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1 Introduction

This paper considers econometric estimation and model selection for noisy-news models.
Macroeconomic models such as this involve the use of identifying assumptions so as to
give shocks and parameters an economic interpretation. These identifying assumptions
have implications for the econometric model being estimated. In earlier work with
noisy-news models (Benati, Chan, Eisenstat, and Koop, 2020), we developed a new
way of identifying news and noise shocks and showed how these can be estimated using
an SVARMA. That paper further explored the relationship between this identi�cation
scheme and the robust features of Dynamic Stochastic General Equilibrium (DSGE)
models, such as the Real Business Cycle (RBC) models, which are typically employed
in the noisy-news literature. However, not all assumptions underlying the SVARMA
methodology are aligned with assumptions made in theoretical models.

In this paper, we consider two alternative assumptions regarding agents' information
sets with strong implications for empirical work. The �rst is a standard assumption used
in the theoretical noisy-news literature, which as we show, places strong restrictions on
the time series process that characterises macroeconomic data. Such restrictions imply
standard time series methods such as VARs or VARMAs cannot be used in general, and
this has led previous empirical work to with more restrictive speci�cations (e.g. Forni,
Gambetti, Lippi, and Sala, 2017). However, a key point in this paper is that such a
theoretical assumption can be tested empirically: it is possible to quantify the extent
to which multivariate time series data support it.

To this end, we derive an identi�cation scheme based on alternative assumptions
regarding agents' information sets. Consequently, the resulting econometric speci�ca-
tion lacks the strong restrictions imposed by theoretical macroeconomic models. We
further show that news and noise shocks can be identi�ed in either framework (albeit
under di�erent assumptions about observables), but relaxing the strong theoretical re-
strictions leads to a straightforward SVARMA model that can be easily implemented
in practice. We then develop methods for empirically comparing the two speci�cations
de�ned by the alternative theoretical assumptions. In particular, we derive methods
for calculating the Bayes factor comparing the two models. In an empirical application,
we �nd strong evidence in favour of our identifying assumptions.

The paper is organized as follows. Section 2 discusses the existing literature in rela-
tion to identi�cation and econometric estimation and outlines our contribution relative
to it. Section 3 illustrates the issues involved in the context of a simple theoretical
model. Section 4 provides formal details of our identi�cation scheme and a discussion
of how it relates to assumptions made in the theoretical literature. Section 5 describes
our econometric methods and, in particular, derives methods for calculating the Bayes
factor comparing di�erent identi�cation schemes. Section 6 is an empirical exercise
which investigates the role of news and noise shocks in an application involving a large
US macroeconomic data set. Section 7 concludes.
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2 Identi�cation and Econometric Estimation of

Noisy-News Models

Following the seminal contribution of Beaudry and Portier (2006), the notion that
a fundamental variable (e.g. productivity) may be driven not only by the familiar
`surprise' (i.e., non-news) shocks with an immediate impact, but also by anticipated
(i.e., news) shocks is at the forefront of the macroeconomics research agenda (see Barsky,
Basu and Lee, 2014). News shocks are de�ned as those which change expectations
about future productivity, but have no immediate impact oncurrent productivity. In
recent years, several authors�see in particular Barsky and Sims (2012), Blanchard,
L'Huillier, and Lorenzoni (2013) and Forni, Gambetti, Lippi, and Sala (2017)�have
started to explore the implications of a straightforward departure from the basic `news
versus non-news' dichotomy: What if some of the news about future technological
improvements does not materialize, so that it turns out to have been just noise, rather
than news?

Developing appropriate econometric methods for estimating the e�ects of news and
noise shocks has proven to be challenging. Barsky and Sims (2012) and Blanchard,
L'Huillier, and Lorenzoni (2013) both estimate DSGE models directly, but under dif-
ferent theoretical settings they obtain diametrically opposing results regarding the role
of noise shocks in driving economic business cycles. Blanchard, L'Huillier, and Loren-
zoni (2013) further comment that semi-structural time series methods such as SVARs
cannot be used to identify news and noise shocks. Forni, Gambetti, Lippi, and Sala
(2017) build on this and provide an in-depth analysis of the issues, which can be sum-
marized as follows.

There are four key features of including non-news, news, and noise shocks in the
same econometric model that make this setting particularly di�cult to work with:

1. News and noise shocks a�ect all variables identically on impact (since agents can-
not initially distinguish between them), which implies the in�nite moving average
(MA) representation is non-fundamental.

2. Di�erent non-fundamental MA representations imply di�erent speeds with which
agents learn about news and noise shocks from future observations.

3. DSGE models featuring news and noise shocks assume information structures that
result in systems where non-news, news and noise shocks cannot be computed from
past, current, and future observations of economic variables.

4. The role of news and noise shocks is likely to be related to the amount of infor-
mation observed by agents, and therefore, the number of variables considered by
the econometrician is important.

Issue 1 means that a traditional SVAR approach cannot be used. Issue 2 adds to
the di�culty because non-fundamental representations are observationally equivalent
when Gaussian errors are assumed. Hence, an approach is needed to obtain inference
without arbitrarily imposing restrictions on how quickly agents learn about the nature
of the shocks.

Forni, Gambetti, Lippi, and Sala (2017) deal with issues 1 and 2 by employing
a particular set of dynamic rotations of news and noise shocks. Consequently, they
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assume the transformed system is fundamental and proceed to estimate a standard
VAR. As it turns out, the dynamic rotations can be recovered from the estimated VAR
coe�cients and the transformation reversed. The implicit structural model that results
is a VARMA, which Forni, Gambetti, Lippi, and Sala (2017) use to compute impulse
response functions (IRFs) and forecast error variance decompositions (FEVDs). They
�nd noise shocks to play a substantial role in explaining economic �uctuations.

An important feature of the approach in Forni, Gambetti, Lippi, and Sala (2017)
is that non-news shocks are excluded from the model. This is a consequence of issue
3, which implies that under the typical theoretical assumptions, certain restrictions are
imposed on agents' information sets such that the three shocks (non-news, news and
noise) are not recoverable from the data at any horizon. Hence, a VAR representation
cannot be obtained. However, we stress that these restrictions (and, hence, the non-
recoverability of the shocks) is a result of assumptions, which as we show below, can
be tested empirically.1

The primary aim of this paper is to test the theoretical assumption underlying issue
3 that is utilized by the theoretical literature. We do so by assuming per a contrario

that the restrictions on agents' information sets in issue 3 do not hold, and subsequently,
develop econometric methods that successfully address issues 1, 2 and 4.

This is motivated by a number of considerations. Firstly, excluding non-news shocks
outright (as Forni, Gambetti, Lippi, and Sala, 2017, do) may not always be desirable
as it implies all exogenous variation in, e.g., productivity is anticipated. Secondly, to
our knowledge, no empirical investigation to date has considered systems with more
than six variables, and therefore, issue 4 has not been thoroughly addressed. On the
other hand, the plausibility of restrictions on agents' information sets may be related
to the amount of information that is available to agents, and hence, it is sensible to
consider empirical tests of such restrictions, particularly as more variables are added to
the econometric speci�cation.

Consequently, the �rst contribution of this paper is to introduce a set of identifying
assumptions on a SVARMA and prove that they allow for identi�cation of impulse
responses to non-news, news and noise shocks. We do this for both cases�when agents'
information sets are restricted (as in DSGE models) as well as when they are not.
The second contribution of this paper lies in the development of Bayesian econometric
methods for estimating the resulting SVARMA in the unrestricted case. This is not
a straightforward development since a common �nding is that VARMAs can be over-
parameterized and di�cult to estimate, particularly in high dimensional models such
as those used in this paper. Building on previous work with reduced form VARMAs
(see Chan, Eisenstat, and Koop, 2016; Chan and Eisenstat, 2017), we derive methods
for estimating the SVARMA implied by our identi�cation scheme. We use stochastic
search variable selection (SSVS) methods (see George, Sun, and Ni, 2008) to pick
out restrictions and ensure parsimony in an otherwise over-parameterized model. In
our empirical section, we succesfully work with VARMAs with up to 20 dependent
variables. For reasons discussed above, and given the general desire of macroeconomists
to work with larger data sets (e.g. due to concerns about whether an insu�ciency of

1Indeed, in the presence of these restrictions, Chahrour and Jurado (2018a) prove that under additional
restrictions news and noise representations can be observationally equivalent.
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information could lead to a lack of identi�cation of structural VARs expressed in Forni
and Gambetti, 2014), the ability of our econometric methods to work with such large
dimensional SVARMAs is a very useful feature.

Given our departure from the restrictions in issue 3, the third contribution of this
paper lies in exploring the di�erences between our set of assumptions and those used
in the theoretical literature. The key distinction is formalized in our Assumption 1
(de�ned below). This assumption implies that all structural shocks are a function of
past current and future observations of the variables in the model. In contrast, the
restrictions in the theoretical literature arise from the assumption that each agent's
information set contains only the current and past values of a fundamental variable as
well as a signal about the news shock. Such an assumption contradicts our Assumption
1: whereas Assumption 1 implies the transfer function of a linear system is full rank
(almost everywhere), the theoretical literature assumes that it is singular.

We show that IRFs may be uniquely identi�ed under either of these assumptions, but
is our Assumption 1 better than the assumption employed in the theoretical literature?
Our attempt to answer this question constitutes the fourth contribution of this paper.
We develop a method for empirically testing which assumption is supported by the
data. In particular, we use the Savage-Dickey density ratio (SDDR, see Verdinelli and
Wasserman, 1995) to obtain a Bayes factor comparing a model identi�ed using our
assumptions to one in which restrictions from the theoretical literature hold.

The �fth contribution lies in a substantive empirical application involving up to 20
variables. We �nd our econometric methods to work well. In particular, we are able to
disentangle non-news, news and noise shocks, and the Bayes factors indicate support
for our identifying scheme. Our main empirical result is that noise shocks play a minor
role in macroeconomic �uctuations, explaining small, or even negligible, fractions of the
forecast error variance of main macroeconomic variables. However, small models may
overstate the importance of noise shocks. As more variables are added, news shocks
emerge as the only ones that substantially explain macroeconomic �uctuations.

We also note that the SVARMA-based econometric methods we develop in this paper
are for a speci�c class of macroeconomic models involving a particular identi�cation
scheme. This class of macroeconomic models is an important and popular one, but
(with appropriate alternations) our econometric methods can be used with other non-
fundamental SVARMAs identi�ed in di�erent ways.

3 Motivating Example

Suppose a fundamental process {at : t ∈ Z} is de�ned by:

at = εNNt + εNEt−1 + θεNEt−2. (1)

We will refer to εNEt as the news shock because it does not impact the fundamental
process immediately, but rather with a lag of one or more periods. In (1), the news
shock a�ects the fundamental a minimum of one period and a maximum of two periods
(if θ 6= 0) after its realization. In contrast, εNNt is a shock that a�ects the fundamental
process in the same period in which it occurs. We refer to this as the non-news shock
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to convey the idea that it captures everything that impacts the fundamental but is
not anticipated. It can also be regarded as the conventional surprise shock in the
news-driven business cycles literature (e.g., Barsky and Sims, 2011).

We emphasize that the fundamental process de�ned by (1) is not a�ected by any
other shock besides non-news and news. Indeed, this is a general feature of the type
of fundamental processes de�ned in the literature: non-news and noise shocks explain
100% of the forecast error variance of the fundamental process. We formalize the
concept of a news-driven fundamental process as Assumption 3 in subsequent sections.

In the noisy news literature, the key assumption is that agents do not observe εNEt
at time t, but rather a signal of the form:

st = εNEt + ut. (2)

The shock ut captures the noise in the signal: it prevents agents from observing εNEt
completely, but it does not impact the fundamental process at any period. The three
shocks are assumed to be independent white noise processes, namely (εNNt , εNEt , ut)

′ ∼
WN (0, diag{σ2

NN
, σ2

NE
, σ2

u}). These distributional assumptions, in turn, imply the fol-
lowing key moment conditions for the fundamental and signal processes:

Var(at) = σ2
NN + (1 + θ2)σ2

NE, Cov(at, st−1) = σ2
NE,

Var(st) = σ2
NE + σ2

u, Cov(at, st−2) = Cov(at, at−1) = θσ2
NE.

Assume that σ2
NN

> 0, σ2
NE

> 0 and σ2
u > 0 so that the above de�nes a mixed news-

noise representation of the fundamental and signal (i.e. with non-trivial non-news,
news, and noise shocks). However, θ may or may not be equal to zero. As will be
shown below, having a fundamental process with θ 6= 0 plays an important role in the
identi�cation of an econometric model based on the mixed news-noise representation
speci�ed above.

To this end, assume the econometrician observes the fundamental at along with two
variables yt and zt given by:

yt = Kyaat +Kysst, (3)

zt = Kzaat +Kzsst +Kzεε
NN

t , (4)

where Kys 6= 0 and Kzs 6= 0. The (3 × 1) observed data vector (at, yt, zt)
′ admits the

structural moving average representation:atyt
zt

 =

 1 0 0
Kya Kys Kys

Kza +Kzε Kzs Kzs

εNNtεNEt
ut


+

0 1 0
0 Kys 0
0 Kzs 0

εNNt−1

εNEt−1

ut−1

+

0 θ 0
0 Kysθ 0
0 Kzsθ 0

εNNt−2

εNEt−2

ut−2


=

 1 L+ θL2 0
Kya Kys +Kya(L+ θL2) Kys

Kza +Kzε Kzs +Kza(L+ θL2) Kzs

εNNtεNEt
ut

 = K(L)εt. (5)
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Two important features of the impulse response functions embedded in (5) are note-
worthy. Firstly, the responses of yt and zt to news and noise shocks at time t are
identical. As noted by Forni, Gambetti, Lippi, and Sala (2017) and discussed in detail
by Benati, Chan, Eisenstat, and Koop (2020), this is a general feature of the signal
extraction problem faced by agents in noisy news settings because they are not able to
distinguish between news and noise immediately when receiving a signal st about the
fundamental. Secondly, all three variables continue to respond to news shocks in t+ 1
and t + 2 but none of the variables respond to the noise shock for t > 0. That is, the
impulse response functions to news and noise shocks diverge in periods following initial
impact. Our Assumption 4 below captures these features for the general case.

Another important observation related to (5) is the role of Kzε. In particular, it
is straightforward to verify that det K(L) = (L + θL2)KysKzε, so that det K(L) = 0
if and only if Kzε = 0. Importantly, this means that if Kzε 6= 0, the three observed
variables (at, yt, zt) must be driven by at least three shocks. This highlights issue 3 listed
in the introduction. It implies that econometric models involving non-news, news and
noise shocks have certain properties, which in the context of the present example can
be characterized as follows.

Theoretical models that assume agents' information sets consist solely of the fun-
damental and signal systematically impose Kzε = 0, since every endogenous variable
(such as yt and zt) must lie strictly in the space spanned by {at−l, st−l : l ≥ 0}. Un-
der this assumption, however, det K(L) = 0 in the present example, implying that
(i) the spectral density for the observed data (at, yt, zt) is singular and (ii) the three
shocks (εNNt , εNEt , ut) are not recoverable from present, past and future observations of
(at, yt, zt). Essentially, Kzε = 0 if and only if the three observables are driven by two

shocks or less.
In contrast, time series econometric methods generally rely on the assumption that

det K(L) 6= 0, with SVAR methods further requiring det K(z) 6= 0 for all |z| ≤ 1, z ∈ C.
Consequently, withKzε = 0, to estimate the system in (5) consisting of parametersKya,
Kys, Kza, Kzs, θ, σ

2
NN

, σ2
NE

and σ2
u, would require an entirely new set of tools: neither

VAR nor VARMA methods are directly applicable.
The approach in this paper builds on the observation that with Kzε 6= 0 the system

in (5) can be e�ciently estimated and the restriction Kzε = 0 can be tested empirically.
To this end, we propose a Bayesian VARMA methodology and test based on the Savage-
Dickey density ratio. Identi�cation of Kya, Kys, Kza, Kzs, Kzε, θ, σ

2
NN

, σ2
NE

and σ2
u,
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when Kzε 6= 0, follows from θ 6= 0 and the moment conditions:

Var(at) = σ2
NN + (1 + θ2)σ2

NE,

Cov(at, at−1) = θσ2
NE,

Cov(at, yt−1) = KyaCov(at, at−1) +Kysσ
2
NE,

Cov(at, zt−1) = KzaCov(at, at−1) +Kysσ
2
NE +Kzεσ

2
NN,

Cov(at, yt−2) = KysCov(at, at−1),

Cov(at, zt−2) = KzsCov(at, at−1),

Cov(at−1, yt) = KyaCov(at, at−1),

Cov(at−1, zt) = KzaCov(at, at−1),

Cov(yt, zt) = KyaCov(at, zt) +KysKzsσ
2
NE +KysKzsσ

2
u.

However, setting θ = 0 forces Cov(at, at−1) = 0, and with it, obliterates the moments
Cov(at, yt−2), Cov(at, zt−2), Cov(at−1, yt), and Cov(at−1, zt). As a result, it can be
easily shown that the remaining unrestricted moments are not su�cient to recover Kya,
Kys, Kza, Kzs, Kzε, σ

2
NN

, σ2
NE

and σ2
u. Intuitively, identi�cation of (5) requires that

the fundamental process embodies su�ciently rich dynamics to exploit the information
in inter-temporal moments of the observed variables.

Observe further that with θ 6= 0, all parameters in (5) are identi�ed even when
Kzε = 0 and thus det K(L) = 0. In particular, this yields a case where the shocks are
not recoverable from (present, past, and future) observables, but the impulse response
functions are nevertheless identi�ed. Benati, Chan, Eisenstat, and Koop (2020, Ap-
pendix I) demonstrate that if the fundamental at is observed along with its rational
expectations Et(at+1),Et(at+2), ... (as assumed in, e.g., Chahrour and Jurado, 2018a),
then mixed representation (involving the three shocks: non-news, news, and noise)
based on (1) and (2), with θ 6= 0, cannot be observationally equivalent to either a
pure news representation (involving only news and non-news shocks) or a pure noise

representation (involving only non-news and noise shocks).2 The key to this result is
that with θ 6= 0, the observation Et(at+2) is not trivial and generates enough informa-
tion to distinguish the mixed representation from the other two. These derivations are
reproduced (for convenience) in Appendix C.

Although such simple assumptions about fundamental processes do not clearly ex-
tend to the general case in identifying IRFs under non-recoverability, the basic concept
that IRFs may be identi�ed does prevail even when the shocks are not recoverable.
What is needed to identify IRFs in the more general setting is a set of observables that
recover the signal.

Speci�cally, if the signal st is observed by the econometrician, then even with θ = 0,
the parameters σ2

NN
, σ2

NE
and σ2

u are identi�ed from the moments Var(at), Var(st) and
Cov(at, st−1); with Kzε = 0, the remaining parameters in (5) follow from Cov(at, yt),
Cov(at, yt−1), Cov(at, zt) and Cov(at, zt−1). When st is not observed directly, there
may exist a set of variables that reveal it. For example, this will be the case if either

2Note, however, that the pure news and pure noise representations are indeed observationally equivalent
(as shown by Chahrour and Jurado, 2018a, Proposition 1); but neither of these is observationally equivalent
to the mixed representation as long as θ 6= 0.
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Kys = 1, Kzs = 1 or Kys + Kzs = 1. The concept of observed variables revealing the
signal was proposed by Forni, Gambetti, Lippi, and Sala (2017), who suggested stock
prices or survey measures of consumer sentiment as suitable candidates. We formalize
this idea in subsection 4.3 and use it to provide a general identi�cation result.

4 Identi�cation Theory

In this section, we extend the ideas introduced in Section 3 to a general class of models.
Following the noisy-news literature, we are going to assume there are at least three
structural shocks: ε1,t is a conventional (normalized to have standard deviation one)
non-news shock to a fundamental variable such as productivity, ε2,t is the (normalized)
news shock and ε3,t is the (normalized) noise shock.

The theory which underlies the separate identi�cation of these shocks involves two
aspects. Firstly, news shocks, by de�nition, are about the future. They have no im-
mediate e�ect on the fundamental variable, but re�ect information, e.g., about future
total factor productivity (TFP). As a simple example, consider a news shock as an an-
nouncement by a major company such as Tesla about a future project or technological
development. This has no impact on Tesla's production now, and will only have an
impact in the future. The second aspect is that news may be noisy. It is only as time
passes that we will know whether the announced project or technological development
actually occurs (i.e. whether the announcement is news or noise). In a structural model,
these theoretical considerations place restrictions on impulse responses at impact. They
imply that ε2,t and ε3,t have no immediate e�ect on the fundamental process and that
they have the same impact on all variables in the model for some period (i.e. news and
noise can only be disentangled as time passes).

We now de�ne our set of identifying assumptions and explain why they are consistent
with these considerations. Suppose that an n× 1 vector of observable macroeconomic
variables in levels admits a structural moving average representation of the form

yt = K(L)εt, εt ∼ N (0, In). (6)

We assume that K(L) satis�es the following.

Assumption 1. K(L) = K0 + K1L+ · · ·+ KlL
l + · · · is a n× n matrix with entries

Kij(L) being rational functions in L over the reals. In addition, K(L) has normal rank

n, i.e. rank K(z) = n almost everywhere for z ∈ C.

Assumption 2. Let κp(L) denote the poles polynomial of K(L) and κz(L) the zeros
polynomial. κp(L) and κz(L) have the following properties:

1. κp(z) 6= 0 for all |z| < 1, z ∈ C;
2. κz(L) = Lτκω(L), where τ > 0 is an integer and ω = (ω1, . . . , ωm) is a multi-

index with ωh ∈ {0, 1}. Let Aω = {α1, . . . , αm} with αh ∈ {z ∈ C : z 6= 0} such
that |αh| ≥ 1 i� ωh = 0, |αh| < 1 i� ωh = 1, and αh 6= αk for all h 6= k. Then,

κw(z) = 0 i� z ∈ Aω.

Assumption 3. Kl,12 = 0 for l = 0, . . . , τ − 1 and K0,11 6= 0; K1j(L) = 0 for all

j = 3, . . . , n.
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Assumption 4. there exists a constant c > 0 such that Kl,i3 = cKl,i2 for l = 0, . . . , τ−1
and i = 2, . . . , n.

Assumption 5. Let χ(L) be the least common multiple of the denominators of K11(L)
and K12(L), such that K̂11(L) = χ(L)K11(L) and K̂12(L) = χ(L)K12(L) are polyno-

mials. Then, there exists a constant ζ 6= 0 such that K̂12(ζ) = 0 and K̂11(ζ) 6= 0.

Proposition 1. Let K(L)εt and K̃(L)ε̃t be two observationally equivalent representa-

tions and let Γ be a n× n constant orthogonal matrix partitioned as

Γ =

(
Γ11 Γ12

Γ21 Γ22

)
,

where Γ11 is 3 × 3 and Γ22 is (n − 3) × (n − 3). If K(L) and K̃(L) both satisfy

Assumptions 1-5 for a given ω and τ , then K̃(L) = K(L)Γ, Γ12 = Γ21 = 0 and Γ11 is

diagonal, almost everywhere.

The proof is in Appendix A.

4.1 Discussion

Proposition 1 states that under Assumptions 1-5, impulse responses to ε1,t, ε2,t, and ε3,t
are uniquely determined (up to sign normalization) by the observable process {yt; t ∈
Z}. Each of these assumptions warrants further discussion.

4.1.1 Assumptions 3-5

Assumptions 3-5 are theory-driven restrictions that de�ne and identify ε1,t as the (nor-
malized) non-news shock, ε2,t as the (normalized) news shock, and ε3,t as the (normal-
ized) noise shock. In this respect, Assumption 4 re�ects the idea that agents respond
to (unnormalized) news and noise shocks identically on impact and for the duration of
the anticipation horizon (i.e. periods 0, . . . , τ − 1), which we have argued is a general
feature of theoretical models that include noisy signals about future realizations of a
fundamental process.

Assumptions 3 and 5 de�ne a class of models for the fundamental process (e.g.
TFP) itself. The restrictions in Assumption 3 state that only the non-news shock ε1,t
can in�uence the fundamental on impact, while only non-news and news shocks (ε1,t
and ε2,t) can in�uence the fundamental at all horizons after impact. These restrictions
are standard in the literature; they are consistent with, e.g., the Barsky and Sims (2011)
restrictions that non-news and news explain all the forecast error variance of TFP at
all horizons, but only non-news a�ects TFP on impact. In practice, we do not impose
all exclusion restrictions exactly, but (similar to Barsky and Sims, 2011) rely on the
approximate restriction that non-news and news explain the maximum fraction of the
forecast error variance of the fundamental at some large, but �nite horizon. This is
discussed in more detail in Section 5.

Assumption 5, however, constrains the fundamental process in a way that requires
some justi�cation. To highlight the intuition, observe �rst that the rationality of K(L)
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implies the fundamental process is an ARMA of the form:

χ(L)at = K̂11(L)ε1,t + K̂12(L)ε2,t, (7)

where χ(L) is the least common multiple of the denominators of K11(L) and K12(L).
Assumption 5 then requires that (i) K̂12(L) has at least one nonzero root ζ, and (ii)

that this root is not also a root of K̂11(L). Intuitively, it means that the news shock
ε2,t a�ects the fundamental in a way that is su�ciently distinct from the e�ect of the
non-news shock ε1,t. Accordingly, the observed fundamental exhibits su�ciently rich
dynamics to disentangle non-news, news, and noise shocks.

Following the discussion in Section 3, a simple speci�cation such as

at = at−1 + σNNε1,t + σNEε2,t−1

will not satisfy Assumption 5, and this will undermine the identi�cation of the desired
impulse response functions in a general setting. Allowing for an additional lag of the
news shock to a�ect the fundamental, however, recti�es this de�ciency:

at = at−1 + σNNε1,t + σNEε2,t−1 + θσNEε2,t−2.

In particular, the extended process is characterized by K̂11(L) = σNN and K̂12(L) =
σNE(1 + θL)L, so that K̂12(−1/θ) = 0 but K̂11(−1/θ) = σNN 6= 0.

Another example of a fundamental process that satis�es Assumptions 3 and 5 is the
following:

at = at−1 + ηt + µt−1,

ηt = ρηηt−1 + σNNε1,t,

µt = ρµµt−1 + σNEε2,t,

where 0 < ρη < 1, 0 < ρµ < 1 and ρη 6= ρµ. This leads to

(1− ρµL)(1− ρηL)(1− L)at = σNN(1− ρµL)ε1,t + σNE(1− ρηL)Lε2,t,

where K̂12(1/ρη) = 0 but K̂11(1/ρη) 6= 0 as long as ρη 6= ρµ. Therefore, Assumption 5
is not restrictive in the sense that it will be satis�ed by many reasonable speci�cations
for the fundamental process, whereas only a small group of overly-simplistic processes
is excluded.

4.1.2 Assumptions 1-2

Assumption 1 establishes the basic structural framework in which we draw inference
about non-news, news, and noise shocks form macroeconomic time-series data. In most
macroeconomic applications, this type of assumption is taken as standard. The full
rank assumption for K(L) implies that all structural shocks can be computed from
past, current and future observations of the data (see Chan and Ho, 2004, Lemma 2 or
Chahrour and Jurado, 2018b, Theorem 1). However, it is at odds with typical assump-
tions made in the theoretical noisy-news literature which imply particular reduced rank

11



forms for K(L). In sub-section 4.2 we develop a simple procedure to test such reduced
rank assumptions in the context of our identi�ed, full rank system.

Assumption 2 establishes the stability and fundamentalness of the system in terms of
the roots characterizing the poles and zeros polynomials. In particular, the assumption
that the poles polynomial κp(L) has no roots of modulus less than unity ensures that
the observed process is stable (though possibly co-integrated).

The zeros polynomial κz(L), on the other hand, has one root at zero (with multi-
plicity τ) and all �nite, non-zero roots located inside / outside the unit circle according
to the ones and zeros pattern in ω. The root at zero re�ects the fact that a news
shock only impacts the fundamental with a delay of τ periods, so that in the structural
representation, the �rst τ − 1 impulse response matrices K0, . . . ,Kτ−1 are singular.

The location of the nonzero roots carries important implications for the class of
theoretical models our empirical framework identi�es. Before discussing these in more
detail, it is important to emphasize that the nonzero roots (and therefore the structural
representation) are only unique up to a �xed ω.

In particular, an alternative system corresponding to ω̃ with |ω̃h−ωh| = 1 will have
a root of κz(L) at

α̃h =
1

ᾱh
.

More generally, a representation corresponding to ω may be transformed to obtain an
alternative representation corresponding to ω̃, with some combination of roots of the
zeros polynomial ��ipped.� Because this transformation can always be achieved without
changing the second-order properties of the data, di�erent structural representations
corresponding to di�erent ω are observationally equivalent in any Gaussian setting.

In terms of the underlying theoretical models, one can regard ω as being related to
the speed with which agents learn about various shocks in the system. For example,
specifying ω = {0, . . . , 0} implies (6) can be rewritten as

D(L)yt+1 = εt,

where D(L) = D0 + D1L + · · · + DlL
l + · · · . Therefore, when all roots of κω(L) are

outside (or on) the unit circle, all shocks at time t are recovered from linear combinations
of yt+1,yt, . . . .

While this does not imply εt is included in agents' time-(t + 1) information set,
as some variables in yt+1 (such as consumption, investment, etc.) result from actions
taken by agents at time t+1, it does mean that εt potentially enters agents' time-(t+2)
information set. Then, agents would be fully informed about all shocks including news
and noise shocks that occurred two periods prior.

At the opposite end of the spectrum, specifying ω = {1, . . . , 1} yields

D(L)yt+1 = εt,

where D(L) = D0+D1L
−1+· · ·+DlL

−l+· · · and L−1 denotes the forward operator. In
this case, when all roots of κω(L) are inside the unit circle, time-t structural shocks can
be recovered only from future observations of the variables. Thus, agents learn about
news and noise shocks slowly and become fully informed only at the in�nite horizon.
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For all intermediate cases, linear combinations of both past and future observations of
economic variables reveal time-t shocks, and the speed with which agents learn about
them depends on how many �nite, non-zero roots of κz(L) are inside / outside the unit
circle.

The complication lies in the choice of ω. For any process {yt; t ∈ Z}, we can
obtain a countable, �nite set of 2m observationally equivalent representations satisfying
Assumption 2. As m grows linearly with n, this set grows with the number of variables
in the model. Point identi�cation requires selecting one of these 2m representations by
�xing ω, but without clear justi�cation, any particular choice runs the risk of inducing
arbitrary inference. In this paper, we deal with this issue as follows.

For point identi�cation, we consider the two extreme cases in the context of agent
learning. The �rst, labelled R2, is based on ω = {0, . . . , 0} and corresponds to all
shocks being revealed to agents after at most two periods. Hence, this scenario assumes
the fastest possible learning. The second, labelled R∞, is based on ω = {1, . . . , 1}
and corresponds to all shocks being revealed to agents only at the in�nite horizon.
Accordingly, this scenario assumes slowest possible learning.

In addition, we obtain inference from set-identi�ed IRFs and FEVDs. In partic-
ular, our Bayesian approach provides a straightforward method to compute posterior
distributions of IRFs and FEVDs of interest without the need to �x ω. Instead, we
parameterize the set of possible representations with a parameter whose support is a
set of integers, i.e. % ∈ {1, . . . , 2m}, such that ω% identi�es a particular combination
of ��ipped roots.� We then assign a uniform prior to % subject to the restriction that
ω% leads to a valid representation (i.e., all �ipped roots are �nite and either real or
complex conjugate pairs). In Appendix B, we provide the details of a Markov Chain
Monte Carlo (MCMC) algorithm for generating draws of all the parameters, includ-
ing %. In essence, these draws are from a posterior that is averaged over all possible
representations, and therefore, yields valid set-identi�ed inference.

Note that this approach involves drawing % as an integer from 1, . . . , 2m and then
computing IRFs / FEVDs for a particular (valid) representation corresponding to ω%.
This is straightforward computationally and, thus, inference from set-identi�ed IRFs
and FEVDs is feasible even for large models. In our empirical application we work with
VARMA(2, 2) models of up to n = 20 variables.

4.2 Testing Assumptions About Agents' Information

In this sub-section we derive an alternative SVARMA representation which is based on
the theoretical noisy-news literature. We show that it does not allow for the recovery
of news and noise shocks. However, because this SVARMA is a restricted version of
our earlier SVARMA we can calculate the Bayes factor comparing the two of them
using the Savage-Dickey density ratio (SDDR) thus allowing for a test of which sets of
assumptions is preferable.

The theoretical literature on news / noise shocks typically assumes that agents'
information at time t consists only of the space spanned by {at−l, st−l}∞l=0, that is the
current and past observations of the fundamental (at) and the signal (st) about the
future fundamental which is a a combination of news and noise shocks. This implies
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that any other observable variable, to the extent that it results from actions taken by
agents, must be a function of fundamentals and signals, but not the individual non-news,
news, and noise shocks. Therefore, if we decompose yt = (y1,t,y

′
2,t)
′ such that y1,t ≡ at

is the fundamental and y2,t are all other variables observed by the econometrician, then
denoting the signal by st we obtain

y1,t = K11(L)ε1,t +K12(L)ε2,t, (8)

y2,t = d(L)y1,t + e(L)st + K24(L)ε4,t, (9)

st = σNE(L)ε2,t + σu(L)ε3,t (10)

where d(L), e(L), σNE(L) and σu(L) are rational functions in L.
In consequence, we obtain

(
y1,t

y2,t

)
=

(
K11(L) K12(L) 0 0
K21(L) K22(L) K23(L) K24(L)

)
ε1,t
ε2,t
ε3,t
ε4,t



=

(
K11(L) K12(L) 0 0

d(L)K11(L) d(L)K12(L) + e(L)σNE(L) e(L)σu(L) K24(L)

)
ε1,t
ε2,t
ε3,t
ε4,t

 .

We shall assume that

rank
(
d(L) e(L) K24(L)

)
= n− 1, (11)

i.e., the (n− 1)× (n− 1) rational transfer matrix formed by concatenating d(L), e(L)
and K24(L) is of full rank almost everywhere. Note that for the moment we do not
impose any further restrictions on d(L), e(L), σNE(L) or σu(L), and in addition, y2,t

may or may not contain the signal itself st. This is because no further structure is
necessary for the purposes of the test described in this sub-section. We will return to
this issue below.

Given (8)-(10), it is easily seen that with only two observed variables (at and st)
the agents can never fully recover the shocks ε1,t, ε2,t and ε3,t at any horizon (even
at in�nity). Moreover, as long as all other variables y2,t satisfy (9), observing them
perfectly in the future does not help the agents in this respect either. This is at odds
with the full rank condition in Assumption 1. Indeed, by assuming rank K(L) = n,
we are e�ectively assuming that some variables in y2,t respond to non-news, news,
and/or noise shocks above and beyond their e�ect on signals and fundamentals. This
immediately implies that at some point in time, agents are able to use all observable
data to recover exactly the shocks that occurred in the past. They may learn slowly or
quickly, according to the structure of zeros in K(L), as discussed in Section 4.1.2; but
ε1,t, ε2,t and ε3,t are fully revealed at the in�nite horizon.

Within our framework, the hypothesis that agents never fully recover the non-news,
news, and noise shocks is a testable one. In particular, Proposition 1 establishes that
under the alternative hypothesis, all coe�cients in K(L) are identi�ed (up to sign),
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while non-recoverability can be represented by restrictions on the elements of K(L) as
follows.

Since d(L) = K21(L)/K11(L) and e(L) = K23(L)/σu(L) under non-recoverability,
we obtain

K22(L)−K21(L)
K12(L)

K11(L)
= K23(L)

σNE(L)

σu(L)
. (12)

This imposes n− 2 equality constraints on the elements of K(L). Speci�cally, let

l(L) = K22(L)K11(L)−K21(L)K12(L)

and let V(z) be the (n− 1)× (n− 2) matrix satisfying

V(z)′K23(z) = 0, V(z)′V(z) = In−2,

for z ∈ C. Then de�ning

m(z) =
V(z)′l(z)

‖l(z)‖

it follows that (12) can be equivalently stated as3

m(z) = 0 for all z ∈ C. (13)

A Bayesian approach to testing for (13) can be developed using the SDDR. Suppose
the researcher is interested in a restriction such as (13). The SDDR is the ratio of the
posterior of the unrestricted model evaluated at the restriction to the prior evaluated
at the same restriction. Under weak conditions, this can be shown to be equal to the
Bayes factor comparing the unrestricted and restricted models. The main condition,
which we adopt in this paper, is that, for parameters that appear in both restricted
and unrestricted models, their priors agree in the sense that the prior in the restricted
model equals the prior in the unrestricted model conditional on the restriction holding.
See Verdinelli and Wasserman (1995) for details. The SDDR can be calculated using
a posterior and prior simulator for the unrestricted model. It is also conceptually
appealing in this case because it does not require parameters to be identi�ed in the
restricted model (e.g., Koop and Potter, 1999).

In terms of model selection, the Bayes factor in favor of the unrestricted model 1
compared to the restricted model 0, denoted as BF10, has a straightforward interpreta-
tion. Suppose BF10 > 1. Then, we infer that the data generally prefers the unrestricted
model over any model satisfying (13). Taking this one step further, the actual value
of BF10 maybe interpreted as the prior odds one would need to place in favor of a
restricted model in order to equate the two types of models from a decision-theoretic
point of view. For example, if BF10 = 10, we would conclude that a researcher must
prefer a priori some model satisfying (13) to the unrestricted model with a ratio of
10 to 1 in order to be indi�erent between the two a posteriori. In general, a larger
BF10 is directly related to the amount of evidence in favor of the unrestricted model
that is embodied by the data. Conversely, BF10 < 1 may be interpreted as evidence

3Dividing by ‖l(z)‖ normalizes m(z) such that each element is bounded: −1 ≤ mi(z) ≤ 1; this is useful
for numerical stability of the simulation algorithm.
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that there exists some model satisfying the non-recoverability hypothesis, which �ts the
data better than the unrestricted model. In this case, however, the SDDR based ap-
proach does not provide any insight regarding the type of restricted model that may be
more appropriate. To fully ascertain this alternative, one would need to also estimate
a particular model satisfying (13).

To that end, we conclude this section by describing one unique representation for a
class of models satisfying (13). We postulate that our estimation algorithm for our full
rank SVARMA can be extended to a reduced-rank setting. Thus, it provides a practical
methodology for drawing inference from this representation as well. However, we do
not pursue such a methodology in this paper, focusing instead on full rank systems
satisfying Assumptions 1-5. In our empirical work, we �nd that US macroeconomic
data strongly favors full rank systems. Hence, we leave the details of methodological
extensions to reduced-rank systems satisfying (13) for future research.

4.3 Uniqueness Under Non-Recoverability

Following Forni, Gambetti, Lippi, and Sala (2017), let us now assume that the signal
st observed by the agents takes the form

st = σNEε2,t + σuε3,t, (14)

along with the normalization |Kτ∗,12| = σNE for some τ∗ ≥ τ . In addition, a subset of
the observed variables y2,t contain variables that reveal the signal st.

Forni, Gambetti, Lippi, and Sala (2017) considered the existence of one such vari-
able in their empirical work, and suggested stock prices or the University of Michigan
sentiment index to be reasonable candidates. In principle, we may regard a number
of �nancial and policy variables as exhibiting this property, which can be exploited for
identi�cation. Doing so, however, requires a more formal treatement of the idea that
certain variables reveal the signal.

Consequently, let R(z)n denote the n-dimensional space of rational functions (with
argument z ∈ C) over the reals.

De�nition 1. The n × 1 vector of variables yt reveals the signal st if and only if

yt = at + b(L)st and there exists a functional g : R(z)n → R such that

1. g is homogeneous of degree 1, i.e. g(f(z)c) = g(f(z))c for all f(z) ∈ R(z)n and

c ∈ R;

2. g(b(z)) = 1.

In the present setting, the (n− 1)× 1 vector y2,t is related to the signal st by (9),
and therefore, these variables reveal the signal if g(e(z)) = 1 for some g satisfying the
de�nition. Of course, if the signal is observed directly (say yi,t ≡ st), then ei(L) = 1
and so ei(0) = 1. Hence, this can be represented by g(e(z)) = ei(0). Another example
is

g(e(z)) =
e

(k)
i (0)

k!
= 1,
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which corresponds to the kth coe�cient of the power series expansion of ei(z) being
equal to one. Intuitively, such an assertion states that the signal st is revealed through
yi,t after k periods, i.e.

yi,t = di(L)y1,t +

k−1∑
l=1

el,ist−l + st−k +

∞∑
l=k+1

el,ist−l + Ki4(L)ε4,t.

In this empirical setting, Forni, Gambetti, Lippi, and Sala (2017) force agents to
learn fully about shocks by assuming K11(L) = 0 so that the fundamental process
reduces to at = K12(L)ε2,t. With only two shocks remaining, agents are able to recover
them from the past and future observations of the fundamental and signal, with the
speed of learning determined by the structure of non-zero roots in K12(L).

However, eliminating non-news by forcing K11(L) = 0 may have important impli-
cations on the inference about news and noise shocks obtained from time-series data.
That is, without a non-news shock, economic variables cannot be a�ected by unantic-

ipated sources of variation in productivity, and consequently, such e�ects (if present)
are attributed to other shocks in the system, including noise. This may partly explain
the substantial fraction of forecast error variance in economic data being explained by
noise shocks that Forni, Gambetti, Lippi, and Sala (2017) �nd.

In departure from Forni, Gambetti, Lippi, and Sala (2017), we assume (as in Barsky
and Sims, 2012) that the fundamental is driven by three shocks. In particular, we
will assume the fundamental is an ARMA process given by (7), with the additional
restrictions that K̂11(L) and K̂12(L) are coprime polynomials and K̂11(L) has no roots
of modulus less than unity.4

As pointed out by Forni, Gambetti, Lippi, and Sala (2017), any system satisfying
(7), (9) and (14) implies that agents never fully learn about the true nature of structural
shocks, even at the in�nite horizon. Since operationally this means shocks cannot be
represented as linear combinations of past, present and future observations, regardless of
how many endogenous variables are observed, VAR methods are altogether not suitable
for quantifying the e�ects of non-news, news and noise shocks in this setting.

However, one can still obtain a unique structural representation for an observed
data process yt. The key is that we can translate the idea of certain variables revealing
the signal into identifying restrictions on K(L). Then, combining this with restrictions
(9), (14) and (7) gives rise to the following assumptions on K(L), which can be viewed
as modi�ed versions of Assumptions 1 and 5.

Assumption 6. K(L) = K0 + K1L+ · · ·+ KlL
l + · · · is a n× n matrix with entries

Kij(L) being rational functions in L over the reals. In addition, K(L) has normal rank

n− 1, i.e. rank K(z) = n− 1 almost everywhere for z ∈ C.

Assumption 7. |Kτ∗,12| = σNE for some τ∗ ≥ τ and the following hold:

1. K̂11(L) and K̂12(L) de�ned in (7) are coprime polynomials and K̂11(L) has no

roots of modulus less than unity.

4Consistent with Forni, Gambetti, Lippi, and Sala (2017), however, we do not make any assumption

regarding the non-zero roots of K̂12(L).
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2. 1
cKi3(L) = Ki2(L)−Ki1(L)K12(L)

K11(L) for all i ≥ 2.

3. y2,t reveals the signal st ≡ |Kτ∗,12|(ε2,t+ cε3,t) such that g(K23(z)) = c|Kτ∗,12| for
some g satisfying De�nition 1, and where K23(z) is a (n− 1)× 1 rational vector

with entries Ki3(z) for i = 2, . . . , n.

With these assumptions, the following result holds.

Proposition 2. Let K(L)εt, K̃(L)ε̃t and Γ be de�ned as in Proposition 1. If K(L)
and K̃(L) both satisfy Assumptions 2-4, 6 and 7 for a given ω, τ and τ∗, then K̃(L) =
K(L)Γ, Γ12 = Γ21 = 0 and Γ11 is diagonal. Moreover, ω = ∅ almost everywhere.

The proof is in Appendix A. The fact that ω = ∅ for almost all elements of K(L)
satisfying the assumptions of Proposition 2 implies that identi�cation in this case is
not subject to the �root �ipping� issues discussed sub-section 4.1.2. It follows from the
fact that K(L) can be written as a product of a n× (n− 1) matrix, which is zero-free
almost everywhere (Anderson and Deistler, 2008), and a (n − 1) × n matrix which is
zero-free by construction.

We further note in passing that it is possible to obtain similar uniqueness results
under the non-recoverability hypothesis using alternative assumptions. For instance,
the assumption that y2,t reveals the signal is su�cient, but not necessary. If it is
removed, one would need to formulate di�erent assumptions about what is observable
to the econometrician with respect to the agent's information set. However, a more
general development in this direction is beyond the scope of the present paper.

5 Methodology

5.1 Justi�cation for SVARMA

In this paper we use SVARMAs, instead of the SVARs that dominate the empirical
macroeconomic literature. In general, several authors (Cooley and Dwyer, 1998, e.g.)
have argued that theoretical macroeconomic models such as DSGE models lead to VMA
representations which may not be well approximated by VARs, especially parsimonious
VARs with short lag lengths. The fundamental concept underlying this argument was
formalized by Fernandez-Villaverde, Rubio-Ramirez, Sargent, and Watson (2006), who
characterize the equilibrium of a general class of DSGE models with linear transition
laws in a state-space framework, and show how this can be represented by a �nite-
order VARMA. The structural VAR approach can then be justi�ed as a truncated
approximation to the in�nite-order VAR obtained by inverting the MA part of the
�nite-order VARMA.

The inversion/truncation step, however, entails a number of di�culties. Some
researchers�see, e.g., Chari, Kehoe, and McGrattan (2008) and Poskitt and Yao
(2017)�point out that the errors which arise due to this can potentially be substantial,
because the typical lag and series lengths used in practice (e.g. p < 5, T < 250 for
quarterly data) are much too short.

Moreover, in many cases such as the permanent-income model of Hansen, Roberds,
and Sargent (1991), the resulting VARMA representation entails an MA component that
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is not invertible, and therefore, a VAR approximation to such a model does not exist.5

VARMA representations admitting an in�nite-order VAR representation are commonly
known as fundamental, while those that do not are referred to as non-fundamental.

From Assumption 1, the systems we work with admit a structural VARMA(p, q)
representation of the form6

B(L)yt = A(L)εt, (15)

where A(L) = A0 + A1L + · · · + AqL
q, B(L) = In + B1L + · · · + BpL

p and K(L) =
B(L)−1A(L). Observe that the roots of det A(L) are equivalent to the roots of κz(L).
However, Assumption 4 implies that (15) is inherently not fundamental. This is because
the proportionality restriction induces a reduced rank impact matrix A0 ≡ A(0). Since
det A(0) = 0, it is clear that det A(z), for z ∈ C, has a root inside the unit circle.
This means that A(L) is not invertible on the closed unit disk, and therefore, it is not
possible to obtain a structural VAR representation.

Nevertheless, one may still obtain a fundamental reduced-form VARMA represen-
tation by an appropriate application of Blaschke �lters. Under additional restrictions,
one can then derive a reduced-form VAR. This is, in fact, the approach undertaken
by Forni, Gambetti, Lippi, and Sala (2017). In their setup, a proportionality restric-
tion identical to Assumption 4 is imposed and IRFs / FEVDs are computed from a
structural VARMA(p, τ), similar to (15). Consequently, their methodology involves
�rst estimating a reduced-form VAR, then transforming it to the structural VARMA
representation ex post.

The method described below is also based on a similar concept: estimate a funda-
mental reduced-form representation as a �rst step, then transform it ex post to the de-
sired non-fundamental structural representation. In contrast to Forni, Gambetti, Lippi,
and Sala (2017), however, we work directly with VARMA speci�cations throughout.

As will be discussed in more detail shortly, working with VARs at any stage in our
setting is neither appropriate nor necessary. The reduced-form VARMA speci�cation
we propose yields both e�cient and practically simple algorithms in a Bayesian frame-
work. We use MCMC methods to obtain draws from the posterior of the reduced-form
VARMA, then transform each draw to obtain a sample from the posterior of the struc-
tural VARMA. In the following subsections we outline basic ideas underpinning this
methodology, with technical details provided in Appendix B.

5Fernandez-Villaverde, Rubio-Ramirez, Sargent, and Watson (2006) provide an easily veri�able condition
under which the VARMA admits an in�nite-order VAR representation.

6For clarity of exposition, we suppress all deterministic terms as they do not a�ect any of the theory or
methodology discussed in this paper. In practice, we include an intercept in all estimated models.
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5.2 Econometric Framework

To design an e�cient estimation algorithm, it is more practical to work with a reduced-
form VARMA speci�cation rather than the structural one in (15). To this end, de�ne

C1 =


0 0 1
c√

1+c2
1√

1+c2
0

− 1√
1+c2

c√
1+c2

0

In−3


and let

Φ(L) = K(L)C1

(
L−τ

In−1

)
,

where L−1 denotes the forward operator and L−τ = (L−1)τ . Observe that the zeros

polynomial of Φ(L) has no roots at zero and at least one root at in�nity. The remaining
roots lie inside / outside the unit circle according to ω and follow the same pattern as
the roots of κω(L).

Since Φ0 ≡ Φ(0) is invertible, we derive a reduced-form VARMA corresponding to
(15) as

B(L)yt = Θ(L)ut, ut ∼ N (0,Σ), (16)

with Σ = Φ0Φ
′
0 and Φ(L) = B(L)−1Θ(L)Φ0. In (16), B(L) is the same as in (15)

and Θ(L) = In + Θ1L + · · · + ΘqL
q, where q is the same polynomial degree as in

A(L). Likewise, det Θ(L) has roots that are identical to those of the zeros polynomial
of Φ(L), and therefore, the same combination of �nite roots inside / outside the unit
circle as the roots of κω(L).

Hence, we can build an estimation algorithm directly on the reduced form, then
transform estimated parameters B1, . . . ,Bp, Θ1, . . . ,Θq, Σ to obtain the structural
representation as

A(L) = Θ(L)Φ0

(
Lτ

In−1

)
C′1.

In direct parallel to standard SVAR approaches, this step requires Φ0 and C1 which are
not estimated in the reduced-form speci�cation. To obtain these quantities, we derive
a set of empirical restrictions that correspond to Assumptions 3-5, as follows:

R1. the �rst column of the product ΘjΦ0 is zero for all j = q − τ + 1, . . . , q;

R2. the fundamental only responds to non-news shocks on impact;

R3. the news shock explains the maximum fraction of the forecast error variance of
the fundamental at some large (but �nite) horizon;

R4. on impact, the response of all variables to noise shocks is proportional to the
response of all variables to news shocks.

The general approach can then be outlined as follows:

Step 1. Estimate a reduced form VARMA with the restriction rank Θj ≤ n − 1 for all
j = q − τ + 1, . . . , q enforced.
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Step 2. Compute an arbitrary decomposition (e.g. Cholesky) Θ0Θ
′
0 = Σ.

Step 3. If r? = maxj=q−τ+1,...,q{rank Θj}, let ∆ be the n×r? matrix such that ΘjΘ0∆ =
0 and ∆′∆ = Ir? . Note that ∆ is unique (up to sign) if r? = 1; otherwise numerical
optimisation may be used to determine a unique ∆ as described in Appendix B.
Set Γ0 = (∆,∆⊥), such that Γ′0Γ0 = ΓΓ′0 = In (i.e. a constant orthogonal
matrix).

Step 4. Compute Θ̃j = ΘjΓ0 and observe that as long as ∆ is unique, the �rst column

of Θ̃j is equivalent to the �rst column of ΘjΦ0 for all j = 1, . . . , q, with the

�rst column of Θ̃j being zero for all j = q − τ + 1, . . . , q. Hence, we now apply
the simple Blaschke transformation that shifts in time the �rst column of each
Θ̃1, . . . , Θ̃q, i.e. for all i = 1, . . . , n, set

Ãj,i1 = 0, j = 0, . . . , τ − 1,

Ãj,i1 = Θ̃j−τ,i1, j = τ, . . . , q.

The resulting polynomial matrix Ã(L) = Ã0 + Ã1L + · · · + ÃqL
q is such that

A(L) = Ã(L)Γ, where Γ is a constant orthogonal matrix.

Step 5. Compute Γ according to the empirical restrictions R2-R4 above. The details of
this procedure are provided in Appendix B.

We conclude this sub-section by noting that it is theoretically possible to obtain
a VAR from (16) by setting q = τ and Θ1 = · · · = Θτ = 0. The corresponding
SVARMA would have A(L) = A0+A1L+. . .AτL

τ , with Aj , j ≥ 1, having all columns
equivalently zero except the second and third columns, which are proportional. To the
extent that there is no a priori reason to justify such restrictions, we prefer to work
with the general VARMA speci�cation.

In addition, starting with a VAR would restrict our SVARMA to have all non-zero
roots of det A(L) outside the unit circle, which is equivalent to our R2 representation
discussed in sub-section 4.1.2. Thus, it would only allow us to analyze the e�ects non-
news, news and noise shocks assuming that these three shocks are fully revealed to
agents after, at most, two periods. On the other hand, working with a full VARMA
allows us to select from the fundamental or one of the basic non-fundamental represen-
tations of (16), determined by the location of the roots of det Θ(L). The number of
non-zero roots of det A(L) that are inside the unit circle are consequently determined
by the total number of roots of det Θ(L) that are inside the unit circle.

We use Bayesian methods to simulate from the posterior of the reduced-form pa-
rameters, then transform these draws to obtain a posterior representation for the IRFs
and FEVDs. As outlined in the following sub-section and discussed in extensive detail
in Appendix B, e�cient simulation methods are readily available for this purpose. Fun-
damental or non-fundamental representations are determined in the post-processing of
draws obtained from the reduced-form VARMA. Alternatively, set identi�ed impulse
responses are easily constructed by randomly sampling one of these representations
with uniform probabilities, given the fact that fundamental and non-fundamental rep-
resentations are observationally equivalent under Gaussian errors.
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5.3 Estimating the VARMA

Despite having many attractive statistical properties, VARMAs are rarely used in prac-
tice, since they can be over-parameterized, and identi�cation and computation can be
di�cult. That is, even VARs are often over-parameterized. Ignoring deterministic
terms, a VAR(p) will have pn2 VAR coe�cients, which can be large, even with the
moderately sized VARs often used in the structural macroeconomics literature (e.g.
Barsky, Justiniano, and Melosi, 2014, use a VAR with n = 9).

Adding a VMA component increases this to (p+ q)n making over-parameterization
concerns even more relevant. In preceding sections we have focused on the structural
identi�cation restrictions needed for K(L) = B(L)−1A(L) to be unique, but even
the reduced form VARMA in (16) su�ers from a lack of identi�cation which arises
from the possibility of common factors in the VAR and VMA parts of the model.
Additional restrictions are typically needed to eliminate these common factors, and
both these restrictions as well as the structural identi�cation restrictions are required
for the SVARMA in (15) to be unique.

These issues are discussed in detail in Chan, Eisenstat, and Koop (2016). A crucial
aspect of this approach is the use of prior shrinkage to mitigate over-parameterization
concerns. One important insight is that in a Bayesian setting, unique identi�cation of
both B(L) and A(L) in (15) is not necessary if the primary interest lies only in iden-
tifying IRFs (and FEVDs), which are obtained from K(L). In essence, draws from the
posterior of structural parameters B1, . . . ,Bp and A0, . . . ,Aq may be obtained even
if this joint posterior is not unimodal. Subsequently, these draws may be transformed
to draws of the IRFs, whose posterior mode is indeed unique. Therefore, a sensible
Bayesian approach to working with structural VARMAs imposes structural identi�ca-
tion restrictions exactly, while using priors to shrink the common factors in VAR and
VMA parts of the model (rather than eliminating them exactly).

Using hierarchical shrinkage priors, Chan, Eisenstat, and Koop (2016) also develop
Bayesian methods for estimating VARMAs which work even with large values of n. We
adapt these methods to the VARMA described in the preceding sub-section, resulting
in an e�cient Markov Chain Monte Carlo (MCMC) algorithm. Complete details of
how we carry out Bayesian estimation are given in the Appendix B. Here we provide a
basic outline of our strategy.

A unique, reduced-form VARMA may be obtained by rewriting (16) in recursive
form:

B̃0yt = B̃1yt−1 + · · ·+ B̃p∗yt−p∗

+ B̃0ut + M1ut−1 + · · ·+ Mp∗ut−p∗ , ut ∼ N (0,Σ), (17)

where p∗ = max{p, q} and B̃0 is lower triangular with ones on the diagonal. The
coe�cients in (16) are related to the recursive VARMA in (17) by:

Bj = B̃−1
0 B̃j Θj = B̃−1

0 Mj ,

where Mq+1 = · · · = Mp∗ = 0 if p > q (and similarly for B̃j if p < q). By imposing ad-
ditional restrictions on the coe�cients of this recursive form, the VARMA speci�cation
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is rendered unique (Luetkepohl, 2005); in this case, it is referred to as the canonical
echelon form.

However, estimating the exact echelon form is computationally challenging because
the restrictions depend on the lag structure of each equation in the recursive VARMA,
which itself needs to be estimated (please refer to Appendix B for more details). In a
Bayesian approach, Chan, Eisenstat, and Koop (2016) have shown that approximating
the echelon form with shrinkage priors on the coe�cients of the recursive form is both
e�cient and e�ective. In addition, they showed that estimation of VARMA models is
more easily done when they are put in so-called expanded form. The expanded form
writes the VARMA as a state-space model and standard Bayesian Markov MCMC
algorithms for state-space models can be used, greatly simplifying computation.

In Appendix B, we show how our VARMA written in (17) can be written equiva-
lently as an expanded-form VARMA. We then use a prior designed to ensure shrinkage
and parsimony in this potentially over-parameterized speci�cation. Again, details of
the hierarchical shrinkage priors are provided in Appendix B. However, since our struc-
tural identi�cation strategy requires rank Θj ≤ n − 1 for all j = q − τ + 1, . . . , q, we
achieve this by also imposing

Mp∗−τ+1,ni = · · · = Mp∗,ni = 0, i = 1, . . . , n. (18)

Therefore, the last row of Mp∗−τ+1, . . . ,Mp∗ is zero, indicating that the variable ordered
last is estimated with τ fewer MA lags than the remaining variables. On the other hand,
the mean of the nth variable in the system depends contemporaneously on all other
variables through B0.

In our empirical application, we always set stock price to be the last variable in
the system. The implication of this is that stock price depends on less MA lags than
all other variables, once its contemporaneous dependence on the remaining variables
is accounted for. Of course, it is always possible to expand the MA lag order of the
nth equation by specifying a large p∗ and allowing the shrinkage priors to address any
potential over-parameterisation that results in the other equations.

For the results presented in Section 6, we use p∗ = 2 in all estimated models. This
approach leads to draws from the SVARMA in (15) with p = q = 2, but with possibly
many coe�cients posteriors concentrated around zero. Our evidence also suggests that
shrinkage priors are adequate in mitigating over-parameterisation and lead to accurate
inference on IRFs and FEVDs, even with models involving as many as 20 variables.

5.4 Computing the SDDR

To compute the SDDRs, we need draws of B1, . . . ,Bp and A0,A1, . . . ,Aq from both the
prior and posterior distributions. The posterior draws are obtained using the approach
outlined in sub-sections 5.2 and 5.3. Draws from the prior (which is implied by the
prior on reduced-form parameters detailed in Appendix B) are obtained by sampling
directly from the prior speci�ed on the reduced-form parameters, then transforming
them to draws of B1, . . . ,Bp and A0,A1, . . . ,Aq using the approach in sub-section 5.2.

For a given z ∈ C and a draw of the structural parameters (from either the prior or
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posterior) we compute

K(z) = (In + B1z + · · ·+ Bpz
p)−1 (A0 + A1z + · · ·+ Aqz

q) ,

and subsequently, m(z) in (13) using directly the formulae in sub-section 4.2. Thus, we
obtain draws of m(z) from either a conditional distribution with density p(m(z) |y), if
the structural parameter draws are from the posterior, or a marginal distribution with
density p(m(z)), if the structural parameter draws are from the prior.

With these draws of m(z), we can evaluate both p(m(z) = 0 |y) and p(m(z) | 0).
As noted in sub-section 4.2, |mi(z)| ≤ 1 so the density function is guaranteed to exist.
Consequently, we may use a non-parametric density estimator to obtain

BF10(z) =
p(m(z) = 0 |y)

p(m(z) = 0)
.

Note that the restriction in (13) must hold for all z ∈ C. Therefore, evidence in favor
of the unrestricted model may be taken as the maximum Bayes factor

BF10 = max
z∈C

BF10(z).

In practice, we make two simpli�cations to facilitate computation. First, we consider
a subset S ∈ C over which to search for the maximum BF10(z); in our empirical
application we use S = (0, 1). Second, m(z) is in general a (n−2)×1 vector, implying an
n−2 dimensional distribution whose density needs to be estimated non-parametrically.
For the n = 6 model, this implies four restrictions, and we use a multivariate kernel
density estimator to evaluate the four dimensional density functions.7 For models with
n > 6, to mitigate the curse of dimensionality, we select four of the n − 2 restrictions
to test.8 In this respect, the evidence in favor of unrestricted models reported in Table
2 should be regarded as conservative.

To generate the results in Table 2, we proceed by �rst obtaining a sample of 200
draws of z, distributed uniformly on the interval (0, 1). Then for each z, we compute
BF10(z) as described above. Finally, we take BF10 to be the maximum value of BF10(z)
attained in this random sample.

6 Empirical Application

Our data set includes TFP plus several other macroeconomic variables. We consider
SVARMAs of several dimensions. Each SVARMA includes a core set of three variables

7Speci�cally, we use Matlab's mvkdensity function, which we have found to perform well in this setting.
The bandwidths are computed using the formula

bwi(z) =
1

0.0675G

G∑
g=1

|m(g)
i (z)− m̄i(z)|

(
4

(nr + 2)G

) 1
nr+4

,

where m
(g)
i (z) is the gth draw of the ith element of m(z), m̄i(z) is the average of the draws, G is the total

number of draws, and nr is the number of restrictions that are tested.
8For the n = 10 and n = 15 models we use (m2(z),m4(z),m5(z),m6(z)); for the n = 20 model we use

(m3(z),m4(z),m5(z),m6(z)).
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used in most theoretical and empirical models in this literature. These are: TFP, con-
sumption and stock prices. The 6-variable model matches the VAR estimated by Forni,
Gambetti, Lippi, and Sala (2017). The remaining models augment these speci�cations
with additional economic information representing agents' actions. Table 1 describes
the variables used in each of the models we estimate, where the �X� indicates that
the variable is included in the corresponding model. The variables in the table are
ordered in the same way that they are included in the estimation algorithm. Notice
that S&P 500 Index is ordered last in all models we estimate. The sample period goes
from 1959Q4 (when the University of Michigan consumer sentiment index �rst becomes
available) to 2008Q3 (so that we exclude the period during which the Federal Funds
rate has been at the zero lower bound). Further details regarding the data are provided
in Appendix D.

With the exception of variables that are already indices or rates (i.e. interest rates,
in�ation rates or indices), all variables in each model are logged. The main reason for
estimating the model in levels has to do with robustness with respect to cointegration
of an unknown order. As discussed by Hamilton (1994), estimating the system in levels
is the conservative and robust thing to do in this case. In recent years, estimating
VARs in levels has become standard practice in the macroeconomic literature (see, e.g.,
Barsky and Sims (2011) or Kurmann and Otrok (2013)). With regards to lag lengths,
we make the relatively conservative choices of p = q = 2, trusting to the SSVS prior to
remove unnecessary lags from the model.

For each SVARMA dimension we calculate three sets of IRFs based on di�erent
treatments of the root �ipping issue discussed in Sub-section 4.1.2: i) R2, which as-
sumes the fastest possible learning about news and noise shocks; ii) R∞ which assumes
the slowest learning; and iii) set identi�cation by averaging over di�erent root con�gu-
rations.

Before presenting IRFs and FEVDs, we present Table 2 which gives Bayes factors in
favor of our identi�cation approach (using Assumption 1) as opposed to the identi�ca-
tion restriction used in much of the theoretical literature (the reduced rank assumption)
for the two extreme cases R2 and R∞ for VARMAs of di�erent dimension. It can be
seen that, in every single case, the Bayes factors support our Assumption 1. There
is also a tendency for the strength of support for our Assumption 1 to increase with
dimension. The strongest evidence is found in models with n = 20.

Table 2 also presents evidence on which VARMA dimension is preferred. In particu-
lar, we compute the deviance information criterion (DIC) for each model (see Appendix
B for further discussion). All the DICs are computed using the marginal distribution
of either the three variables in the n = 3 model or the six variables in the n = 6 case
as the likelihood. A model with a smaller DIC value is preferred.9 It can be seen that
there is strong evidence in favor of n = 20.

9The results are based on 10 parallel MCMC chains, each of which is of length 50000 (with a burnin of
5000).
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Variable Description n = 3 n = 6 n = 10 n = 15 n = 20
Total Factor Productivity X X X X X
Federal Funds Rate X X X X
In�ation X X X
Nonfarm Business Hours X X X
Consumption X X X X X
Gross Domestic Product X X X X
Investment X X X X
Relative Price of Investment X X X
Unemployment Rate X X
3M Treasury Rate X X
5YR Treasury Rate X X X
3YR Treasury Rate X
10YR Treasury Rate X
Vacancy Rate X
Dividends X X
Industrial Production Index X X
Real M2 X
USD/GBP Exchange Rate X
UM Consumer Sentiment Index X X
S&P 500 Index X X X X X

Table 1: Variables included in each model of varying dimensions. The variables are ordered
in the same way that they are included in the estimation algorithm.

FEVDs for the three representations (R2, R∞ and set identi�cation) are presented
in Figures 1, 2 and 3. IRFs are presented in Figures 4, 5 and 6. For the sake of
brevity, we only present results for n = 20, which is the dimension chosen by DIC,
and n = 6, which contains the same variables as Forni, Gambetti, Lippi, and Sala
(2017). Estimates for other SVARMA dimensions are given in Appendix E. Estimates
are based on 100000 draws obtained from the MCMC algorithm following a burn-in
of 10000 draws. Highest posterior density regions are constructed using the algorithm
in Hyndman (1996). The main �nding emerging from these �gures is the negligible
role played by noise shocks for U.S. macroeconomic �uctuations. With one exception,
it can be seen that noise shocks explain very small fractions of the FEV of all series
at all horizons and IRFs to noise shocks have credible intervals that include zero at
all horizons. The one exception occurs for the stock price variable using R∞ which
assumes very slow learning. For this variable, at short horizons there is some evidence
that noise shocks have a small impact. But even this small impact vanishes after two
years.

The fact that noise shocks explain such a small role and have so little impact on any
of the variables is the main point we want to emphasize in our results. However, the
�gures show other interesting patterns relating to the other shocks which we discuss in
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SDDR DIC
n R2 R∞ 3 variables 6 variables
3 1.6 1.8 1600.81 -

(0.17)

6 21.0 12.0 1604.86 2907.89
(0.25) (0.36)

10 20.6 15.9 1578.64 2907.18
(0.30) (0.29)

15 16.6 14.9 1568.87 2860.72
(0.21) (0.40)

20 49.5 34.7 1553.17 2820.94
(0.33) (0.44)

Table 2: SDDRs and DICs for models of di�erent dimensions. SDDRs represent Bayes factors
in favor of the unrestricted speci�cation for models of varying dimensions. R2 denotes the
representation with all non-zero, �nite roots outside the unit circle (fastest learning); R∞
denotes the representation with all �nite roots inside the unit circle (slowest learning). DICs
compare unrestricted models only. Those labelled �3 variables� are computed using the
marginal distribution of the three variables in the n = 3 case as the likelihood; those labelled
�6 variables� are computed using the marginal distribution of the six variables in the n = 6
case as the likelihood. Numerical standard errors are in parentheses.

the remainder of this sub-section.
News shocks explain small fractions of the FEV of TFP at short horizons, but their

importance progressively increases. At the 10 year horizon, news shocks are playing a
very big role: they explain around 50% of the FEV for TFP. News shocks also play a
very important role for GDP, consumption and investment, especially at long horizons.
For the remaining variables, they play a smaller but non-negligible role (e.g. using set
identi�cation the point estimates indicate they tend to explain around 20% of the FEV
at long horizons).

Non-news shocks account for 100% of the FEV of TFP on impact, but after this
their importance progressively diminishes. However, even at the 10 year horizon they
still account for roughly 50% of the FEV for TFP. As for other series, non-news shocks
tend to play a small role in the FEV.

The IRFs of TFP to news and non-news shocks are in line with the previous
literature�see e.g. Barsky and Sims (2011)�with log TFP not jumping, and jump-
ing, respectively, on impact, and then slowly converging to its new long-run value. An
important point to stress is that, exactly in line with Barsky and Sims (2011), the
non-news shock is estimated to be transitory, whereas the news shock clearly has a
permanent impact on TFP. As noted above, the noise shock does not seem to have any
impact on TFP at any horizon.

The two point identi�cation schemes (R2 and R∞) and set identi�cation tend to
yield very similar results. There are a few exceptions to this such as the one noted
above for stock prices and R∞. For the fast learning R2 representation, the FEVDs of
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non-news shocks falls faster over time than for other representations. But overall, our
�ndings are qualitatively similar for all schemes, indicating that the root �ipping issue
is not a major concern in this application.

Previously, we presented evidence in favor of the n = 20 model and found that the
strongest support for our Assumption 1 can be found in this case. Comparing IRFs and
FEVDs for n = 20 to n = 6 we �nd them to be quite similar. A point worth noting
in the n = 20 results is that estimation precision is quite good. Credible intervals are
not substantially wider than in more parsimonious lower dimensional models. This is
due to our SSVS prior which is e�ectively shrinking unimportant coe�cients in the
non-parsimonious VARMA to zero.

7 Conclusions

In this paper, we have established conditions under which impulse responses to non-
news, news and noise shocks are identi�ed, with particular focus on restrictions in
the information structures commonly assumed in the theoretical literature. We further
provided a full econometric methodology for estimating IRFs and FEVDs assuming such
restrictions do not hold, and along with this, we developed a method for calculating
the Bayes factor comparing models which embed these two sets of assumptions. Thus,
we obtain a way of testing which set of assumptions is supported by the data.

Our approach involves the use of an SVARMA, which overcomes a number of de-
�ciencies that make SVARs impractical in this setting. Especially when working with
a large number of dependent variables, VARMAs can be over-parameterized and we
have developed a Bayesian econometric method involving a hierarchical SSVS shrink-
age prior which allows for parsimonious and e�cient estimation in high dimensions.
Hence, we established that SVARMA models of the large dimensions increasingly used
in macroeconomics can be easily and robustly estimated.

The methodology introduced in this paper is potentially useful in a wide variety
of contexts. For example, it can be directly applied to problems with noisy news
about fundamentals other than productivity, such as dividends, exchange rates, �scal
policy or defence spending. With straightforward modi�cations, it can also be used
to investigate the e�ects of news and noise shocks at alternative anticipation horizons.
Likewise, our methodology can be extended in a number of interesting directions, such
as speci�cations involving multiple fundamental processes.

In an empirical application involving up to 20 variables, we have presented evidence
suggesting that our econometric methods can produce accurate estimates of news and
noise shocks. Our key empirical �nding is that noise shocks play a minor role in macroe-
conomic �uctuations, explaining negligible fractions of the forecast error variance of the
main macroeconomic variables. In addition, we �nd strong evidence in favour of the
assumption that agents learn about non-news, news and noise shocks at some point
in the future, particularly as more variables are added in the system. To the extent
that existing DSGEs ubiquitously assume agents cannot fully recover these three shocks
from what they observe, our results suggest that further development of DSGEs in this
direction is warranted.
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Figure 1: Fractions of forecast error variance explained by non-news, news, and noise shocks
(posterior median and 68% highest density region), based on unique representation R2 (all
non-zero, �nite roots outside the unit circle). Top panel: n = 6, bottom panel: n = 20.
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Figure 2: Fractions of forecast error variance explained by non-news, news, and noise shocks
(posterior median and 68% highest density region), based on unique representation R∞ (all
�nite roots inside the unit circle). Top panel: n = 6, bottom panel: n = 20.
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Figure 3: Fractions of forecast error variance explained by non-news, news, and noise shocks
(posterior median and 68% highest density region), based on set identi�cation over all pos-
sible representations. Top panel: n = 6, bottom panel: n = 20.
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Figure 4: Impulse response functions to non-news, news, and noise shocks (posterior median
and 68% highest density region), based on unique representation R2 (all non-zero, �nite
roots outside the unit circle). Top panel: n = 6, bottom panel: n = 20.
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Figure 5: Impulse response functions to non-news, news, and noise shocks (posterior median
and 68% highest density region), based on unique representation R∞ (all �nite roots inside
the unit circle). Top panel: n = 6, bottom panel: n = 20.
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Figure 6: Impulse response functions to non-news, news, and noise shocks (posterior median
and 68% highest density region), based on set identi�cation over all possible representations.
Top panel: n = 6, bottom panel: n = 20.
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A Proofs of Propositions

To prove Proposition 1, we �rst state a lemma characterizing uniqueness when ob-
servationally equivalent representations are restricted to be equivalent up to constant
orthogonal rotations.

Lemma 1. Let K(L)εt, K̃(L)ε̃t and Γ be de�ned as in Proposition 1. Assume K̃(L) =
K(L)Γ. If K(L) and K̃(L) both satisfy Assumptions 1-5, then Γ12 = Γ21 = 0 and Γ11

is diagonal.

Proof. By Assumptions 3 and 5, K̃(L) satis�es

K̃0,12 = K0,11Γ12 + K0,12Γ22 = 0,

K̃1j(L) = K11(L)Γ1j + K12(L)Γ2j = 0, j ≥ 3.

Since K0,12 = 0, but K0,11 6= 0 and Kl,12 6= 0 for some l ≥ 1 (as implied by the
rank conditions in Assumption 5), we immediately obtain Γ12 = · · · = Γ1n = 0 and
Γ23 = · · · = Γ2n = 0. Orthogonality of Γ then implies Γ21 = · · · = Γn1 = 0 and
Γ32 = · · · = Γn2 = 0 as well, with |Γ11| = 1 and |Γ22| = 1.

By Assumption 4, we obtain for some constant c̃ > 0

K̃0,i3 − c̃K̃0,i2 =

n∑
j=1

K0,ij(Γj3 − c̃Γj2) = 0, i = 2, . . . , n. (19)

Taking into account the restrictions on Γ established above and the fact that

K0,i2 =
1

c
K0,i3,

the restrictions in (19) can be represented by

K0,23 · · · K0,2n
...

. . .
...

K0,n3 · · · K0,nn




Γ33 ± c̃/c
Γ43
...

Γn3

 = 0.

Since the �rst matrix in this expression is n− 1× n− 2, and Assumption 4 implies it
is of rank n− 2, we obtain Γi3 = 0 for all i ≥ 4, |Γ33| = c̃/c, and by orthogonality of Γ,
Γ3j = 0 for all j ≥ 4, |Γ33| = 1.

Proof of Proposition 1. Following the derivations in Section 5, de�ne

C1 =


0 0 1
c√

1+c2
1√

1+c2
0

− 1√
1+c2

c√
1+c2

0

In−3

 , C2 =


0 0 1
c̃√

1+c̃2
1√

1+c̃2
0

− 1̃√
1+c̃2

c̃√
1+c̃2

0

In−3

 ,
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and let

Φ(L) = K(L)C1

(
L−τ

In−1

)
, Φ̃(L) = K̃(L)C2

(
L−τ

In−1

)
,

where L−1 denotes the forward operator and L−τ = (L−1)τ .
Observe that if ω = 0 in Assumption 2, then Φ(L) and Φ̃(L) are fundamental

representations; otherwise they are basic nonfundamental representations (Lippi and
Reichlin, 1994, De�nition 3) corresponding to the fundamental one associated with
ω = 0. Accordingly, Lippi and Reichlin (1994, Theorem 3) yields Φ̃(L) = Φ(L)C0,
where C0 is a constant orthogonal matrix.

Moreover, if K(L) satis�es Assumptions 3-5, then Φ(L) satis�es

Φ14(L) = · · · = Φ1n(L) = 0, (20)

Φ11(L)Lτ − cΦ12(L) = 0, Φ11(0) 6= 0, (21)

Φ̂11(ζ) = Φ̂12(ζ) = 0, Φ̂13(ζ) 6= 0, for some ζ 6= 0, (22)

where Φ̂1i = χ(L)Φ1i for i = 1, 2, 3. The same holds for Φ̃(L) if K̃(L) satis�es Assump-
tions 3-5 as well, with χ̃(L) being the least common multiple of the the denominators
of K̃11(L) and K̃12(L).

The restrictions in (20) imply

c√
1 + c2

K̂12(L)L−τC0,1i +
1√

1 + c2
K̂12(L)C0,2i + K̂11(L)C0,3i = 0, i = 4, . . . , n.

But by Assumption 5, K̂11(ζ)C0,3i = 0, for some ζ 6= 0 and K̂11(ζ) 6= 0. Hence,

C0,3i = 0 for all i = 4, . . . , n. At the same time K̂12(0) = 0 by Assumption 3, which

together with C0,3i = 0 yields K̂τ,12C0,1i = 0, and consequently, C0,1i = 0. Finally, it

follows from the remaining term, 1√
1+c2

K̂12(L)C0,2i = 0, that C0,2i = 0.

Hence, it holds that C0,1i = C0,2i = C0,3i = 0 for all i ≥ 4, and by orthogonality
of C0, this implies C0,i1 = C0,i2 = C0,i3 = 0 for all i ≥ 4 as well. Another important

implication is that the functions K̂12(L)L−τ , K̂12(L) and K̂11(L) are linearly indepen-

dent.
The restrictions in (21) further imply

1√
1 + c2

K̂12(L)

(
C0,11 −

c̃

c
C0,22

)
+

1√
1 + c2

K̂12(L)LτC0,21

+ K̂11(L)LτC0,31 −
c̃c√

1 + c2
K̂12(L)L−τC0,21 − c̃K̂11(L)C0,32 = 0. (23)

If the three functions K̂12(L)L−τ , K̂12(L) and K̂11(L) are linearly independent, then
so are the four functions K̂12(L)L−τ , K̂12(L), K̂12(L)Lτ , and K̂11(L)Lτ . Hence, if
C0,32 = 0 in (23), it follows immediately that C0,21 = C0,31 = C0,12 = 0 and |C0,11| =
|C0,22| = 1.

Likewise, if all �ve functions K̂11(L), K̂12(L)L−τ , K̂12(L), K̂12(L)Lτ , and K̂11(L)Lτ

in (23) are linearly independent, then we again trivially obtain C0,21 = C0,31 = C0,12 =
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C0,32 = 0 and |C0,11| = |C0,22| = 1. Otherwise, there exist constants ξ1, ξ2, ξ3 and ξ4

such that

K̂11(L) = ξ1K̂12(L) + ξ2K̂12(L)Lτ + ξ3K̂11(L)Lτ + ξ4K̂12(L)L−τ .

We aim to show that in this case, C0,32 6= 0 can only hold for coe�cients of K(L)
in a set with Lebesgue measure zero, so that C0,21 = C0,31 = C0,12 = C0,32 = 0 and
|C0,11| = |C0,22| = 1 holds almost everywhere.

To this end, observe that ξ3 = 1/ζ 6= 0 and ξ4 = K0,11/Kτ,12 6= 0. Substituting into
(23) yields

1√
1 + c2

K̂12(L)

(
C0,11 −

c̃

c
C0,22 −

√
1 + c2ξ1c̃C0,32

)
+

1√
1 + c2

K̂12(L)Lτ
(
C0,21 −

√
1 + c2ξ2c̃C0,32

)
+ K̂11(L)Lτ (C0,31 − ξ3c̃C0,32)

− c̃c√
1 + c2

K̂12(L)L−τ

(
C0,21 +

√
1 + c2

c
ξ4C0,32

)
= 0. (24)

Since, K̂12(L)L−τ , K̂12(L), K̂12(L)Lτ , and K̂11(L)Lτ are linearly independent, how-
ever, this results in:

C0,11 =

(
C0,22

C0,32
+
√

1 + c2ξ1

)
c̃C0,32,

C0,21 =
√

1 + c2ξ2c̃C0,32,

C0,31 = ξ3c̃C0,32,

C0,12 = −
√

1 + c2

c
ξ4C0,32,

whereas orthogonality of C0 further requires:

1 = C2
0,11 + C2

0,21 + C2
0,31,

1 = C2
0,12 + C2

0,22 + C2
0,32,

0 = C0,11C0,12 + C0,21C0,22 + C0,31C0,32.

This system of seven equations in seven unknowns (C0,11, C0,21, C0,31, C0,12, C0,22,
C0,32 and c̃) admits a unique solution, up to sign normalization, of the form:

C0,11 =

(√
1+c2

c

)
ξ1 + ξ5√((√

1+c2

c

)
ξ1 + ξ5

)2
+ (1 + c2)ξ2

2 + ξ2
3

, C0,12 =
−
(√

1+c2

c

)
ξ4√

1 +
(

1+c2

c2

)
ξ2

4 + ξ2
5

,

C0,21 =

√
1 + c2ξ2√((√

1+c2

c

)
ξ1 + ξ5

)2
+ (1 + c2)ξ2

2 + ξ2
3

, C0,22 =
ξ5√

1 +
(

1+c2

c2

)
ξ2

4 + ξ2
5

,

C0,31 =
ξ3√((√

1+c2

c

)
ξ1 + ξ5

)2
+ (1 + c2)ξ2

2 + ξ2
3

, C0,32 =
1√

1 +
(

1+c2

c2

)
ξ2

4 + ξ2
5

,
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where

ξ5 =
ξ3 −

(
1+c2

c2

)
ξ1ξ4(√

1+c2

c

)
ξ4 −

√
1 + c2ξ2

.

In addition, there exist unique (up to sign normalization) constants C0,13, C0,23 and
C0,33 satisfying

0 = C0,13C0,11 + C0,23C0,21 + C0,33C0,31,

0 = C0,13C0,12 + C0,23C0,22 + C0,33C0,32,

1 = C2
0,13 + C2

0,23 + C2
0,33.

Clearly, C0,13 6= 0, C0,23 6= 0 and C0,33 6= 0 almost everywhere.

The restrictions in (22), however, require that there exists a constant ζ̃ 6= 0 such

that
̂̃
Φ11(ζ̃) =

̂̃
Φ12(ζ̃) = 0 but

̂̃
Φ13(ζ̃) 6= 0, where

̂̃
Φ1i(L) = χ̃(L)

̂̃
Φ1i(L) for i = 1, 2, 3.

This, in turn, implies

0 =
c√

1 + c2
Ǩ12(ζ̃)ζ̃−τC0,11 +

1√
1 + c2

Ǩ12(ζ̃)C0,21 + Ǩ11(ζ̃)C0,31,

0 =
c√

1 + c2
Ǩ12(ζ̃)ζ̃−τC0,12 +

1√
1 + c2

Ǩ12(ζ̃)C0,22 + Ǩ11(ζ̃)C0,32,

0 6= c√
1 + c2

Ǩ12(ζ̃)ζ̃−τC0,13 +
1√

1 + c2
Ǩ12(ζ̃)C0,23 + Ǩ11(ζ̃)C0,33,

where Ǩ1i(L) = χ̃(L)K1i(L) = χ̃(L)/χ(L)K̂1i(L) for i = 1, 2. Since
̂̃
Φ11(L),

̂̃
Φ12(L)

and
̂̃
Φ13(L) are polynomials, χ̌(L) = χ̃(L)/χ(L) is a polynomial with χ̌(z) < ∞ for

all z ∈ C; since Ǩ12(ζ̃) and Ǩ11(ζ̃) cannot vanish simultaneously, χ̌(ζ̃) 6= 0 either. It
follows that

c√
1 + c2

χ̌(ζ̃)K̂12(ζ̃)ζ̃−τ = C0,13ξ̄,

1√
1 + c2

χ̌(ζ̃)K̂12(ζ̃) = C0,23ξ̄,

χ̌(ζ̃)K̂11(ζ̃) = C0,33ξ̄,

for some ξ̄ 6= 0. But these equations can only be satis�ed for

K̂12

((
cC0,23

C0,13

) 1
τ

)
=

√
1 + c2C0,23

C0,33
K̂11

((
cC0,23

C0,13

) 1
τ

)
.

As this condition does not hold for almost all K̂11(L), K̂12(L) and c, we conclude
that C0,32 6= 0 almost everywhere, and in this case, C0,21 = C0,31 = C0,12 = 0 as well.
Orthogonality of C0 then yields C0,13 = 0, and together with the previously established
restrictions, we obtain

C0,12 = · · · = C0,1n = 0,

C0,21 = · · · = C0,n1 = 0,
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such that C0 commutes with

(
L−τ

In−1

)
. Therefore,

K̃(L) = Φ̃(L)

(
Lτ

In−1

)
C′2

= Φ(L)C0

(
Lτ

In−1

)
C′2

= Φ(L)

(
Lτ

In−1

)
C0C

′
2

= Φ(L)

(
Lτ

In−1

)
C′1C1C0C

′
2

= K(L)Γ,

almost everywhere, with Γ = C1C0C
′
2. Lemma 1 con�rms the remainder of the propo-

sition.

Proof of Proposition 2. De�ne

C1 =


1 0 0
0 c√

1+c2
1√

1+c2

0 − 1√
1+c2

c√
1+c2

In−3

 , C2 =


1 0 0

0 c̃√
1+c̃2

1√
1+c̃2

0 − 1√
1+c̃2

c̃√
1+c̃2

In−3

 ,

and let

Φ(L) = K(L)C1

1
L−τ

In−2

 , Φ̃(L) = K̃(L)C2

1
L−τ

In−2

 .

Focusing for the moment on

Φ(L) =


K11(L) cL−τK12(L)√

1+c2
K12(L)√

1+c2
0

K21(L) K21(L) cL−τK12(L)√
1+c2K11(L)

K22(L)+cK23(L)√
1+c2

K24(L)

...
...

...
...

Kn1(L) Kn1(L) cL−τK12(L)√
1+c2K11(L)

Kn2(L)+cKn3(L)√
1+c2

Kn4(L)

 , (25)

observe that although it is singular (with normal rank n− 1), it can be decomposed as
Φ(L) = Ψ(L)Υ(L), where Ψ(L) is n× (n− 1) and Υ(L) is (n− 1)× n. In particular,

Ψ(L) =


1

χ(L)
K12(L)√

1+c2
0

K21(L)

K̂11(L)

K22(L)+cK23(L)√
1+c2

K24(L)

...
...

...
Kn1(L)

K̂11(L)

Kn2(L)+cKn3(L)√
1+c2

Kn4(L)

 , (26)

Υ(L) =

(
K̂11(L) cL−τ K̂12(L)√

1+c2
0

0 0 In−2

)
, (27)
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Note that Ψ(L) is a full column rank rational transfer matrix, and Υ(L) is a full
row rank polynomial matrix (since K̂11(L) and L−τ K̂12(L) are scalar polynomials by
Assumption 7.1). In addition, since K̂11(L) and K̂12(L) have no common roots, Υ(L)
clearly has no �nite zeros, and it can be further ver�ed that it has no in�nite zeros
either.

Speci�cally, Υ(L) has a zero at in�nity if and only if there exists a rational vector
υ(L) such that for z ∈ C,

0 < lim
z→∞

‖υ(z)‖ <∞

and
lim
z→∞

υ(z)′Υ(z) = 0.

Let υ(z) = (υ1(z),υ2(z))′. It is immediately evident that limz→∞ υ2(z) = 0 so that we
must have limz→∞ υ1(z) 6= 0. But since both limz→∞ K̂11(z) and limz→∞ z

−τ K̂12(z)
diverge, the conditions above cannot be satis�ed.

Consequently, Υ(L) has no zeros (�nite or in�nite) and no �nite poles. It does, how-
ever, have a pole at in�nity of multiplicity equal to max{deg K̂11(L),degL−τ K̂12(L)}.
Moreover, we can construct the rational transfer matrix

Ξ(L) = Ψ(L)

(
ψ(L)

In−2

)
,

where

ψ(L)ψ(L−1) = K̂11(L)K̂11(L−1) +
c2

1 + c2
K̂12(L)K̂12(L−1)

and

Ξ(L)Ξ(L−1)′ = Φ(L)Φ(L−1)′ = K(L)K(L−1)′.

Observe that Ξ(L) is a n× (n− 1) rational transfer matrix of normal rank n− 1.
Although ψ(L) in this formulation has max{deg K̂11(L),degL−τ K̂12(L)} roots, we

can always choose ψ(L) to have only roots with modulus greater than or equal to unity
(since ψ(L)ψ(L−1) = ψ(L)$(L)$(L−1)ψ(L−1) for an arbitrary $(L)$(L−1) = 1).
On the other hand, Ψ(L), being a tall transfer matrix, is zero-free for almost all K(L)
(Anderson and Deistler, 2008). In the non-generic case, all the zeros (�nite or in�nite)
along with the �nite poles of Ψ(L) are equivalent to the zeros (�nite or in�nite) along
with the �nite poles of Φ(L).

The locations of the zeros of Φ(L) and therefore Ψ(L), if they exist, are determined
by ω. If ω = (0, . . . , 0), then Ψ(L) has no zeros of modulus less than unity, and neither
does Ξ(L). Accordingly, an identical procedure applied to Φ̃(L) yields the rational
transfer matrix Ξ̃(L) with no zeros of modulus less than unity, given ω = (0, . . . , 0).
In this case, Baggio and Ferrante (2016, Theorem 2) con�rms that Ξ̃(L) = Ξ(L)C0,
where C0 is a constant orthogonal matrix.10

10Note that Theorem 2 in Baggio and Ferrante (2016) is stated using the parameterization Ξ(z) = Ξ0 +
Ξ1z

−1 + · · · + Ξlz
−l + · · · and the requirement that Ξ(z) has no zeros in {z ∈ C : |z| > 1}; here we work

with Ξ(z) = Ξ0 + Ξ1z + · · · + Ξlz
l + · · · , in which case the same requirement corresponds to Ξ(z) having

no zeros in {z ∈ C : |z| < 1}.
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If ω 6= (0, . . . , 0), then Ξ(L) will have some zeros inside the unit circle. However, we
can apply the arguments in Lippi and Reichlin (1994, Proof of Theorem 3) to obtain a
rational transfer matrix N(L) with no zeros of modulus less than unity and

N(z) = Ξ(z)D(z̄−1)∗,

where D(z) is a Blaschke matrix containing factors

R(αh, z) =

( z−αh
1−ᾱhz

In−2

)
for each zero αh of Ξ(z) satisfying |αh| < 1. Manipulating Ξ̃(L) in an identical way
yields Ñ(L) with no zeros of modulus less than unity.

Baggio and Ferrante (2016, Theorem 2) may now be applied to obtain Ñ(L) =
N(L)C00 for a constant orthogonal matrix C00, which also implies that N(L) and Ñ(L)
have identical zeros. Therefore, Ξ(L) and Ξ̃(L) corresponding to the same ω must also
have identical zeros. Applying again the arguments in Lippi and Reichlin (1994, Proof
of Theorem 3), we obtain that Ξ̃(L) = Ξ(L)C0 for some constant orthogonal matrix
C0.

From Ξ̃(0) = Ξ(0)C0 and given that Ξ̃1j(0) = Ξ1j(0) = 0 for all j ≥ 2, it follows
that C0,1j = C0,j1 = 0 for all j ≥ 2 and |C0,11| = 1. Accordingly, since for some

z 6= 0, Ξ̃12(z) 6= 0, Ξ12(z) 6= 0 and Ξ̃1j(z) = Ξ1j(z) = 0 for all j ≥ 3, we obtain
C0,2j = C0,j2 = 0 and |C0,22| = 1.

Therefore,

ψ̃(L)

χ̃(L)
= ±ψ(L)

χ(L)
, (28)

K̃12(L)√
1 + c̃2

= ± K12(L)√
1 + c2

, (29)

ψ̃(L)K̃i1(L)̂̃
K11(L)

= ±ψ(L)Ki1(L)

K̂11(L)
, i = 2, . . . , n (30)

Ki2(L) + cKi3(L)√
1 + c2

= ±K̃i2(L) + c̃K̃i3(L)√
1 + c̃2

, i = 1, . . . , n. (31)

Applying Assumption 7.2,

√
1 + c̃2

c̃
K̃i3(L) +

K̃i1(L)

K̃11(L)

K̃12(L)√
1 + c̃2

= ±

(√
1 + c2

c
Ki3(L) +

Ki1(L)

K11(L)

K12(L)√
1 + c2

)
,

and using the above equalities,

K̃i1(L)

K̃11(L)
=

ψ̃(L)K̃i1(L)̂̃
K11(L)

ψ̃(L)
χ̃(L)

=

ψ(L)Ki1(L)

K̂11(L)

ψ(L)
χ(L)

=
Ki1(L)

K11(L)
, (32)

K̃i1(L)

K̃11(L)

K̃12(L)√
1 + c̃2

= ±Ki1(L)

K11(L)

K12(L)√
1 + c2

,
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where the ± in the last line is the sign of C0,22, which is the same as the ± in (31).
It follows that √

1 + c̃2

c̃
K̃i3(L) = ±

√
1 + c2

c
Ki3(L).

Then, applying g to both sides of this equality and observing that

K̃τ∗,12√
1 + c̃2

= ± Kτ∗,12√
1 + c2

yields c̃ = c. Consequently, straightforward algebra leads to

K̃i1(L) = ±Ki1(L), (33)

K̃i2(L) = ±Ki2(L), (34)

K̃i3(L) = ±Ki3(L), (35)

K̃i4(L) = Ki4(L)C0,33, (36)

for i = 1, . . . , n and where C′0,33C0,33 = C0,33C
′
0,33 = In−3. Note that (33) follows from

K̃11(L)K̃11(L−1) = K11(L)K11(L−1) and the assumption that K11(L) has no roots of
modulus less than unity. The equality for i = 2, . . . , n then follows directly from (32).
Finally, setting

Γ =


±1

±1
±1

C0,33


yields K̃(L) = K(L)Γ as desired.

B Econometric Methods

B.1 Imposing Structural Identi�cation Restrictions

We begin by detailing Step 5 of the algorithm outlined in Section 5, which entails im-
plementing restrictions R2-R4. In fact, this involves applying three types of orthogonal
rotations, Γ1, Γ2, and Γ3, such that their product Γ = Γ1Γ2Γ3 yields the comprehensive
set of orthogonal rotations that transform Ã(L) into the structural representation of in-
terest A(L), where the two VMA polynomials are related by Aj = ÃjΓ for j = 0, . . . , q.
In our implementation, we set the horizon in R3 to be 20 quarters after impact.

Accordingly, Γ1 is determined by setting the �rst column Γ1,1 = Ã′0,(1)/‖Ã0,(1)‖2,
where Ã0,(1) denotes the �rst row of Ã0, and the remaining columns Γ1,i for i = 2, . . . , n
equal to the n−1 vectors that are orthogonal to A′0,(1) (normalized such that ‖Γ0,i‖ = 1).

Next, let K̃(L) = B(L)−1Ã(L)Γ1 be the impulse responses obtained after applying
the �rst set of orthogonal rotations Γ1, and de�ne K̃j,1,2:n for j ≥ 0 as the 1 × n − 1

row vector constructed from the �rst row and columns 2 to n of K̃j . Compute the

eigenvalue decomposition of
∑20

j=1 K̃′j,1,2:nK̃j,1,2:n, with eigenvalues sorted in descending

45



order, and store the eigenvectors in E2. The orthogonal matrix that identi�ed news
shocks according to restriction R3 is then given by

Γ2 =

(
1 0
0 E2

)
.

We normalize the sign of the news shock by requiring that the maximum impulse
response (over the horizon 0 : 20) of TPF to news is positive.

Let Ǎ(L) = Ã(L)Γ1Γ2 be the VMA representation obtained after applying the �rst
two sets of orthogonal rotations. At this stage, non-news and news shocks are identi�ed
according to restrictions R2 and R3, but the noise shock is not identi�ed in the sense
that following multiplication by Γ1Γ2, the third column of Ǎ0 will generally not be
proportional to the second. To enforce the proportionality restriction, we construct a
third orthogonal matrix

Γ3 =

(
I2 0
0 E3

)
,

where the �rst column E3,1 of the n − 2 × n − 2 orthogonal matrix E3 must satisfy
(Ǎ0,3, . . . , Ǎ0,n)E3,1 = cǍ0,2.

By construction, the n×n−1 matrix (Ǎ0,2, . . . , Ǎ0,n) has rank n−2 and, therefore,
there exists a n− 1× 1 vector ζA = (ζA,1, ζ

′
A,2)′, ‖ζA‖ = 1 such that11

(Ǎ0,2, . . . , Ǎ0,n)ζA = 0.

Accordingly, set

c =
|ζA,1|

1− ζ2
A,1

(37)

E3,1 = − sgn(ζA,1)
ζA,2

1− ζ2
A,1

, (38)

and the remaining columns E3,2, . . . ,E3,n−2 of E3 to be the n−3 vectors orthogonal to
E3,1 (normalized such that ‖E3,i‖ = 1). Subsequently, multiplying Aj = ǍjΓ3 for all
j = 0, . . . , q yields the desired representation A(L) where A0,3 = cA0,2 while preserving
the restrictions R2 and R3.

As mentioned in Section 5, the algorithm involves �nding an n× r∗ matrix ∆ such
that ΘjΘ0∆ = 0 for all j = q − τ + 1, . . . , q. When r∗ > 1, this matrix is not unique

as there exist in�nitely many orthonormal matrices C∆ such that ∆̃ = ∆C∆ is also
a valid alternative. To obtain a unique ∆ in the r∗ > 1 case, one may choose ∆ to
maximize the fraction of forecast error variance of TFP that is jointly explained by
non-news and noise shocks at 20 quarters after impact.

Note that this objective is in line with the theoretical Assumption 3. Starting with
an arbitrary ∆ obtained in Step 3, the maximization may be performed numerically
(over C∆) by iterating Step 4 and Step 5, which themselves involve computationally
simple operations. Of course, the complexity of the numerical optimisation approach

11Recall that Ã0 has proportional second and third columns, transformation by Γ1 preserves the linear
independence of the �rst column and transformation by Γ2 only alters columns 2 to n.

46



will vary with r∗ (for example, for r∗ = 2, C∆ has only one free parameter, and hence,
the optimisation is univariate). In all our empirical work with this algorithm, however,
we never encountered a need to perform numerical optimisation to �nd a unique ∆ as
every draw of Θj from all our models satis�ed rank Θj = n− 1.

B.2 Bayesian Algorithms

B.2.1 Priors

A key advantage of the Bayesian approach in time-series modelling has proven to be
the ability to incorporate information through prior probability distributions. Several
di�erent priors are popular in the Bayesian VAR literature, including the Minnesota
prior and various hierarchical shrinkage priors (e.g. various LASSO priors, spike-and-
slab priors). In this paper, we use the stochastic search variable selection (SSVS) prior
introduced to the Bayesian VAR literature by George, Sun, and Ni (2008), and used in
many VAR papers (e.g. Koop, 2013; Korobilis, 2013). The basic idea can be explained
in terms of a generic VAR or MA coe�cient, say ϑ. SSVS speci�es a hierarchical prior
(i.e., a prior expressed in terms of parameters which in turn have a prior of their own)
which is a mixture of two Normal distributions:

(ϑ | ν) ∼ (1− ν)N
(
0, v2

0

)
+ νN

(
0, v2

1

)
, (39)

where ν ∈ {0, 1} is an unknown parameter. If ν = 0 the prior for ϑ is given by the
�rst Normal distribution, and if it is ν = 1 its prior is given by the second. The prior
is hierarchical since ν is treated as an unknown parameter that is estimated in a data-
based fashion. The �rst prior variance, v2

0, is chosen to be `small' (so that the coe�cient
is constrained to be virtually equal to zero) and the second prior variance, v2

1, to be
`large' (implying a relatively non-informative prior for the corresponding coe�cient).
Thus, SSVS allows for the data to decide which coe�cients should be set to zero, so
as to ensure parsimony in the SVARMA. The only subjective prior information that is
required is the choice of v2

0 and v2
1, but standard methods exist for their choice. Details

of how this is done and the MCMC algorithm which results from use of the SVARMA
model with SSVS prior are given in the following subsection.

B.2.2 Bayesian VARMAs

The ultimate goal of a Bayesian approach to estimating the e�ects of news and noise
shocks is to obtain draws from the posterior distribution of representation 6. Indeed, the
Bayesian framework o�ers a great deal of �exibility in designing sampling algorithms
for this purpose. For example, Plagborg-Møller (2016) develops an MCMC algorithm
that samples directly from a truncated approximation to (6). Such an approach has the
advantage of allowing restrictions on impulse responses to be imposed directly in the
sampling. However, it is computationally intensive and the requisite sampling algorithm
deteriorates for systems larger than three variables.

Since in our applications we wish to estimate models potentially involving tens of
variables, it is more appropriate to work with a �nite order VARMA representation,
such as the VARMA(p, q) speci�ed in (15). As discussed in Section 5, however, even in
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the reduced form (16) the parameters of B(L) and Θ(L) will generally not be identi�ed
without further restrictions, and the some holds for B(L) and A(L) in the structural
form. The simple reason for that is as follows: even though K(L) = B(L)−1A(L) is
uniquely determined by identifying restrictions such as R2-R4 above, such restrictions
do not guarantee uniqueness of B(L) and A(L) since there may exist some D(L) such
that B(L)† = D(L)B(L) is of order p, A(L)† = D(L)A(L) is of order q, and both lead
to the same Wold representation K(L) = (B(L)†)−1A(L)†.

Identi�cation issues in VARMAs are further complicated by the fact that the funda-
mental and numerous non-fundamental representations are observationally equivalent,
as discussed in sub-section 4.1.2. Consequently, when a unique VARMA representation
is required for estimation purposes, it is typically speci�ed as a fundamental process in
the canonical echelon form. This is achieved by rewriting (16) in recursive form (17)
and imposing two types of restrictions:

1. exclusion restrictions on B̃0, . . . , B̃p∗ , M1, . . . ,Mp∗ according to the row degrees

p1, . . . , pn that de�ne the lag structure of each equation in the system (with p∗ =
max(p1, . . . , pn));

2. non-linear restrictions on M1, . . . ,Mp∗ to ensure all roots of M(L) lie outside the
unit circle.

However, estimating a VARMA in echelon form is challenging. First, imposing type
2 restrictions on the roots of M(L) becomes exceedingly di�cult as the size of the
system increases. Moreover, imposing type 1 exclusion restrictions requires knowledge
of the row degrees p1, . . . , pn, which themselves need to be estimated in practice.12

Fortunately, point identi�cation is not necessary in the Bayesian framework. To
explain, the posterior distribution will be well-de�ned even when the likelihood does
not uniquely identify the parameters in the model, as long as proper prior distributions
are speci�ed for the parameters. In the VARMA case, this means that as long as
proper priors are speci�ed for B1, . . . ,Bp, Θ̃1, . . . , Θ̃q, and Σ, we can readily obtain
draws from

p(B1, . . . ,Bp, Θ̃1, . . . , Θ̃q,Σ |y),

even though this posterior may not be characterized by a unique mode, or may simply
resemble the joint prior distribution (in the extreme case where the likelihood provides
no information on the model parameters).

The key insight in a Bayesian approach to analyzing VARMA models is that param-
eters B1, . . . ,Bp, Θ1, . . . ,Θq, and Σ themselves are not of primary interest, but rather
quantities such as forecasts and impulses responses, which are uniquely identi�ed even
when the AR and MA coe�cients are not. Therefore, it is possible to obtain draws
from the posterior of unidenti�ed parameters, then transform them to draws from the
posterior of quantities which are, in fact, identi�ed.

In general, Bayesians routinely build sampling algorithms on unidenti�ed parameter
spaces to obtain computational e�ciency (examples include Gustafson, 2005; Imai and

12Note that we only provide a brief summary of the identi�cation issues and classical methods designed
to deal with them in estimating VARMA systems. An in-depth discussion is beyond the scope of this paper,
and we refer the interested reader to Luetkepohl (2005) for a textbook treatment, including further details
and explicit formulae.
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van Dyk, 2005; Ghosh and Dunson, 2009; Koop, León-González, and Strachan, 2010,
2012, among many others). Indeed, early work such as Meng and van Dyk (1999) and
Liu and Wu (1999) suggest that arti�cially expanding the parameter space may reduce
auto-correlation in Markov Chain Monte Carlo (MCMC) sampling algorithms, in terms
of the identi�ed quantities of interest, thus further improving computation. Neverthe-
less, identi�cation is an important concept in the Bayesian framework to the extent that
it provides parsimony in over-parameterized systems. From a practical viewpoint, both
parsimony and identi�cation are features of the model that are implemented entirely
through the appropriate speci�cation of prior distributions.

Building on these ideas, Chan and Eisenstat (2017) and Chan, Eisenstat, and Koop
(2016) develop MCMC algorithms on the expanded VARMA representation:

B̃0yt = B̃1yt−1 + · · ·+ B̃p∗yt−p∗ + Π0ft + Π1ft−1 + · · ·+ Πp∗ft−p∗ + ηt, (40)

where ft ∼ N (0,Ω), ηt ∼ N (0,Λ), Ω and Λ are diagonal, and Π0 is lower triangular
with ones on the diagonal. Expanded form parameters are related to the VARMA
parameters in (17) by the mapping:

p∗∑
l=j

ΘlΣΘ′l−j =

p∗∑
l=j

ΠlΩΠ′l−j + 1l(j = 0)Λ, for all j = 0, . . . , p∗, (41)

whereas B̃j in the expanded form is identical to the corresponding B̃j in the semi-
structural form for j = 0, . . . , p∗. Consequently, draws from (17) can be obtained by
sampling directly from the expanded form (40) and then computing M1, . . . ,Mp∗ , Σ
from each draw of Π0, . . . ,Πp∗ , Ω, and Λ using the mapping in (41). The exact pro-
cedure based on generalized Schur decompositions / generalized eigenvalues is provided
in Section 2.3 of Chan and Eisenstat (2017) and Appendix D of Chan, Eisenstat, and
Koop (2016). To economize on space, we do not reproduce it here, but only emphasize
that it is a computationally simple procedure, even for large VARMA systems.

The advantage of the expanded form is that it can be regarded as a linear state space
model, and therefore, admits straightforward and e�cient MCMC sampling algorithms.
Moreover, there is no need to impose non-linear restrictions directly in the MCMC since
restrictions on the roots of M(L) can be easily implemented in the post-processing of
draws (i.e. when constructing M1, . . . ,Mp∗ ,Σ fromΠ0, . . . ,Πp∗ , Ω, and Λ). It is worth
emphasizing that this also facilitates building set-identi�ed IRFs by randomly selecting
of the valid fudamental / non-fundamental representations to construct.

At the same time, the expanded form provides an extremely �exible approach to
estimating VARMAs. For example, Chan, Eisenstat, and Koop (2016) demonstrate
how to construct a prior on the expanded form parameters�using SSVS methods (see
Kuo and Mallick, 1997; George, Sun, and Ni, 2008)�such that the implied draws from
the recursive form (17) satisfy the echelon form restrictions at every iteration. Hence,
the expanded form can be used to estimate unique VARMA systems, although this
may still lead to computationally intensive algorithms in larger VARMAs. On the
other hand, it is also possible to obtain more computational e�ciency by employing
priors that approximate the echelon form in the sense that they lead to exact identifying
restrictions holding with some probability (less than one) in the posterior. The Bayesian
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approach based on the expanded form, therefore, a�ords a great deal of �exibility in
designing algorithms that target an optimal balance between computational e�ciency
and parsimony.

In this paper, we employ such an approximate identi�cation approach. In particular,
starting from the expanded form (40) with p = q = p∗, we impose parsimony by �rst
setting (with probability one)

Πp∗−τ+1,ni = · · · = Πp∗,ni = 0, i = 1, . . . , n,

which corresponds to restrictions (18) on Mp∗−τ+1, . . . ,Mp∗ . This, in turn, leads to
the restrictions

Θp∗−τ+1,ni = · · · = Θp∗,ni = 0, i = 1, . . . , n,

such that Θp∗−τ+1, . . . ,Θp∗ are singular matrices. Next, we specify SSVS priors on the

individual free elements of B̃0, . . . , B̃p∗ and Π0, . . . ,Πp∗ of the form:

(B̃j,ik | γBj,ik) ∼ γBj,ikN (0, 1) + (1− γBj,ik)N (0, 0.01),

(Πj,ik | γΠ
j,ik) ∼ γΠ

j,ikN (0, 1) + (1− γΠ
j,ik)N (0, 0.01),

subject to the restriction that det B(L) has no roots inside the unit circle, and with

Pr(γBj,ik = 1) = Pr(γΠ
j,ik = 1) =


0.5 if n < 6,
0.4 if n = 6,
0.2 if n = 10,
1.5
n if n > 10.

Note that we specify Pr(γBj,ik = 1) and Pr(γΠ
j,ik = 1) as decreasing functions of n in

line with the theory developed in Mol, Giannone, and Reichlin (2008) and empirical
evidence reported in Korobilis (2013).

Through extensive experimentation with the resulting algorithm, we �nd these set-
tings to produce satisfactory. Moreover, moderate changes to these priors (including
alternative SSVS settings and rank restrictions) do not materially impact the inference
on impulse responses.

To complete the prior speci�cation, we set

Ωii ∼ IG(5, 1),

Λii ∼ IG(10−12, 0.1)1l(Λii ≤ 50),

where IG(a, b) denotes the inverse gamma distribution with shape parameter a and
rate parameter b. Note that these settings imply weakly informative priors on Ωii and
extremely heavy-tailed but proper priors on Λii. In the paper, we report results holding
�xed all of the above prior settings, but varying the dimension of the system n.

To facilitate the use of generic priors such as these, we standardize the scale of all
series in yt before commencing MCMC. Speci�cally, for each original series yi,t, we
transform to

ỹi,t =
yi,t√

1
T

∑T
t=2 ∆yi,t

.
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After obtaining MCMC draws, we adjust them such as to remove the e�ect of the
standardization. Hence, all impulse responses are reported on the original, unscaled
variables. The approach is equivalent to working directly with yt, but adjusting the
priors by the sample standard deviations, as is often done in Bayesian time-series ap-
plications (e.g. VARs with Minnesota priors).

Simulation from the posterior of the expanded form VARMA is implemented with
Gibbs sampling by cycling through the following four broad steps:

1. Sample
(
γi, B̃(i),Π(i) | f ,Λii,yi

)
for each i = 1, . . . , n, where B̃(i) denotes the i-th

row of B̃ = (In − B̃0, B̃1, . . . , B̃p∗), Π(i) the i-th row of Π = (Π0, . . . ,Πp∗), and

γi is the set of all SSVS indicators pertaining to B̃(i),Π(i).

2. Sample
(

Λii | B̃(i),Π(i),γi, f ,yi

)
for each i = 1, . . . , n.

3. Sample (Ωii | fi) for each i = 1, . . . , n.

4. Sample
(
f | B̃,Π,Ω,Λ,γ,y

)
.

Details and extensive discussion of each sampling step above are provided in Appendix
B of Chan, Eisenstat, and Koop (2016). If set identi�ed IRFs are desired, then we also
add

5. Sample (% |Π,Ω,Λ) using rejection: obtain a uniform draw from 1 to 2np
∗
and and

accept it if and only if the roots con�guration ω% leads to a valid representation;
continue until a draw of % is accepted.13

Note that this extra step is computationally fast because the generalized Schur de-

compositions / generalized eigenvalues algorithm discussed above yields all nk∗ roots.
Given ω%, the combination of roots is checked that every complex root is paired with
its conjugate.14

Following the MCMC, each draw of the expanded form parameters is transform to
a draw of B1, . . . ,Bp, Θ̃1, . . . , Θ̃q and Σ, which constitutes Step 1 of the algorithm

outlined in Section 5. Finally, Step 2-Step 5 applied to each draw of Θ̃1, . . . , Θ̃q yield
a draw of A0, . . . ,Aq and K(L) = B(L)−1A(L) provides a draw of the IRFs.

B.2.3 Deviance Information Criterion

The Deviance Information Criterion (DIC) was introduced in Spiegelhalter, Best, Car-
lin, and vanderLinde (2002). For latent variable models there are a few distinct variants
depending on the exact notion of the likelihood (Celeux, Forbes, Robert, and Titter-
ington, 2006). Given a likelihood function f(y |θ), the DIC is de�ned as:

DIC = D(θ) + pD,

where
D(θ) = −2Eθ[log f(y |θ) |y]

13In practice, we set ω% to be the (nk∗)-bit binary representation of the decimal number 2np
∗ − 1, which

is straightforward to compute�e.g., using Matlab's dec2bin command.
14In a non-fundamental representation, if a complex root is ��ipped� then its conjugate must also be �ipped

for the representation to be valid.
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is the posterior mean deviance and pD is the e�ective number of parameters. That is,
the DIC is the sum of the posterior mean deviance, which can be used as a Bayesian
measure of model �t or adequacy, and the e�ective number of parameters that measures
model complexity. The e�ective number of parameters is in turn de�ned as

pD = D(θ)−D(θ̃),

where D(θ) = −2 log f(y |θ) and θ̃ is an estimate of θ, which is typically taken as the
posterior mean.

Following Chan, Eisenstat, and Koop (2016), we use the likelihood implied by the
system in (16), or equivalently

yt =

p∑
j=1

Bjyt−j +

q∑
j=1

Θjεt−j + εt, εt ∼ N (0,Σ), (42)

where all the parameters can be recovered from the main sampling algorithm.
To derive this density, we stack (42) over t and obtain:

y = a + Θε, (43)

where ε = (ε′1, . . . , ε
′
T )′ ∼ N (0, IT ⊗ Σ), b = ((

∑p
j=1 Bjy1−j)

′, . . . , (
∑p

j=1 BjyT−j)
′)′

and Θ is a Tn × Tn lower triangular matrix with the identity matrix In on the main
diagonal block, Θ1 on �rst lower diagonal block, Θ2 on second lower diagonal block,
and so forth. Hence, we have

(y |B1, . . . ,Bp,Θ1, . . . ,Θq,Σ) ∼ N (b,Θ(IT ⊗Σ)Θ′).

Since the covariance matrix Θ(IT ⊗ Σ)Θ′ is a band matrix, this Normal density can
be evaluated quickly using the band matrix algorithms discussed in Chan and Grant
(2016).

C News, Noise and Mixed Representations

Consider (as in Section 3) a fundamental process de�ned by

at = εNNt + εNEt−1 + θεNEt−2, (44)

along with the signal process de�ned by

st = εNEt + ut. (45)

We show that the resulting mixed representation is unique for systems that contain
observations of the fundamental at and future expectations âj,t ≡ Et(at+j), j ≥ 1.

Indeed, with θ 6= 0, agents whose time-t information set consists of the history
{at−τ , st−τ}∞τ=0 formulate expectations at time-t that are given by

â1,t ≡ Et(at+1) = κ0st + θκ1at + θκ2st−1, (46)

â2,t ≡ Et(at+2) = θκ0st, (47)

âτ,t ≡ Et(at+τ ) = 0, τ ≥ 3, (48)
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where

κ0 =
σ2
NE

σ2
NE

+ σ2
u

, κ1 =
κ0σ

2
u

θ2σ2
NE

+ (2− κ0)σ2
NN

κ2 =
κ0(θ2σ2

NE
+ σ2

NN
)

θ2σ2
NE

+ (2− κ0)σ2
NN

.

The fundamentals and expectations have the following important properties:

E(â2,tat) = 0, E(â1,tat−1) = θκ1σ
2
NE. (49)

Now, consider a potential news representation for at, which by de�nition has the
form:

at = η0,t + η1,t−1 + η2,t−2 + η3,t−3 + · · · ,

where each {ηj,t; t ∈ Z} is a stationary, Gaussian, mean-zero process with unconditional
variance σ2

ηj ≥ 0. Moreover, E(ηj,tηk,t−τ ) = 0 for all j 6= k and all τ ∈ Z. However,
each ηj,t is potentially correlated with ηj,t−τ for τ 6= 0. In the news representation,
agents' information consists of the space spanned by {ηj,t−τ}∞j,τ=0. This implies the
expectation

E(â2,tat) = E(Et(η0,t+2)η0,t) + E(Et(η1,t+1)η1,t−1) +
∞∑
j=2

E(ηj,t+2−jηj,t−j)

= E(η0,t+2η0,t) + E(η1,t+1η1,t−1) +
∞∑
j=2

E(ηj,t+2−jηj,t−j) (50)

= E(η0,t+1η0,t−1) + E(η1,tη1,t−2) +
∞∑
j=2

E(ηj,t+1−jηj,t−1−j) (51)

= E(Et(η0,t+1)η0,t−1) + E(η1,tη1,t−2) +

∞∑
j=2

E(ηj,t+1−jηj,t−1−j) (52)

= E(â1,tat−1),

where (50) and (52) follow from iterated expectations along with the fact that ηj,t−τ
belongs the agents' time-t information set for all τ ≥ 0, and (51) follows from ηj,t being
stationary and Gaussian.

Since, E(â2,tat) and E(â1,tat−1) must satisfy (49) in the mixed representation, ob-
servational equivalence only holds if either θ = 0 or σ2

u = 0 (which holds if and only
if κ1 = 0). Of course if σ2

u = 0 then noise is not present in the model and (44)-(45)
reduces to a news representation. When θ 6= 0, on the other hand, there exists a �pure
news� representation that is observationally equivalent to a �pure noise� representation,
but neither of these will be observationally equivalent to the mixed representation de-
�ned by (44) and (45). Hence, θ 6= 0 is the key feature that breaks the observational
equivalence between this mixed representation and any potential news / noise pair.

D The Data

We use John Fernald's puri�ed TFP series available from the San Francisco Fed's web-
site. In�ation has been computed as the log-di�erence of the GDP de�ator (GDPCTPI)
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taken from the St. Louis Fed's website. Hours worked by all persons in the nonfarm
business sector (HOANBS) is from the U.S. Department of Labor: Bureau of Labor
Statistics.

The seasonally adjusted series for real GDP (GDPC96) is from the U.S. Depart-
ment of Commerce: Bureau of Economic Analysis. The seasonally adjusted series for
consumption of non-durables and services, real chain-weighted investment, and their
de�ators (which we use in order to compute the chain-weighted relative price of invest-
ment) have been computed based on the data found in Tables 1.1.6, 1.1.6B, 1.1.6C, and
1.1.6D of the National Income and Product Accounts.

The seasonally adjusted civilian unemployment rate (UNRATE) is from the U.S.
Department of Labor: Bureau of Labor Statistics. The vacancy rate is computed
from the help wanted index. The industrial production index (INDPRO), real M2
(M2REALx), USD/GBP exchange rate (EXUSUKx ), and the University of Michigan
consumer sentiment index (UMCSENTx) are obtained directly from the FRED-QD
database, dated 19 August 2018.

All the preceding variables are available at the quarterly frequency. The remaining
variables are available at a monthly frequency and have been converted to the quarterly
frequency by taking averages within the quarter. The Federal funds rate (FEDFUNDS)
and all the government bond yield (TB3MS, GS1, GS3, GS5, GS10) are taken from the
St. Louis Fed's website. They are quoted at a non-annualized rate in order to make their
scale exactly comparable to that of in�ation.Seasonally unadjusted nominal dividends
and stock prices (the S&P 500 index) are both from Robert Shiller's website. They
have then been de�ated by the GDP de�ator. Civilian non-institutional population
(CNP16OV), which is used in transforming some of the variables, is from the U.S.
Department of Labor: Bureau of Labor Statistics.

E Additional Empirical Results

In this section, we present additional empirical results for models with n = 3, n = 10
and n = 15 variables. The FEVDs are in Figures 7-12 while the IRFs are in Figures 13-
18. The results for n = 10 and n = 15 models highlight the large degree of similarities
to the FEVDs and IRFs reported in Section 6 for the n = 6 and n = 20 models. Hence,
inference about the e�ects of news and noise shocks, and particularly our conclusion
that noise plays an overall minor role in driving business cycles is fairly robust to the
inclusion of more than six variables in the model. However, including more variables is
preferred by the data (see our DIC results) and also sharpens the conclusion that news
shocks are the most signi�cant drivers of economic activity.

In contrast, the posterior distributions for IRFs, and to a larger extent, the FEVDs in
the n = 3 case are rather erratic. Indeed, many of the posteriors exhibit multimodality
and otherwise non-standard shapes. This suggests a large degree of uncertainty in
identifying the e�ects of non-news, news, and noise shocks with only TFP, consumption,
and stocks as the observed variables. Hence, reliable inference regarding these e�ects
requires taking into account additional information, such as the variables included in
our larger models.

It is also worth pointing out that with only three variables, we estimate that noise
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shocks explain a large fraction of the forecast error variance of stocks even in the R2

representation. This is in contrast to all n ≥ 6 models. On the other hand, the n = 3
speci�cation agrees with all the other models in estimating no e�ects of noise shocks
on consumption.

55



0 20 40
0

0.5

1
Log TFP

Non-news
shock

0 20 40
0

0.5

1

Log real
consumption

per capita

0 20 40
0

0.5

1
S&P 500

0 20 40
0

0.5

1

News
shock

0 20 40
0

0.5

1

0 20 40
0

0.5

1

0 20 40
Horizon (quarters

after shock)

0

0.5

1

Noise
shock

0 20 40
Horizon (quarters

after shock)

0

0.5

1

0 20 40
Horizon (quarters

after shock)

0

0.5

1

Figure 7: Fractions of forecast error variance explained by non-news, news, and noise shocks
(posterior median and 68% highest density region), based on unique representation R2 (all
non-zero, �nite roots outside the unit circle). Top panel: n = 10, bottom panel: n = 15.
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Figure 8: Fractions of forecast error variance explained by non-news, news, and noise shocks
(posterior median and 68% highest density region), based on unique representation R2 (all
non-zero, �nite roots outside the unit circle).
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Figure 9: Fractions of forecast error variance explained by non-news, news, and noise shocks
(posterior median and 68% highest density region), based on unique representation R∞ (all
�nite roots inside the unit circle).
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Figure 10: Fractions of forecast error variance explained by non-news, news, and noise shocks
(posterior median and 68% highest density region), based on unique representation R∞ (all
�nite roots inside the unit circle). Top panel: n = 10, bottom panel: n = 15.
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Figure 11: Fractions of forecast error variance explained by non-news, news, and noise
shocks (posterior median and 68% highest density region), based on set identi�cation over
all possible representations.
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Figure 12: Fractions of forecast error variance explained by non-news, news, and noise
shocks (posterior median and 68% highest density region), based on set identi�cation over
all possible representations. Top panel: n = 10, bottom panel: n = 15.
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Figure 13: Impulse response functions to non-news, news, and noise shocks (posterior median
and 68% highest density region), based on unique representation R2 (all non-zero, �nite roots
outside the unit circle).
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Figure 14: Impulse response functions to non-news, news, and noise shocks (posterior median
and 68% highest density region), based on unique representation R2 (all non-zero, �nite roots
outside the unit circle). Top panel: n = 10, bottom panel: n = 15.
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Figure 15: Impulse response functions to non-news, news, and noise shocks (posterior median
and 68% highest density region), based on unique representation R∞ (all �nite roots inside
the unit circle).
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Figure 16: Impulse response functions to non-news, news, and noise shocks (posterior median
and 68% highest density region), based on unique representation R∞ (all �nite roots inside
the unit circle). Top panel: n = 10, bottom panel: n = 15.
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Figure 17: Impulse response functions to non-news, news, and noise shocks (posterior median
and 68% highest density region), based on set identi�cation over all possible representations.
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Figure 18: Impulse response functions to non-news, news, and noise shocks (posterior median
and 68% highest density region), based on set identi�cation over all possible representations.
Top panel: n = 10, bottom panel: n = 15.
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