Mk)dθk.

The marginal likelihood can be interpreted as a joint density forecast from the model
evaluated at the observed data y—hence, if the observed data are likely under the model,
the corresponding marginal likelihood would be “large” and vice versa. To see this,
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arrange the data as y = (y′

1, . . . ,y
′

T )
′ and let y1:t = (y′

1, . . . ,y
′

t)
′ denote all the data up

to time t. Then, we can factor the marginal likelihood as follows:

p(y |Mk) = p(y1 |Mk)
T−1∏

t=1

p(yt+1 |y1:t,Mk), (1)

where p(yt+1 |y1:t,Mk) is the predictive likelihood, which is basically a one-step-ahead
density forecast for yt+1.

The marginal likelihood is conceptually simple and has a natural interpretation. However,
one drawback is that it is relatively sensitive to the prior distribution. This can be seen
from the factorization in (1). For example, the predictive likelihood p(y1 |Mk) depends
entirely on the prior distribution and not on the data. More generally, the component
p(yt+1 |y1:t,Mk) is likely to be heavily influenced by the prior distribution when t is small.
In what follows we will discuss an alternative Bayesian model selection criterion that is
relatively insensitive to the priors. For notational convenience, from here onwards we
suppress the model indicator; for example we denote the likelihood by p(y |θ).

The seminal paper by Spiegelhalter et al. (2002) introduces and develops the concept of
deviance information criterion (DIC) for model comparison. This criterion is based on
the deviance, which is defined as

D(θ) = −2 log p(y |θ) + 2 log h(y),

where p(y |θ) is the likelihood function and h(y) is some fully specified standardizing
term that is a function of the data alone. The effective number of parameters pD of the
parametric model is defined to be

pD = D(θ)−D(θ̃),

where
D(θ) = −2Eθ[log p(y |θ) |y] + 2 log h(y)

is the posterior mean deviance and θ̃ is an estimate of θ, which is typically taken as the
posterior mean or mode. Then, the deviance information criterion is defined as the sum
of the posterior mean deviance, which can be used as a Bayesian measure of model fit or
adequacy, and the effective number of parameters that measures model complexity:

DIC = D(θ) + pD.

Hence, the DIC may be viewed as a trade-off between model adequacy and complexity.
For model comparison, the function h(y) is often set to be unity for all models. Therefore,
the DIC becomes

DIC = −4Eθ[log p(y |θ) |y] + 2 log p(y | θ̃).
Given a set of competing models for the data, the preferred model is the one with the
minimum DIC value.
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For latent variable models, such as stochastic volatility models, Celeux et al. (2006) point
out that there are numerous alternative definitions of the DIC depending on different
concepts of the likelihood. In particular, suppose we augment the model p(y |θ) with a
vector of latent variables z with density p(z |θ) such that

p(y |θ) =
∫
p(y |θ, z)p(z |θ)dz =

∫
p(y, z |θ)dz,

where p(y |θ, z) is the conditional likelihood and p(y, z |θ) is the complete-data likeli-
hood. We refer to the likelihood p(y |θ) as the observed-data likelihood or the integrated
likelihood.

Naturally, one can define the DIC using the observed-data likelihood and we call this the
observed-data DIC:

DICobs = −4Eθ[log p(y |θ) |y] + 2 log p(y | θ̂), (2)

where the estimate θ̃ of θ is set as the posterior mode θ̂. The term Eθ[log p(y |θ) |y] can
be estimated by averaging the log-observed-data likelihoods log p(y |θ) over the posterior
draws of θ. In addition, the posterior mode θ̂ is often approximated by the draw that
has the highest value of p(y |θ)p(θ) among the posterior draws, where p(θ) is the prior
density. It is clear from (2) that the observed-data DIC depends on the prior only via
its effect on the posterior distribution. In situations where the likelihood information
dominates, one would expect that the observed-data DIC is insensitive to different prior
distributions.

One main difficulty in computing DICobs is that the observed-data likelihood p(y |θ) is
typically time-consuming to evaluate for a wide variety of latent variable models (although
important exceptions exist, see, e.g., Chan and Grant, 2014). Since the latent variable
structure is usually chosen so that the conditional likelihood p(y |θ, z) is available in
closed-form, one can alternatively define the DIC using the conditional likelihood and we
refer to this version as the conditional DIC:

DICcon = −4Eθ,Z[log p(y |θ,Z) |y] + 2 log p(y | ẑ, θ̂), (3)

where (ẑ, θ̂) is the joint maximum a posteriori (MAP) estimate of the pair (z,θ) given the
data y.3 As before, the expectation Eθ,Z[log p(y |θ,Z) |y] can be estimated by averaging
the log-conditional likelihoods log p(y |θ, z) over the posterior draws of the pair (z,θ).
Moreover, the joint MAP estimate can be approximated by the best pair among the
posterior draws, i.e., the pair that has the highest value of p(y, z |θ)p(θ).

3Celeux et al. (2006) list eight versions of the DIC depending on different concepts of the likelihood and
the estimates of θ. For example, one can define DICs using the posterior mean instead of the posterior
mode used in this paper. The observed-data DIC in (2) and the conditional DIC in (3) correspond to
DIC2 and DIC7 in Celeux et al. (2006), respectively. Celeux et al. (2006) study the behavior of the
various DICs in the context of two classes of latent variable models: random effect models and mixture
models. For both classes of models, the observed-data likelihood can be computed analytically. But this
is not the case for stochastic volatility models, which require importance sampling.
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Following the influential paper by Berg, Meyer, and Yu (2004), the conditional DIC is
widely used for comparing stochastic volatility models, whereas the observed-data DIC is
not computed in practice due to the difficulty in evaluating the observed-data likelihood.
However, despite its popularity, in Section 5 we show via a Monte Carlo study that
the conditional DIC tends to favor overfitted models. In contrast, the observed-data
DIC seems to perform well and is better able to choose the correct model. It is also
worthwhile to note that there are various new Bayesian approaches for model comparison
and hypothesis testing, such as those developed in Li and Yu (2012), Li et al. (2012) and
Li, Zeng, and Yu (2014).

3 Stochastic Volatility Models

In this section, we first discuss various stochastic volatility models that are widely used
in the literature for modeling financial and macroeconomic time series. Then we outline
some efficient algorithms for fitting these models that build on fast band matrix routines.

3.1 The Models

We consider seven different stochastic volatility models. The first model is the standard
stochastic volatility model, which we denote as SV:

yt = µ+ εyt , εyt ∼ N (0, eht), (4)

ht = µh + φh(ht−1 − µh) + εht , εht ∼ N (0, ω2
h). (5)

The log-volatility ht follows a stationary AR(1) process with |φh| < 1 and is initialized
with h1 ∼ N (µh, ω

2
h/(1− φ2

h)).

Under the second model, which we refer to as SV2, the observation equation is the same
as in (4), but instead of the log-volatility ht following an AR(1) process as in (5), it
follows a stationary AR(2) process:

ht = µh + φh(ht−1 − µh) + ρh(ht−2 − µh) + εht , εht ∼ N (0, ω2
h), (6)

where we assume the roots of the characteristic polynomial associated with (φh, ρh) lie
outside the unit circle. Further, the process is initialized by

h1, h2 ∼ N
(
µh,

(1− ρh)ω
2
h

(1 + ρh)((1− ρh)2 − φ2
h)

)
.

The third model allows for the possibility of infrequent “jumps” in the data series, which
may be important for high frequency financial data. Under the stochastic volatility model
with jumps (SVJ), the observation equation becomes:

yt = µ+ ktqt + εyt , εyt ∼ N (0, eht), (7)
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where qt is a Bernoulli jump random variable with success probability P(qt = 1) = κ and
the jump size kt is modeled as log(1+kt) ∼ N (−0.5δ2, δ2) so that its expectation is zero.
The log-volatility ht follows the same AR(1) process as in (5).

Another variant is the stochastic volatility in mean (SVM) model of Koopman and Hol Us-
pensky (2002), which is often used to study volatility feedback. Specifically, under the
SVM model, the stochastic volatility enters the observation equation as a covariate:

yt = µ+ αeht + εyt , εyt ∼ N (0, eht). (8)

As before, the log-volatility follows the same AR(1) process as in (5).

The next model considered is a version of the stochastic volatility models with moving
average innovations in Chan (2013). Specifically, consider the following first-order moving
average model with stochastic volatility:

yt = µ+ εyt , (9)

εyt = ut + ψut−1, ut ∼ N (0, eht), (10)

where we assume that u0 = 0 and the invertibility condition is satisfied, i.e., |ψ| < 1.
Again the log-volatility ht is assumed to follow the AR(1) process as in (5). This stochastic
volatility model is referred to as SVMA.

The sixth model is the stochastic volatility model with leverage (see, e.g., Yu, 2005;
Omori, Chib, Shephard, and Nakajima, 2007):

yt = µ+ εyt , (11)

hh+1 = µh + φh(ht − µh) + εht , (12)

where the innovations εyt and εht jointly follow a bivariate normal distribution:

(
εyt
εht

)
∼ N

(
0,

(
eht ρe

1

2
htωh

ρe
1

2
htωh ω2

h

))
.

By allowing for a nonzero correlation between the innovations, this model can accommo-
date the often-observed negative correlation between the return at time t and the realized
volatility at time t + 1 for financial data. This stochastic volatility model is referred to
as SVL.

Lastly, we consider the stochastic volatility model with t innovations in the observation
equation, which is denoted as SVt. Since the t distribution can be written as a scale mix-
ture of Gaussian distributions (see, e.g., Geweke, 1993), the SVt model has the following
latent variable representation:

yt = µ+ εyt , εyt ∼ N (0, ehtλt), (13)

where the latent variables λ1, . . . , λT are iid IG(ν/2, ν/2) distributed and IG(·, ·) denotes
the inverse-gamma distribution. The log-volatility ht is again assumed to follow the AR(1)
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process as in (5). Since the t distribution has heavier tails than the Gaussian, the SVt
model allows for a more frequent occurrence of outliers compared to the standard SV
model. We summarize the seven stochastic volatility models in Table 1.

We now discuss the set of priors considered under each of the models. For the standard
SV, we assume the following independent priors for µ, µh, φh and ω2

h:

µ ∼ N (µ0, Vµ), µh ∼ N (µh0, Vµh),

φh ∼ N (φh0, Vφh)1l(|φh| < 1), ω2
h ∼ IG(νh, Sh).

(14)

Note that we impose the stationarity condition |φh| < 1 through the prior on φh. For the
SV2, we use the same priors for µ, µh and ω2

h as in (14), but replace the prior for φh with
a prior for θh = (φh, ρh)

′: θh ∼ N (θh0,Vθh)1l(θh ∈ A), where A ⊂ R2 is the set where
the roots of the characteristic polynomial defined by θh lie outside the unit circle.

Table 1: List of stochastic volatility models.

Model Description
SV standard stochastic volatility model where ht follows a stationary AR(1)
SV2 same as SV but ht follows a stationary AR(2)
SVJ same as SV but the observation equation contains a “jump” component
SVM same as SV but ht enters the observation equation as a covariate
SVMA same as SV but the observation innovation follows an MA(1)
SVL same as SV but the observation and transition innovations are correlated
SVt same as SV but the observation innovations are t distributed

For each of the remaining models, the priors for µ, µh, φh and ω2
h are exactly the same

as in (14). In addition, under the SVJ, the jump intensity κ is assumed to have a beta
distribution and the jump variance δ follows a log-normal distribution: κ ∼ B(ka, kb)
and log δ ∼ N (δ0, Vδ). For the SVM, the coefficient of the volatility is assumed to have
a normal distribution: α ∼ N (α0, Vα). Next, both the MA(1) coefficient in the SVMA
and the correlation coefficient in the SVL have normal distributions truncated within the
unit interval: ψ ∼ N (ψ0, Vψ)1l(|ψ| < 1) and ρ ∼ N (ρ0, Vρ)1l(|ρ| < 1). Lastly, the prior
for the degree of freedom parameter ν in the SVt is assumed to be uniform on (2, 100):
ν ∼ U(2, 100). We assume ν > 2 to ensure that the first two moments of the t distribution
exist.

3.2 Bayesian Estimation

In this section, we discuss a general approach for fitting all the stochastic volatility models
in Section 3.1. The main difficulty in the estimation is the step where one simulates
from the joint distribution of h = (h1, . . . , hT )

′ conditional on the data and other model
parameters, as the observation equation is nonlinear in h. A key feature of our approach
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is that it builds upon fast band and sparse matrix algorithms rather than using the
conventional Kalman filter. Recent papers using the former approach include Rue (2001)
for linear Gaussian Markov random fields; Chan and Jeliazkov (2009) and McCausland
et al. (2011) for linear Gaussian state space models; Rue, Martino, and Chopin (2009)
for nonlinear Markov random fields; and McCausland (2012), Djegnéné and McCausland
(2014) and Chan (2015) for nonlinear state space models.

More specifically, our approach exploits the special structure of the problem, namely, that
the Hessian of the log-conditional density of h is a band matrix—i.e., it contains only a few
nonzero elements along a narrow diagonal band. This feature is important in developing
efficient sampling algorithms. In addition, the same approach can be used for obtaining
efficient importance sampling estimators as discussed in Section 4. For concreteness,
we focus on the estimation of the standard stochastic volatility model in (4)–(5), with
modifications of the main algorithm for fitting the other models discussed in Appendix A.
Let y = (y1, . . . , yT )

′. Then posterior draws can be obtained by sequentially sampling
from:

1. p(h |y, µ, µh, φh, ω2
h);

2. p(µ |y,h, µh, φh, ω2
h) = p(µ |y,h);

3. p(µh |y, µ,h, φh, ω2
h) = p(µh |h, φh, ω2

h);

4. p(ω2
h |y, µ,h, µh, φh) = p(ω2

h |h, µh, φh);

5. p(φh |y, µ,h, µh, ω2
h) = p(φh |h, µh, ω2

h).

In Step 1, the joint conditional density p(h |y, µ, µh, φh, ω2
h) is high-dimensional and non-

standard. For the standard stochastic volatility model, this step can be accomplished
using the auxiliary mixture sampler of Kim, Shepherd, and Chib (1998). However, this
approach is model specific and cannot be easily generalized to estimate other stochastic
volatility models such as the SVM. As a result, we discuss a direct method to simulate
from this density using the acceptance-rejection Metropolis-Hastings algorithm (see, e.g.,
Tierney, 1994). More specifically, we note that the Hessian of log p(h |y, µ, µh, φh, ω2

h) is
a band matrix. Consequently, using fast band matrix routines we can quickly obtain a
Gaussian approximation as a proposal density. Furthermore, by construction, the preci-
sion matrix—i.e., the inverse of the covariance matrix—of the Gaussian proposal density
is also a band matrix. As such, candidate draws can be obtained quickly via the precision
sampler in Chan and Jeliazkov (2009) instead of Kalman filter-based algorithms. The
computation details are given in Appendix A.

Steps 2, 3 and 4 can be easily completed, as all the conditional distributions are standard.
In particular, it is easy to check that

(µ |y,h) ∼ N (µ̂, Dµ), (µh |h, φh, ω2
h) ∼ N (µ̂h, Dµh), (ω2

h |h, µh, φh) ∼ IG(νh+T/2, S̃h),
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where S̃h = Sh + ((1− φ2
h)(h1 − µh)

2 +
∑T

t=2(ht − µh − φh(ht−1 − µh))
2)/2,

D−1
µ = V −1

µ +
T∑

t=1

e−ht , µ̂ = Dµ(V
−1
µ µ0 +

T∑

t=1

e−htyt),

D−1
µh

= V −1
µh

+X′

µh
Σ−1

h Xµh , µ̂h = Dµh(V
−1
µh
µh0 +X′

µh
Σ−1

h zµh),

with Xµh = (1, 1 − φh, . . . , 1 − φh)
′, zµh = (h1, h2 − φhh1, . . . , hT − φhhT−1)

′ and Σh =
diag(ω2

h/(1− φ2
h), ω

2
h, . . . , ω

2
h).

Lastly, one can sample from p(φh |h, µh, ω2
h) using an independence-chain Metropolis-

Hastings step with proposal N (φ̂h, Dφh)1l(|φh| < 1), where D−1
φh

= V −1
φh

+ X′

φh
Xφh/ω

2
h

and φ̂h = Dφh(V
−1
φh
φh0 + X′

φh
zφh/ω

2
h), with Xφh = (h1 − µh, . . . , hT−1 − µh)

′ and zφh =
(h2 − µh, . . . , hT − µh)

′.

4 Importance Sampling for the Observed-Data Like-

lihoods

The popularity of the conditional DIC for comparing stochastic volatility models is partly
due to its straightforward computation and its implementation in standard software such
as WinBUGS. On the other hand, computing the observed-data DIC is less straightfor-
ward. In a recent paper, Chan and Grant (2014) derive analytical expressions for the
observed-data likelihoods for a variety of linear latent variable models. However, for the
stochastic volatility models discussed in Section 3, the observed-data likelihoods are not
available in closed-form. One option, at least in principle, is the auxiliary particle filter
proposed in Pitt and Shephard (1999), which can be used to evaluate the observed-data
likelihood for general nonlinear state space models. In practice, however, the auxiliary
particle filter is computationally intensive and it might not be feasible to be employed
in our setting as the observed-data likelihood needs to be evaluated tens of thousands
of times. To overcome this difficulty, in this section we consider fast algorithms for es-
timating the observed-data likelihoods for stochastic volatility models using importance
sampling (see, e.g., Kroese, Taimre, and Botev, 2011, Chapter 9.7).

Recall that the observed-data or integrated likelihood is given by

p(y |θ) =
∫
p(y |θ, z)p(z |θ)dz,

where p(y |θ, z) is the conditional likelihood and p(z |θ) is the prior density of the latent
variables z. Let g(z) be a density that dominates p(y |θ, z)p(z |θ), i.e., g(z) = 0 implies
p(y |θ, z)p(z |θ) = 0. Then, the observed-data likelihood can be rewritten as

p(y |θ) =
∫
p(y |θ, z)p(z |θ)

g(z)
g(z)dz.
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Hence, if Z1, . . . ,ZR are independent samples from the importance density g(z), then

p̂(y |θ) = 1

R

R∑

i=1

p(y |θ,Zi)p(Zi |θ)
g(Zi)

(15)

is an unbiased, simulation-consistent estimator of the observed-data likelihood p(y |θ).
Since the samples are independent, a numerical standard error of this importance sam-
pling estimator, ŝ/

√
R, can be easily computed, where ŝ is the sample standard deviation

of the importance sampling weights p(y |θ,Zi)p(Zi |θ)/g(Zi), i = 1, . . . , R. In addition,
it is often more convenient to work in the logarithmic scale. Therefore it might also be

of interest to obtain a numerical standard error of log p̂(y |θ). This can be done using
either the delta method or the batch means method (see, e.g., Kroese et al., 2011).

The quality of the importance sampling estimator in (15) depends critically on the choice
of the importance density g(z). It can be shown that the conditional density of the
latent variables p(z |y,θ) ∝ p(y |θ, z)p(z |θ) gives rise to a zero-variance importance
sampling estimator (see, e.g., Kroese et al., 2011, Chapter 9.7.1). An obvious difficulty
is that the evaluation of the optimal importance density p(z |y,θ) is not possible for
stochastic volatility models as the normalization constant is not known. However, it
provides guidance for choosing a good importance density. In particular, we would like to
choose g(z) to be “close” to the optimal importance density p(z |y,θ). In what follows,
we focus on the standard stochastic volatility model, with the importance densities for
the other stochastic volatility models discussed in Appendix B.

For the standard stochastic volatility model in (4)–(5), the latent variables are the log-
volatilities h. Therefore, we wish to approximate the conditional density

p(h |y, µ, µh, φh, ω2
h) ∝ p(y |µ,h)p(h |µh, φh, ω2

h)

to obtain a good importance density g(h) for the estimator in (15). In fact, we have al-
ready discussed such an approximation when we outlined the estimation of the stochastic
volatility model in Section 3.2. Specifically, we considered (for details see Appendix A)

the Gaussian approximation with mean vector ĥ and precision matrix Kh, where ĥ is
the mode of p(h |y, µ, µh, φh, ω2

h) and Kh is the negative Hessian evaluated at the mode.
Note that this approximating Gaussian density is the same as the one proposed in Durbin
and Koopman (1997), although we obtain the approximation via band matrix routines
instead of the Kalman filter.

In addition, note that Kh is a band matrix. As such, draws from N (ĥ,K−1
h ) can be

efficiently obtained using the precision sampler in Chan and Jeliazkov (2009), where the
computation cost of obtaining an additional draw is only O(T ). This is a crucial feature
as multiple draws from the high-dimensional importance density are required to construct
the estimator in (15). In addition, this importance density can be quickly evaluated at
any point as its precision matrix Kh is a band matrix. Choices of importance densities
for the other stochastic volatility models are discussed in Appendix B.

For the importance sampling estimators to work well, a requirement is that the variance
of the importance sampling weights should be finite. While this requirement may be
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checked analytically in simple problems, checking it in high-dimensional settings such as
ours is difficult. One strategy to ensure this finite-variance condition holds is to modify
the importance sampling estimator g(z) to include an additional mixture component as
proposed by Hesterberg (1995). More specifically, for γ ∈ (0, 1), consider the mixture
density

gγ(z) = γp(z |θ) + (1− γ)g(z),

i.e., with probability γ, samples are taken from the prior density p(z |θ); otherwise, we
draw from the original importance sampling density g(z). If we assume that for fixed y
and θ, the conditional likelihood is bounded in z, i.e., there exists a constant Ny,θ such
that p(y |θ, z) 6 Ny,θ for all z (this condition holds for the stochastic volatility models
we consider), then the importance sampling weight is bounded by:

p(y |θ, z)p(z |θ)
gγ(z)

6
p(y |θ, z)p(z |θ)

γp(z |θ) 6
Ny,θ

γ
.

Hence, the variance of the importance sampling weights corresponding to gγ(z) is finite.
In our applications we experiment with both g(z) and gγ(z), and they give very similar
results.4

5 A Monte Carlo Study

In this section, we first examine the behavior of the conditional and observed-data DICs
via a simulation study. Then, we investigate the sensitivity of the marginal likelihood
and observed-data DIC to different prior distributions.

To assess whether the conditional and observed-data DICs are able to pick the correct
model from which the data are generated, we simulate data from three models: a constant
variance model where observations are drawn independently from N (0, σ2), the SV model
and the SVJ model. Three hundred datasets each comprised of T = 1000 observations
are produced from each of these three models. For each dataset, we estimate the three
models by constructing Markov chains of length 20000 after a burn-in period of 1000.

To compute the observed-data likelihoods for the two stochastic volatility models, we
sample R = 50 draws from the importance density at every iteration of the MCMC run.
In choosing the sample size R, there is the obvious trade-off between faster computation
time and more accurate estimates. We have experimented with different sample sizes
and R = 50 seems to be enough (e.g., the numerical standard error of the observed-data
likelihood estimate is less than 0.5 when the estimate is about −1000).

The parameter values are chosen to be comparable to those estimated from financial
daily returns data (measured in decimals). They are also similar to those used in other

4For example, using the S&P 500 data (for details see Section 6) we evaluate the observed-data
likelihood of the standard stochastic volatility model at the posterior means of the parameters. We
obtain 2914.8 and 2914.7 (in log) using the original estimator and the modified estimator with γ = 0.05,
respectively.
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simulation studies, such as those in Chib et al. (2002) and Berg et al. (2004). In particular,
we set µ = 0 for all models. Parameters for the log-volatility transition are set to be
µh = −10, φh = 0.97 and ω2

h = 0.22 for both the SV and SVJ models. Moreover,
parameters for the jump component are selected to be κ = 0.03 and δ = 0.03. Finally,
σ2 is set so that it is comparable to the variance in the stochastic volatility models:
σ2 = eµh = e−10.

The priors discussed in Section 3.1 are considered. We choose the same hyperparameters
for parameters that are common across models. Moreover, the hyperparameters are
selected so that the implied prior means are similar to the estimates from typical financial
daily returns data. In particular, we have µ0 = 0, µh0 = −10, Vµ = Vµh = 10, φh0 = 0.97,
Vφh = 0.12, νh = 5, Sh = 0.16, ka = 2, kb = 100, δ0 = −3.07 and Vδ = 0.149. These
values imply Eµ = 0, Eµh = −10, Eφh = 0.908, Eω2

h = 0.22, Eκ = 0.0196 and Eδ = 0.05.

In the first experiment, 300 datasets are generated from the constant variance (Const-
Var) model. Given each dataset both the conditional and observed-data DICs of the two
stochastic volatility models are computed. They are then compared to the (observed-
data) DIC of the Const-Var model. Specifically, we subtract the latter DIC from the
DICs of both the SV and SVJ models, and the results are reported in Figure 1.
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Figure 1: DICs of a given model minus that of the correct model (the Const-Var model).
A positive value indicates that the correct model is favored.

Recall that a model is preferred if it has a smaller DIC value. Hence, according to the
conditional DIC both the SV and SVJ models are favored relative to the correct model for
all the generated datasets. In contrast, for the majority of datasets (94.3% and 100% for
the SV and SVJ models, respectively), the observed-data DIC favors the correct model.
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It is worth noting that among the two stochastic volatility models, the conditional DIC
tends to prefer the more complex SVJ model.

In the second experiment, datasets are generated from the SV model, which includes the
Const-Var model as a special case and is also nested within the SVJ model. The DICs
relative to the SV model are reported in Figure 2. Both the conditional and observed-
data DICs favor the SV model relative to the Const-Var model. However, the conditional
DIC favors the overfitted SVJ model: for 100% of the datasets the SVJ model is preferred
relative to the correct model. In contrast, the observed-data DIC favors the correct model
for 98.3% of the datasets. It is also interesting to note that the differences in observed-
data DICs between the SV and the SVJ models are small compared to the differences
between the SV and Const-Var models, reflecting a small penalty for overfit relative to
“underfit”—a model’s inability to fit the data well.
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Figure 2: DICs of a given model minus that of the correct model (the SV model). A
positive value indicates that the correct model is favored.

In the last simulation experiment, we generate datasets from the SVJ model, which
includes both the Const-Var and SV models as special cases. As before, we report the
DICs relative to the correct model, and the results are presented in Figure 3. In this
example, both the conditional and observed-data DICs tend to pick the correct, more
general SVJ model. In particular, comparing between SV and SVJ, the conditional DIC
prefers the correct model for 97.7% of the datasets while the figure for the observed-data
DIC is 99.7% of the datasets.
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Figure 3: DICs of a given model minus that of the correct model (the SVJ model). A
positive value indicates that the correct model is favored.

Overall, this Monte Carlo study provides evidence that the conditional DIC tends to pick
overfitted models whereas the observed-data DIC seems to perform well.

Next, we report the effective number of parameters pD computed using the conditional
likelihood and the observed-data likelihood; we call the former conditional pD and the
latter observed-data pD. As discussed in Section 2, the DIC may be viewed as a trade-off
between model adequacy and complexity, where model complexity is measured by pD.
When prior information is dominated by the likelihood, one can show that (see, e.g., Li
et al., 2012) pD = p + o(1), where p is the number of parameters. In other words, when
likelihood information dominates, one expects that pD is close to p, and the difference
reflects the amount of prior information.

Using the 300 datasets from the first experiment (i.e., data generated from the constant
variance model), we compute the conditional and observed-data pD for the SV and SVJ
models. The results are reported in Figure 4. Recall that the SV model has 4 parameters
and the SVJ model has 6. The observed-data pD for both models are quite close to the
actual number of parameters, confirming the theoretical results. However, the conditional
pD for both models are all negative, indicating a negative penalty for model complexity,
which is more difficult to justify.
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Figure 4: The effective number of parameters pD computed using the conditional and
observed-data likelihoods.

Lastly, we investigate the sensitivity of both the marginal likelihood and observed-data
DIC to different prior distributions. As discussed in Section 2, one drawback of the
marginal likelihood is that it is relatively sensitive to different prior assumptions, whereas
the observed-data DIC is not. To that end, we generate a dataset of T = 1000 observations
from the constant variance (Const-Var) model using the parameters described in the first
set of experiments above. We then estimate the marginal likelihoods and the observed-
data DICs for two models: Const-Var and SV. We assume exactly the same priors as
before, except that we vary the degree of freedom hyperparameter νh for the parameter
ω2
h. The results are reported in Table 2.

Table 2: Observed-data DICs and log marginal likelihoods for the simulated dataset
generated from the Const-Var model.

Const-Var SV
νh = 0.1 νh = 1 νh = 2 νh = 5 νh = 10

Observed-data DIC −7257.5 −7251.4 −7251.3 −7252.2 −7253.4 −7255.3
Log marginal likelihood 3618.7 3611.4 3614.3 3617.7 3628.6 3648.8

By varying νh from 0.1 to 10, the observed-data DIC changes from −7251.4 to −7255.3,
a difference of 3.9.5 In contrast, the difference in the log marginal likelihoods is 37.4. In

5Recall that the observed-data DIC is defined in terms of the log likelihood. Hence, this difference is
in log scale.
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addition, when one assumes νh = 0.1, the marginal likelihood favors the correct Const-
Var model. However, when νh > 5, it overwhelmingly prefers the SV model. On the other
hand, the observed-data DIC picks the correct model for the range of hyperparamters
considered.

6 An Empirical Application

In this section we illustrate the methodology for estimating the observed-data likelihood
with an application that involves the daily returns (in decimals) on the S&P 500 index.
The sample period is January 2007 to December 2012, with a total of T = 1509 ob-
servations. The time series plot of the data is presented in Figure 5. We estimate the
stochastic volatility models listed in Table 1 using the S&P 500 data, and we assess which
model fits the data best while taking model complexity into account.

In addition, we consider two versions of the SVt model, which we label as SVt-1 and
SVt-2. In the first version, the conditional likelihood is implied by the latent variable
representation given in (13)—i.e., the latent variables are h1, . . . , hT and λ1, . . . , λT . In
the second version, we directly assume that the innovation εyt follows a t distribution, and
hence the latent variables are h1, . . . , hT only. We show below that the different choices
of latent variables lead to very different conditional DIC values.

We use the priors given in Section 3.1 and set the same hyperparameters for parameters
that are common across models. For the SV and SVJ models, the same hyperparameters
as in the Monte Carlo study in Section 5 are used. For the remaining models, we choose
ρh0 = 0, Vρh = 1, ψ0 = 0, Vψ = 1, α0 = 0, Vα = 1002, ρ0 = 0 and Vρ = 1.
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Figure 5: Daily returns on S&P 500 (in decimals) from January 2007 to December 2012.

For each model, we run 10 parallel chains, each of which is of length 10000 after a burn-
in period of 1000, with a total of 100000 posterior draws. For each chain, we compute
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the corresponding DIC estimate and report the grand mean of these 10 DIC estimates.
The associated numerical standard error is obtained by dividing the sample standard
deviation by

√
10. To compute the observed-data likelihood, we obtain R = 50 draws

from the importance density at each MCMC iteration.

The estimated DICs and their numerical standard errors are reported in Table 3. For
comparison, we also provide marginal likelihood estimates for each model. They are ob-
tained using the adaptive importance sampling method called the improved cross-entropy
method considered in Chan and Eisenstat (2015). This approach requires evaluation of
the observed-data likelihood, which is done using our proposed methodology with again
R = 50 draws from the importance sampling density. For this criterion a higher value
indicates a more preferred model.

A few broad conclusions may be drawn from this model comparison exercise. Firstly, while
the observed-data and conditional DICs agree on the ranking of the top two models, their
rankings of the rest of the models differ substantially. For example, the SVMA model
is ranked third by the observed-data DIC, whereas the conditional DIC ranks it as the
worst—instead it prefers the SVJ model, which is ranked as the second to last by the
observed-data DIC. Hence, erroneous conclusions might be drawn if the conditional DIC
favors overfitted models, as suggested by the Monte Carlo study in Section 5. In fact,
the ranking by the marginal likelihood more generally supports that of the observed-data
DIC rather than the conditional DIC.

Secondly, the conditional DICs of the two versions of the SVt model are very different.
For the SVt-1—where the latent variables are h1, . . . , hT and λ1, . . . , λT—the estimated
conditional DIC is −9495.7. However, the conditional DIC estimate is −9291.8 for the
SVt-2, under which the latent variables are h1, . . . , hT . Accordingly, the ranking changes
from the second to the second to last. This gives a particularly stark example of how the
conditional DIC depends critically on how the latent variables are defined.

Thirdly, all three criteria rank the SVL model as the best model, followed by the SVt
model. These results are in line with the general finding that leverage effects and heavy-
tailed distributions are important for modeling equity returns.

Fourthly, according to the observed-data DIC and marginal likelihood, both the volatility
feedback (SVM) and moving average (SVMA) components seem to be useful additions
to the basic SV model. In contrast, the jump component and the AR(2) transition for
the log-volatility are not as important in modeling the returns on the S&P 500. It is
interesting to note that even though both the t distribution and the jump component
aim to allow for a more frequent occurrence of “outliers” than the Gaussian distribution,
the data prefer the former but not the latter. The key difference between the two is
that the jump component is essentially a mixture of a Gaussian distribution and a dis-
crete distribution, whereas the t distribution is a (continuous) scale mixture of Gaussian
distributions. The latter turns out to fit the distribution of outliers better.
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Table 3: Estimated DICs and log marginal likelihoods (numerical standard errors in
parentheses).

Observed-data Rank Conditional Rank Log marginal Rank
DIC DIC likelihood

SV −9080.8 5 −9305.0 6 4532.9 6
(0.56) (6.18) (0.02)

SV2 −9057.5 7 −9315.4 5 4531.9 7
(1.20) (5.55) (0.06)

SVJ −9079.5 6 −9342.2 3 4533.0 5
(1.04) (26.6) (0.03)

SVM −9085.7 4 −9316.1 4 4534.4 3
(0.28) (5.23) (0.01)

SVMA −9087.8 3 −9296.7 8 4533.4 4
(0.51) (5.06) (0.03)

SVL −9145.2 1 −9776.9 1 4560.5 1
(0.49) (76.1) (0.02)

SVt-1 −9097.2 2 −9495.7 2 4537.6 2
(0.61) (7.72) (0.01)

SVt-2 −9097.2 2 −9291.8 7 4537.6 2
(0.61) (3.97) (0.01)

Lastly, the numerical standard errors of the conditional DICs are typically quite large,
even after averaging 100000 posterior draws. This highlights the need to report numerical
standard errors of the conditional DICs, which is often not done in empirical research.
On the other hand, the observed-data DICs are much more accurately estimated.

Next, we report in Table 4 the effective number of parameters for each of the stochastic
volatility models—computed using both the observed-data and conditional likelihoods.
As before, we call the former version observed-data pD and the latter conditional pD. As
discussed in the Monte Carlo study in Section 5, when prior information is dominated
by the likelihood, one expects pD to be close to the actual number of parameters. The
observed-data pD estimates for all models are positive, whereas many conditional pD
estimates are negative, indicating a negative penalty for model complexity. The latter
counter-intuitive result casts doubt on the suitability of using the conditional pD as a
measure of model complexity. Lastly, it is interesting to note that the observed-data pD
indicates that the SVt model is the least complex model, whereas the SV, SVM, SVMA
and SVL all have similar model complexity. One interpretation is that by allowing for t
innovations in the observation equation, the prior under SVt has a stronger influence and
therefore makes the model less complex.
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Table 4: Estimated effective numbers of parameters computed using the observed-data
and conditional likelihoods (numerical standard errors in parentheses).

# of parameters Observed-data pD Conditional pD
SV 4 10.4 −22.7

(0.45) (3.89)
SV2 5 21.1 −11.3

(0.53) (6.83)
SVJ 6 15.4 9.7

(1.11) (18.4)
SVM 5 11.0 −18.9

(0.36) (4.79)
SVMA 5 10.3 −27.2

(0.51) (4.40)
SVL 5 10.1 953.1

(0.42) (56.6)
SVt-1 5 7.4 −101.0

(0.36) (6.85)
SVt-2 5 7.4 −30.7

(0.36) (3.94)

Now, we report the posterior means and standard deviations of the parameters in Table 5.
The parameters governing the transition of the log-volatility have similar estimates across
models. In particular, all show high persistence with the posterior mean of φh estimated
to be between 0.95 to 0.987. In addition, an AR(1) transition seems to be sufficient
given that the posterior mean of the AR(2) coefficient ρh is very small (0.022), which
also supports the ranking of the observed-data DIC—it ranks the SV2 model below the
SV model (the conditional DIC ranks the SV2 model higher, but the numerical standard
errors are too large to be conclusive).

Interestingly, the posterior estimates of κ, α and ψ all seem to support the ranking of the
observed-data DIC (but not that of the conditional DIC). For example, recall that when
ψ = 0, the SVMAmodel reduces to the SV model. Since the observed-data DIC favors the
SVMA model relative to the SV model, one would expect that the posterior distribution
of ψ has little mass around zero. In fact, the 95% credible interval of ψ is estimated to be
(−0.126,−0.020), which excludes 0. Similarly, when α = 0, the SVM model reduces to
the SV model. The 95% credible interval of α is estimated to be (−9.411,−1.158), which
is consistent with the ranking of the observed-data DIC that favors the SVM model over
the SV model. However, the observed-data DIC does not seem to be able to discriminate
between the SV and SVJ models, which is reflected in the small posterior mean of κ
relative to its posterior standard deviation.
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Table 5: Parameter posterior means and standard deviations (in parentheses).

SV SV2 SVJ SVM SVMA SVL SVt
µ 0.0008 0.0009 0.0008 0.0013 0.0008 0.0005 0.0009

(0.0002) (0.0002) (0.0002) (0.0003) (0.0002) (0.0002) (0.0002)
µh −9.109 −9.161 −9.168 −8.832 −9.113 −9.234 −9.324

(0.431) (0.567) (0.477) (0.967) (0.438) (0.261) (0.476)
φh 0.985 0.950 0.986 0.984 0.985 0.976 0.987

(0.006) (0.091) (0.006) (0.006) (0.006) (0.006) (0.006)
ω2
h 0.039 0.059 0.037 0.040 0.038 0.052 0.036

(0.008) (0.015) (0.008) (0.008) (0.008) (0.010) (0.008)
ρh – 0.022 – – – – –

– (0.096) – – – – –
κ – – 0.017 – – – –

– – (0.015) – – – –
δ – – 0.026 – – – –

– – (0.010) – – – –
α – – – −5.224 – – –

– – – (2.10) – – –
ψ – – – – −0.073 – –

– – – – (0.027) – –
ρ – – – – – −0.742 –

– – – – – (0.058) –
ν – – – – – – 11.83

– – – – – – (5.87)

7 Further Applications

In their seminal paper, Durbin and Koopman (1997) show how importance sampling
estimators can be constructed to evaluate the observed-data likelihood of non-Gaussian
state space models. Their algorithms use the Kalman filter to compute the approximating
density and to obtain importance sampling draws. In contrast, our approach is based on
fast band matrix routines, which require far less computations and avoid the forward-
filtering-backward-smoothing loops.

We have focused on univariate stochastic volatility models in this paper, but the proposed
approach is applicable to more general state space models. In particular, Durbin and
Koopman (1997) consider models where the observations come from an exponential family
distribution (e.g., a Poisson count model) and where the observation equation is linear
but the observation innovations are non-Gaussian (e.g., an unobserved components model
with t innovations). Our approach can be applied to those settings.

In addition, we discuss below in more detail a class of nonlinear latent factor models to
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which our approach can be applied. This is motivated by a large and growing literature
on forecasting with many predictors. One popular approach to extract useful information
from large datasets is to use factor models (e.g., Stock and Watson, 2002; Forni, Hallin,
Lippi, and Reichlin, 2003). In typical applications, a small number of factors can account
for much of the variation in the economic and financial aggregates. Consequently, a simple
dynamic factor model often provides better forecasts than competing methods. So far the
literature has focused on linear factor models; nonlinear forecasting with many predictors
remains mostly unexplored (Stock and Watson, 2006). Hence, it would be interesting to
investigate if allowing for nonlinearities would improve forecasting performance, especially
during volatile periods.

Consider a nonlinear latent factor model of the form:

yt = Λg(bt) + ε
y
t , ε

y
t ∼ N (0,Σy),

where yt is an n×1 vector of observations, Λ is a matrix of factor loadings, bt is an m×1
vector of latent factors, g is a vector-valued function and Σy is diagonal. To complete
the model specification, assume that bt follows a stationary autoregressive process:

bt = Φbbt−1 + εbt , εbt ∼ N (0,Σb),

where both Φb and Σb are diagonal. This setup therefore generalizes the usual dynamic
factor model to allow for nonlinear terms in bt.

Below we provide some computational details for sampling the factors b = (b′

1, . . . ,b
′

T )
′.

This step is difficult as b is high-dimensional and its full conditional distribution is non-
standard. The goal is to approximate the full conditional density of b using a Gaussian
density. This provides a multivariate generalization of the methods discussed earlier in
this paper. In principle this step can be implemented using forward-filtering-backward-
smoothing methods based on Durbin and Koopman (1997). But as discussed above, this
approach is expected to be slower than the proposed method based on fast band matrix
routines.

To approximate p(b |y,Λ,Φb,Σy,Σb,b0) using a Gaussian density, note that

p(b |y,Λ,Φb,Σy,Σb,b0) ∝ p(y |Λ,b,Σy)p(b |Φb,Σb,b0).

We first show that p(b |Φb,Σb,b0) is a Gaussian density. To that end, let

HΦb
=




Im 0 · · · 0

−Φb Im
. . .

...
...

. . . . . .
...

0 · · · −Φb Im


 .

Then, we have
(b |Φb,Σb,b0) ∼ N (δb, (H

′

Φb
S−1
b HΦb

)−1),
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where Sb = IT ⊗ Σb and δb = H−1
Φb
δ̃b with δ̃b = (b′

0,0, . . . ,0)
′. Hence, its log-density is

given by

log p(b |Φb,Σb,b0) = −1

2
(b′H′

Φb
S−1
b HΦb

b− 2b′H′

Φb
S−1
b HΦb

δb) + c1, (16)

where c1 is a constant independent of b.

Next, we approximate log p(y |Λ,b,Σy) by a second-order Taylor expansion in b. To
that end, let bjt denote the j-th element of bt. Now, expand log p(y |Λ,b,Σy) =∑T

t=1 log p(yt |Λ,bt,Σy) around a given point b̃ ∈ RTm (e.g., the posterior mode):

log p(y |Λ,b,Σy) ≈ log(y |Λ, b̃,Σy) + (b− b̃)′f − 1

2
(b− b̃)′G(b− b̃)

=− 1

2
(b′Gb− 2b′(f +Gb̃)) + c2, (17)

where c2 is a constant independent of b, f = (f ′1, . . . , f
′

T )
′ and G = diag(G1, . . . ,GT ) with

fjt ≡
∂

∂bjt
log p(yt |Λ,bt,Σy)|b=b̃

, Gjk,t ≡
∂2

∂bjt∂bkt
log p(yt |Λ,bt,Σy)|b=b̃

.

That is, G is block-diagonal (hence a band matrix) where the (j, k)-th element of the
t-th block is Gjk,t. Note also that G is the negative Hessian of the log-density evaluated

at b̃. It follows that by combining (16) and (17), we have

log p(b |y,Λ,Φb,Σy,Σb,b0) = log p(y |Λ,b,Σy) + log p(b |Φb,Σb,b0) + c3,

≈ −1

2
(b′Kbb− 2b′kb) + c4, (18)

where c3 and c4 are constants independent of b, Kb = H′

Φb
S−1
b HΦb

+ G and kb =

f + Gb̃ + H′

Φb
S−1
b HΦb

δb. The expression in (18) is the log-kernel of the N (b̂,K−1
b )

density, where b̂ = K−1
b kb. Since HΦb

, Sb and G are all band matrices, so is Kb. This
Gaussian approximation can then used as the proposal density in the acceptance-rejection
Metropolis-Hastings algorithm. For implementation details, see Appendix A.

8 Concluding Remarks and Future Research

We have proposed novel importance sampling algorithms for estimating the observed-data
likelihoods under a variety of stochastic volatility models, with the goal of computing
the observed-data DICs. It is illustrated via a Monte Carlo study that the observed-
data DICs based on the proposed importance sampling estimators are able to select the
correct model, whereas the conditional DICs tend to favor overfitted models. In the
empirical application involving daily returns on the S&P 500, we find that according to
the observed-data DIC, the leverage effect, t innovations, volatility feedback and moving
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average components all seem to be useful additions to the standard SV model. Moreover,
the marginal likelihood and the estimation results support the model ranking of the
observed-data DIC but not that of the conditional DIC.

The proposed importance sampling estimators for observed-data likelihoods can be used
in other settings, such as for developing more efficient MCMC algorithms (e.g., as an
input for particle MCMC methods; see Andrieu, Doucet, and Holenstein 2010). We leave
these possibilities for future research. In addition, we have only considered a few popular
univariate stochastic volatility models. It would be useful to develop similar importance
sampling algorithms for more complex multivariate stochastic volatility models, such as
the time-varying parameter vector autoregression of Primiceri (2005). More broadly, our
proposed approach can be applied to general nonlinear state space models, such as those
discussed in Section 7. We also leave these extensions for future research.
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Appendix A: Estimation Details

In this appendix we provide the estimation details for fitting the stochastic volatility
models discussed in Section 3.1.

Standard Stochastic Volatility Model

Section 3.2 presents an outline of a Markov sampler for estimating the standard stochas-
tic volatility model. Here we fill in the details of Step 1: sampling from the conditional
density p(h |y, µ, µh, φh, ω2

h). Following Chan (2015), we first obtain a Gaussian approx-
imation of p(h |y, µ, µh, φh, ω2

h) and use this approximation as a proposal density in the
acceptance-rejection Metropolis-Hastings algorithm (see, e.g., Tierney, 1994), where can-
didate draws are obtained via the precision sampler in Chan and Jeliazkov (2009) instead
of Kalman filter-based algorithms.

To approximate p(h |y, µ, µh, φh, ω2
h) using a Gaussian density, note that

p(h |y, µ, µh, φh, ω2
h) ∝ p(y |µ,h)p(h |µh, φh, ω2

h).

Hence, we first derive explicit expressions for the densities p(y |µ,h) and p(h |µh, φh, ω2
h).

It can be shown that the latter density is Gaussian (see, e.g. Chan, 2015). Let Hφh be
the following lower triangular matrix:

Hφh =




1 0 0 · · · 0
−φh 1 0 · · · 0
0 −φh 1 · · · 0
...

. . . . . . . . .
...

0 0 · · · −φh 1



.

Then, we have (h |µh, φh, ω2
h) ∼ N (δh, (H

′

φh
Σ−1
h Hφh)

−1), where Σh = diag(ω2
h/(1 −

φ2
h), ω

2
h, . . . , ω

2
h) and δh = H−1

φh
δ̃h with δ̃h = (µh, (1 − φh)µh, . . . , (1 − φh)µh)

′. Hence,
its log-density is given by

log p(h |µh, φh, ω2
h) = −1

2
(h′H′

φh
Σ−1
h Hφhh− 2h′H′

φh
Σ−1
h Hφhδh) + c5, (19)

where c5 is a constant independent of h.

Next, we approximate p(y |µ,h) by a Gaussian density in h. To that end, expand

log p(y |µ,h) =
∑T

t=1 log p(yt |µ, ht) around a given point h̃ = (h̃1, . . . , h̃T )
′ ∈ RT by

a second-order Taylor expansion (the choice of h̃ is discussed below):

log p(y |µ,h) ≈ log p(y |µ, h̃) + (h− h̃)′f − 1

2
(h− h̃)′G(h− h̃)

=− 1

2
(h′Gh− 2h′(f +Gh̃)) + c6, (20)
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where c6 is a constant independent of h, f = (f1, . . . , fT )
′ and G = diag(G1, . . . , GT ) with

ft =
∂

∂ht
log p(yt |µ, ht)|ht=h̃t , Gt = − ∂2

∂h2t
log p(yt |µ, ht)|ht=h̃t .

That is, G is the negative Hessian of the log-density evaluated at h̃. For the standard
stochastic volatility model, G is diagonal (hence a band matrix). In particular, since the
log-density of yt given µ and ht is given by

log p(yt |µ, ht) = −1

2
log(2π)− 1

2
ht −

1

2
e−ht(yt − µ)2, (21)

it is easy to check that

∂

∂ht
log p(yt |µ, ht) =− 1

2
+

1

2
e−ht(yt − µ)2,

∂2

∂h2t
log p(yt |µ, ht) =− 1

2
e−ht(yt − µ)2.

Now, combining (19) and (20), we have

log p(h |y, µ, µh, φh, ω2
h) = log p(y |µ,h) + log p(h |µh, φh, ω2

h) + c7,

≈ −1

2
(h′Khh− 2h′kh) + c8, (22)

where c7 and c8 are constants independent of h, Kh = H′

φh
Σ−1
h Hφh + G and kh =

f+Gh̃+H′

φh
Σ−1
h Hφhδh. The expression in (22) is in fact the log-kernel of the N (ĥ,K−1

h )

density, where ĥ = K−1
h kh (see, e.g., Kroese and Chan, 2014, p. 238). Therefore,

p(h |y, µ, µh, φh, ω2
h) can be approximated by the Gaussian density with mean vector ĥ

and precision matrix Kh. It is important to note that Kh is a band matrix; in fact,
its nonzero elements appear only on the main diagonal and the diagonals above and
below the main diagonal. Consequently, ĥ can be computed quickly by solving the linear
system Khx = kh for x, and draws from N (ĥ,K−1

h ) can be efficiently obtained using the
precision sampler in Chan and Jeliazkov (2009). This Gaussian approximation is then
used as the proposal density in the acceptance-rejection Metropolis-Hastings algorithm.

Finally, the point h̃ used in the Taylor expansion in (20) is chosen to be the mode of
p(h |y, µ, µh, φh, ω2

h), which can be quickly obtained by the Newton-Raphson method
(see, e.g., Kroese et al., 2011, pp. 688-689). First, note that from (22) it follows that the

negative Hessian of log p(h |y, µ, µh, φh, ω2
h) evaluated at h = h̃ is Kh and the gradient at

h = h̃ is −Khh̃+kh. Hence, we can implement the Newton-Raphson method as follows:
initialize with h = h(1) for some constant vector h(1). For l = 1, 2, . . . , use h̃ = h(l) in
the evaluation of Kh and kh, and compute

h(l+1) = h(l) +K−1
h (−Khh

(l) + kh) = K−1
h kh.

Repeat this procedure until some convergence criterion is reached, e.g., when ‖h(l+1) −
h(l)‖ < c for some prefixed tolerance level c.
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Stochastic Volatility Model with AR(2) State Transition

Estimation of this variant with an AR(2) transition equation requires only minor modi-
fications of the main algorithm for the standard stochastic volatility model. Specifically,
let Hθh be the following lower triangular matrix:

Hθh =




1 0 0 0 · · · 0
0 1 0 0 · · · 0

−ρh −φh 1 0 · · · 0
0 −ρh −φh 1 · · · 0
...

. . . . . . . . . . . .
...

0 0 · · · −ρh −φh 1




.

Then, we can rewrite the state equation of ht in (6) as:

Hθhh = γ̃h + εh, εh ∼ N (0,Ph)

where εh = (εh1 , . . . , ε
h
T )

′, γ̃h = (µh, µh, (1− φh − ρh)µh, . . . , (1− φh − ρh)µh)
′ and Ph is a

diagonal matrix in which the first two diagonal elements are the unconditional variance
(1 − ρh)ω

2
h(1 + ρh)

−1((1 − ρh)
2 − φ2

h)
−1 and the remaining T − 2 elements equal ω2

h. It
follows that (h |µh, φh, ρh, ω2

h) ∼ N (γh, (H
′

θh
P−1
h Hθh)

−1), where γh = H−1
θh
γ̃h. Hence, we

have

log p(h |µh, φh, ρh, ω2
h) = −1

2
(h′H′

θh
P−1
h Hθhh− 2h′H′

θh
P−1
h Hθhγh) + c8, (23)

where c8 is a constant independent of h. Therefore, we only need to replace (19) by
(23), and the main algorithm for the standard stochastic volatility model can be directly
applied. Minor modifications to the main algorithm are also needed to sample θh, µh and
σ2
h.

Stochastic Volatility Model with Jumps

To estimate the stochastic volatility model with jumps, a few modifications of the main
algorithm are needed. Firstly, it is easy to see that the first and second derivatives of the
conditional likelihood with respect to ht are respectively

∂

∂ht
log p(yt |µ, kt, qt, ht) =− 1

2
+

1

2
e−ht(yt − µ− ktqt)

2,

∂2

∂h2t
log p(yt |µ, kt, qt, ht) =− 1

2
e−ht(yt − µ− ktqt)

2.

Then, h can be sampled as before. Secondly, we need additional steps to sample k =
(k1, . . . , kT )

′, q = (q1, . . . , qT )
′, κ and δ from the appropriate conditional distributions.

Following Chib, Nardari, and Shephard (2006), we sample k and δ jointly as follows.
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First, let ζt = log(1+kt) and stack ζ = (ζ1, . . . , ζT )
′ over t. If kt is small, as is the case for

high frequency financial returns that are measured in decimals, exp(ζt) ≈ 1 + ζt, which
implies ktqt ≈ ζtqt. Recall that the prior for the jump size kt is given by ζt = log(1+kt) ∼
N (−0.5δ2, δ2). Hence, we can integrate out ζt analytically. This allows us to sample δ
marginally of ζ from the density

p(δ)
T∏

t=1

φ(yt |µ− 0.5δ2qt, δ
2q2t + eht)

by the Metropolis-Hastings algorithm, where p(δ) is the prior density of δ and φ(x | a, b)
is the Gaussian density with mean a and variance b evaluated at x. Once δ is sampled,
we can draw ζ1, . . . , ζT sequentially as follows: if qt is zero, we sample ζt from the prior
N (−0.5δ2, δ2); otherwise we sample from N (ζ̂t, Dζt) where D−1

ζt
= δ−2 + e−ht and ζ̂t =

Dζt(−0.5 + e−ht(yt − µ)). Next, note that q1, . . . , qT are conditionally independent given
the data and other parameters and they can be sampled individually. In particular, each
qt follows a Bernoulli distribution with

P(qt = 1 | yt, ζt, ht, κ) ∝ κφ(yt |µ+ eζt − 1, eht)

P(qt = 0 | yt, ζt, ht, κ) ∝ (1− κ)φ(yt |µ, eht).

Finally, we sample (κ |q) ∼ B(ka +
∑T

t=1 qt, kb + T −∑T
t=1 qt).

Stochastic Volatility in Mean Model

To estimate the stochastic volatility in mean model, we only need to make two modifi-
cations of the main algorithm. Firstly, the first and second derivatives of the conditional
likelihood with respect to ht become

∂

∂ht
log p(yt |µ, α, ht) =− 1

2
− 1

2
α2eht +

1

2
e−ht(yt − µ)2,

∂2

∂h2t
log p(yt |µ, α, ht) =− 1

2
α2eht − 1

2
e−ht(yt − µ)2.

Then, h can be sampled as before. Secondly, we replace Step 2 of the main algorithm
with the joint sampling of (µ, α) from p(µ, α |y,h, µh, φh, ω2

h) = p(µ, α |y,h). To that
end, let β = (µ, α)′, Vβ = diag(Vµ, Vα), β0 = (µ0, α0)

′ and

Xβ =



1 eh1
...

...
1 ehT


 .

Then, by standard results, we have (µ, α |y,h) ∼ N (β̂,Dβ), where D−1
β = V−1

β +

X′

βΣ
−1
y Xβ and β̂ = Dβ(V

−1
β β0 +X′

βΣ
−1
y y) with Σy = diag(eh1 , . . . , ehT ).
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Stochastic Volatility Model with MA(1) Innovations

A few modifications of the main algorithm are needed to fit this variant with MA(1)
innovations in the observation equation. Firstly, by appropriately transforming the data,
we can sample h as before. Specifically, let

Hψ =




1 0 0 · · · 0
ψ 1 0 · · · 0
0 ψ 1 · · · 0
...

. . . . . . . . .
...

0 · · · 0 ψ 1



.

Then, (10) can be written as

εy = Hψu, u ∼ N (0,Σy),

where Σy = diag(eh1 , . . . , ehT ). Hence, if we transform the data y via ỹ = H−1
ψ (y − µ1),

where 1 is a T × 1 column of ones, then (ỹ |h, ψ, µ) ∼ N (0,Σy). Therefore, by applying
Step 1 to the transformed data ỹ, we can sample h as before.

Next, to sample µ, observe that it follows from (9) and (10) that (y |µ,h, ψ) ∼ N (µ1,Ωy),
where Ωy = HψΣyH

′

ψ. Note that Ωy is a band matrix with only a small number of non-
zero elements along the main diagonal band. Consequently, computations involving Ωy

are fast. For computation details see Chan (2013). By standard linear regression results,
we have (µ |y,h, ψ) ∼ N (µ̂, Dµ), where D

−1
µ = V −1

µ +1′Ω−1
y 1 and µ̂ = (V −1

µ µ0+1′Ω−1
y y).

Lastly, we sample ψ using an independence chain Metropolis-Hastings step as described
in Chan (2013).

Stochastic Volatility Model with Leverage

A few modifications of the basic algorithm are needed to sample (h |y, µ, µh, φh, ω2
h, ρ),

where h = (h1, . . . , hT+1)
′ here is of length T + 1. Note that the conditional distribution

of yt given ht, ht+1, and the parameters is

(yt |µ, ht, ht+1, µh, φh, ρ, ω
2
h) ∼ N

(
µ+

ρ

ωh
e

1

2
ht(ht+1 − φhht − µh(1− φh)), e

ht(1− ρ2)

)

(24)
with log-density

log p(yt |µ, ht, ht+1, ρ, µh, φh, ω
2
h) = −1

2
log(2π(1− ρ2))− 1

2
ht

− 1

2(1− ρ2)
e−ht

(
yt − µ− ρ

ωh
e

1

2
ht(ht+1 − φhht − µh(1− φh))

)2

.
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For notational convenience, let pt = p(yt |µ, ht, ht+1, ρ, ω
2
h). Then, the gradient and neg-

ative Hessian of the Gaussian approximation now take the form

f =




f1
f2
...

fT+1


 , G =




G11 G12 0 · · · 0
G12 G22 G23 · · · 0
...

. . . . . . . . .
...

0 · · · GT−1,T GTT GT,T+1

0 · · · 0 GT,T+1 GT+1,T+1



,

where for t = 2, . . . , T + 1,

f1 =
∂ log pt
∂ht

∣∣∣∣
h=h̃

, ft =
∂

∂ht
(log pt + log pt−1)

∣∣∣∣
h=h̃

,

G11 = −∂
2 log pt
∂h2t

∣∣∣∣
h=h̃

, Gtt = − ∂2

∂h2t
(log pt + log pt−1)

∣∣∣∣
h=h̃

, Gt−1,t = − ∂2 log pt
∂ht∂ht+1

∣∣∣∣
h=h̃

.

It is easy to check that

∂ log pt
∂ht

=− 1

2
− 1

2(1− ρ2)

(
−e−ht(yt − µ)2 − 2φhρ

2

ω2
h

(ht+1 − φhht − µh(1− φh))

+
ρ

ωh
e−

1

2
ht(yt − µ)(ht+1 − φhht − µh(1− φh) + 2φh)

)
,

∂2 log pt
∂h2t

=− 1

2(1− ρ2)

(
e−ht(yt − µ)2 +

2φ2
hρ

2

ω2
h

− ρ

2ωh
e−

1

2
ht(yt − µ)(ht+1 − φhht − µh(1− φh) + 4φh)

)
,

∂ log pt
∂ht+1

=
ρ

ωh(1− ρ2)
e−

1

2
ht

(
yt − µ− ρ

ωh
e

1

2
ht(ht+1 − φhht − µh(1− φh))

)
,

∂2 log pt
∂h2t+1

=− ρ2

ω2
h(1− ρ2)

,

∂2 log pt
∂ht∂ht+1

=
ρ

ωh(1− ρ2)

(
φhρ

ωh
− 1

2
e−

1

2
ht(yt − µ)

)
.

To sample ρ, note that the log conditional density of ρ is

log p(ρ |y,h, µ, µh, φh, ω2
h) ∝ log p(ρ)− T

2
log(1− ρ2)− 1

2(1− ρ2)

(
k1 −

2ρk2
ωh

+
ρ2k3
ω2
h

)
,

where p(ρ) is the prior density of ρ, k1 =
∑T

t=1 e
−ht(yt − µ)2, k2 =

∑T
t=1 e

−ht/2(yt − µ)εht
and k3 =

∑T
t=1(ε

h
t )

2 with εht = ht+1 − φhht − µh(1 − φh). Since ρ is bounded within the
unit interval, one can sample ρ using the Griddy-Gibbs method.

The other parameters can be sampled similarly as the standard SV, by using the expres-
sion in (24). For example, the conditional distribution of µ is Gaussian:

(µ |y,h, ρ, µh, φh, ω2
h) ∼ N (µ̂, Dµ),
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where D−1
µ = 1/Vµ + (1− ρ2)−1

∑T
t=1 e

−ht and µ̂ = Dµ(µ0/Vµ + (1− ρ2)−1
∑T

t=1 e
−ht(yt −

ρe
1

2
htεht /ωh)).

Stochastic Volatility Model with t Innovations

We only need a few modifications of the main algorithm to estimate this variant. Specif-
ically, we replace (21) with

log p(yt |µ, ht, λt) = −1

2
log(2πλt)−

1

2
ht −

1

2λt
e−ht(yt − µ)2.

Then, the same procedure can be applied to sample h jointly. Similarly, the full condi-
tional density of µ now becomes

(µ |y,h,λ) ∼ N (µ̂, Dµ),

where λ = (λ1, . . . , λT )
′,D−1

µ = V −1
µ +

∑T
t=1 λ

−1
t e−ht and µ̂ = Dµ(V

−1
µ µ0+

∑T
t=1 λ

−1
t e−htyt).

In addition, we need an extra block to sample the latent variables λ. This can be easily
done as λ1, . . . , λT are conditionally independent given the parameters and data. In fact,
each λt follows an independent inverse-gamma distribution:

(λt | yt, µ, ht, ν) ∼ IG
(
1

2
(ν + 1),

1

2

(
ν + e−ht(yt − µ)2

))
.

Lastly, ν can be sampled by an independence-chain Metropolis-Hastings step with the
proposal distributionN (ν̂, K−1

ν ), where ν̂ is the mode of log p(ν |λ) andKν is the negative
Hessian evaluated at the mode. For implementation details of this step, see Chan and
Hsiao (2014).
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Appendix B: Importance Sampling for Observed-Data

Likelihoods

In this appendix we provide the details of the importance sampling algorithms. For the
SV2, SVM, SVMA and SVL models, the only latent variables are the log-volatilties. For
each of these models, we can use the Gaussian approximation of the conditional density
of h given the data and other parameters as the importance density (see Appendix A for
details). For example, under the SV2 model, we replace the prior density in (19) by (23)
and the Gaussian approximation of p(h |y, µ, µh, φh, ρh, ω2

h) can be obtained following
the same procedure as in Section 4. Moreover, all the Gaussian approximations can be
quickly evaluated at any point as their precision matrices are all band matrices.

For the SVJ model, one needs to integrate out the log-volatilties h, the jumps q and
the jump sizes ζ through importance sampling. Specifically, we simulate h, q and ζ as
below. First, given the current posterior mode ĥ = (ĥ1, . . . , ĥT )

′ and other parameters,
we generate each qt from the Bernoulli distribution with

P(qt = 1) ∝ κφ(yt |µ− 0.5δ2, δ2 + eĥt)

P(qt = 0) ∝ (1− κ)φ(yt |µ, eĥt).

Then, given the simulated draw q∗, we draw ζ1, . . . , ζT sequentially as follows: if q∗t is

zero, we sample ζt from the prior N (−0.5δ2, δ2); otherwise we sample from N (ζ̂t, Dζt)

where D−1
ζt

= δ−2 + e−ĥt . Lastly, given q∗ and ζ∗, we generate a draw from the Gaussian
approximation of p(h |y, µ, ζ∗,q∗, µh, φh, ω

2
h), obtained as described in Appendix A. In

this case, it is also easy to evaluate the importance density, which is a product of Bernoulli
and Gaussian densities.

Finally, we consider the integrated likelihood evaluation for the SVt model. In this
case, we need to integrate out both λ and h. It turns out that we can integrate out λ
analytically, and h is then integrated out by importance sampling as discussed above. It
can be shown that the partial conditional likelihood (marginal of λ) is given by

p(y |h, µ, ν) = (νπ)−
T

2 e−
1

2

∑
T

t=1
ht

(
Γ
(
ν+1
2

)

Γ
(
ν
2

)
)T T∏

t=1

(
1 +

1

ν
e−ht(yt − µ)2

)
−

ν+1

2

.

To obtain an importance sampling density, we note that in this case the ideal zero-variance
importance sampling density is the conditional density p(h |y, µ, µh, φh, ω2

h, ν) marginal

of λ. As before, we approximate this with a Gaussian density with mean vector ĥ and
precision matrix Kh, where ĥ and Kh are respectively the mode and the negative Hessian
evaluated at the mode of log p(h |y, µ, µh, φh, ω2

h, ν).
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