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Abstract

Large VARs are increasingly used in structural analysis as a unified framework

to study the impacts of multiple structural shocks simultaneously. However, the

concurrent identification of multiple shocks using sign and ranking restrictions poses

significant practical challenges to the point where existing algorithms cannot be

used with such large VARs. To address this, we introduce a new numerically efficient

algorithm that facilitates the estimation of impulse responses and related measures

in large structural VARs identified with a large number of structural restrictions on

impulse responses. The methodology is illustrated using a 35-variable VAR with

over 100 sign and ranking restrictions to identify 8 structural shocks.

Keywords: large vector autoregression, sign restriction, ranking restriction, shrink-

age prior

JEL classifications: C11, C55, E50



1 Introduction

Vector autoregressions (VARs) are a workhorse model in macroeconomic forecasting and

structural analysis. Among the many methodological advances in the structural VAR

(SVAR) literature since the pioneering work by Sims (1980), two recent developments are

the most prominent. First, there is a growing recognition of the need to exploit more in-

formation in structural analyses, motivated by the concern that informational deficiency

(using an information set that is too small relative to that of economic agents) substan-

tially distorts estimates of impulse responses and related objects (Hansen and Sargent,

1991; Lippi and Reichlin, 1993, 1994). Starting from the seminal paper by Leeper, Sims,

and Zha (1996) that develops various medium-sized structural VARs to study the effects

of monetary policy, large VARs with dozens of endogenous variables are increasingly being

used in applications. This trend gained momentum after the influential work by Bańbura,

Giannone, and Reichlin (2010), who demonstrate the benefits of including a large number

of variables for both forecasting and structural analysis. Notable applications using large

VARs include Carriero, Kapetanios, and Marcellino (2009), Koop (2013), Ellahie and

Ricco (2017) and Crump, Eusepi, Giannone, Qian, and Sbordone (2021).

The second development relates to the methods for identifying structural shocks. More

specifically, there has been a gradual departure from conventional recursive or zero re-

strictions to alternative structural restrictions that are deemed to be more credible. An

important class of identifying restrictions imposes sign restrictions motivated by eco-

nomic theory, developed in a series of papers by Faust (1998), Canova and Nicolo (2002)

and Uhlig (2005). Extensions of this identification approach, such as ranking restrictions

proposed in Amir-Ahmadi and Drautzburg (2021), are also widely used in empirical work.

The convergence of these two developments naturally requires the estimation of large

structural VARs identified by imposing sign and ranking restrictions on the impulse

responses. However, this remains practically infeasible in high-dimensional settings. For

instance, using the popular accept-reject algorithm of Rubio-Ramirez, Waggoner, and

Zha (2010) to impose sign restrictions might take days in larger-scale applications. Thus,

this computational burden severely limits the use of these more credible restrictions in

large systems.

We develop a new approach to estimate large SVARs identified using a large number
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of structural restrictions on impulse responses, which was until now computationally in-

feasible. In particular, it is applicable to situations where there are far more structural

restrictions than identified shocks. The new algorithm builds upon the accept-reject al-

gorithm of Rubio-Ramirez, Waggoner, and Zha (2010), which we now briefly describe to

provide some perspective. First, given a uniformly drawn orthogonal matrix (i.e., a ma-

trix drawn according to the Haar measure), Rubio-Ramirez, Waggoner, and Zha (2010)

check if the implied impulse responses satisfy all restrictions. If all the restrictions are

satisfied (the draw is admissible), accept the draw and the implied impulse responses;

otherwise, obtain another uniform draw and repeat the procedure. The main computa-

tional bottleneck of this algorithm comes from the fact that in high-dimensional settings

with a large number of structural restrictions, it is highly unlikely that any orthogonal

matrix drawn uniformly is admissible. Consequently, one typically needs to sample a

huge number of orthogonal matrices to obtain one that is admissible.

The key idea of our proposed algorithm comes from the recognition that, given a uniformly

distributed orthogonal matrix, a vast collection of uniform draws can be constructed

by permuting its columns and switching the signs of the columns.1 More importantly,

all these obtained orthogonal matrices are equivalent, in the sense that they represent

exactly the same structural shocks of the original orthogonal matrix, after relabeling the

shocks and proper sign normalizations. Additionally, one can effectively search through

this collection to locate any members that satisfy all structural restrictions with trivial

computations. In this way, the new algorithm significantly increases the probability

of obtaining an admissible draw with virtually no additional costs. In our benchmark

setting, we impose that any identification restriction is only imposed on impact to allow

for fast checking of identification restrictions. Economic theory generally only produces

robust restrictions across theoretical models only on impact, giving a justification for this

approach. However, we also discuss how to extend our approach to sign restrictions at

longer horizons as well as ranking restrictions along the lines of Graeve and Karas (2014)

and Amir-Ahmadi and Drautzburg (2021).

To illustrate our proposed algorithm, we consider four applications, three empirical ap-

plications based on US data and one set of Monte Carlo simulations. First, we estimate a

15-variable VAR with more than 40 sign and ranking restrictions to identify 5 structural

1Since the Haar measure is invariant under permutations and sign switches, any member of this
collection is also uniformly distributed in the orthogonal group.
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shocks based on empirical applications in Furlanetto, Ravazzolo, and Sarferaz (2019) and

Chan (2022). As a benchmark, we use the algorithm of Rubio-Ramirez, Waggoner, and

Zha (2010) to uniformly draw orthogonal matrices from the admissible set and compute

implied impulse responses. It takes about 3.6 billion orthogonal matrices to obtain 1,000

admissible draws, and the estimation takes about 6 days on a standard desktop. In con-

trast, the new algorithm requires only about 31,000 orthogonal matrices to obtain 1,000

admissible draws, and the entire exercise takes about 16 seconds. We also confirm em-

pirically that both algorithms give identical impulse responses. Second, we demonstrate

how the proposed algorithm can be applied in settings with dynamic sign restrictions by

replicating the classic application in Uhlig (2005). We compare the proposed algorithm

to those of Rubio-Ramirez, Waggoner, and Zha (2010) and Read (2022), and show that

while the three algorithms produce the same impulse responses, the proposed algorithm

is substantially faster. Third, we conduct a series of Monte Carlo simulations to illustrate

the empirical performance of the proposed method, and show that it works well even in

settings with large numbers of variables and structural shocks.

Our third empirical application considers a larger 35-variable VAR with over 100 sign and

ranking restrictions to identify 8 structural shocks: demand, investment, financial, mon-

etary policy, government spending, technology, labor supply and wage bargaining. These

macroeconomic and financial variables are broadly similar to those of Crump, Eusepi,

Giannone, Qian, and Sbordone (2021) and are closely monitored by policy institutions

and market participants. Our high-dimensional model provides a unified framework to

study the impacts of multiple structural shocks simultaneously. In particular, this frame-

work allows us to disentangle the impacts of different types of demand and supply shocks

on key macroeconomic variables. Even for such a large system, the estimation takes

only 14 minutes. Therefore, this application demonstrates that it is practical to study

the impacts of multiple structural shocks jointly in a large system using the proposed

approach.

Our paper contributes to the emerging literature on efficient methods for conducting

structural analysis using large VARs. As noted in Crump, Eusepi, Giannone, Qian, and

Sbordone (2021), central banks and policy institutions routinely monitor and forecast

dozens of key macroeconomic variables, and VARs provide a convenient framework for

studying the joint impacts of multiple structural shocks. To reduce the computational

burden of performing structural analysis in large systems, some recent papers, such as
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Korobilis (2022) and Chan, Eisenstat, and Yu (2022), propose using a factor model for the

reduced-form VAR errors and structural identification restrictions are placed on factor

loadings. In contrast, our paper uses a standard VAR framework where structural shocks

are related to the reduced-form errors through an impact matrix. Therefore, the proposed

algorithm is directly applicable to a wide variety of VARs currently used for structural

analysis.

This paper also relates to the literature on efficient posterior sampling in structural VARs

with informative priors on impulse responses (see, e.g., Kociecki, 2010; Baumeister and

Hamilton, 2015, 2018). In particular, for VARs identified using sign restrictions, the

proposed algorithm can be used in the first stage to generate proposal draws for an

importance sampler to explore the posterior distribution that incorporates prior infor-

mation on impulse responses; a recent example of such an importance sampler is given

in Bruns and Piffer (2023). The proposed algorithm can thus boost the efficiency of the

second-stage importance sampler and make it applicable beyond medium-sized models.

The remainder of this paper is organized as follows. Section 2 first outlines the iden-

tification of shocks in a structural VAR using sign restrictions. We then introduce the

proposed algorithm for generating uniform draws of the impact matrix that satisfy all

the sign restrictions at impact. Finally, we discuss how the proposed algorithm can be

extended to handle other commonly-used identification schemes. Section 3 considers an

illustration using a 15-Variable VAR with sign restrictions to identify 5 structural shocks.

We compare the speed of the proposed algorithm as well as the impulse response esti-

mates with those obtained using the algorithm of Rubio-Ramirez, Waggoner, and Zha

(2010). We further illustrate how the proposed algorithm can be applied in settings with

dynamic sign restrictions by replicating the application in Uhlig (2005). Section 4 con-

siders an application that involves 35 US macroeconomic and financial variables. We use

over 100 sign and ranking restrictions to identify 8 structural shocks. Lastly, Section 5

concludes and outlines some future research directions.

2 Identification of Structural Shocks

In this section, we first outline the identification of structural shocks in a structural

VAR using sign restrictions. In Section 2.1 we then introduce the proposed algorithm
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to efficiently generate draws of the impact matrix that satisfy all the sign restrictions at

impact. Section 2.2 further discusses how the proposed algorithm can be extended to

handle other commonly used identification schemes, such as ranking restrictions.

To set the stage, let yt = (y1,t, . . . , yn,t)
′ be an n× 1 vector of endogenous variables that

is observed over the periods t = 1, . . . , T. Consider the following VAR with p lags:

yt = a0 + A1yt−1 + · · ·+ Apyt−p + ut, (1)

ut = B0vt, vt ∼ N (0, In), (2)

where the vector of structural shocks vt is related to the reduced-form errors ut via the

impact matrix B0 that is assumed to be non-singular. It follows that the covariance

matrix of ut is Σ ≡ B0B
′
0.

One main goal of estimating the VAR in (1)-(2) is to study the impact of structural

shock vj,t on the endogenous variable yi,t, i = 1, . . . , n and j = 1, . . . ,m. Specifically, the

impulse response at horizon h is defined to be the expected change in the conditional

mean of yi,t+h from the j-th structural shock vj,t:

fi,j,h = E [yi,t+h |vt = ej; B0,A]− E [yi,t+h |vt = 0; B0,A] , (3)

where ej is the j-th column of the n-dimensional identity matrix In and A = (a0,A1, . . . ,Ap)
′

is the k×n matrix of VAR coefficients with k = np+ 1. Note that each impulse response

fi,j,h depends implicitly on the impact matrix B0 and the VAR coefficients A.

It is well known that under the setup in (1)-(2), B0 is not point-identified: since given

any orthogonal matrix Q ∈ O(n) and B̃0 = B0Q, we have B̃0B̃
′
0 = Σ. In other words,

there is a range of impulse responses of variables to structural shocks, even if we fix

the identifiable model parameters (A,Σ). One often proceeds by restricting the set of

impulse responses—e.g., by imposing economically meaningful restrictions on the impulse

responses. Starting from the influential papers by Faust (1998), Canova and Nicolo (2002)

and Uhlig (2005), one prominent approach is to impose sign restrictions motivated by

economic theory on the impulse responses.

More specifically, let si,j,h ∈ {−1, 0, 1}. Then, a sign restriction on the impulse response

6



fi,j,h can be written as

si,j,h × fi,j,h > 0. (4)

For example, if si,j,h = 1, then this sign restriction implies that the h-step-ahead response

of the i-th variable to the j-th structural shock is restricted to be non-negative. If

si,j,h = 0, then the sign restriction is not imposed on this response. We define the sign

restrictions set S to be the collection of si,j,h for all i, j, h.

It is worth noting that in applications one typically imposes sign normalization restrictions

on the m structural shocks to facilitate their interpretation. These sign restrictions can

be incorporated in our setup by including them in S. For example, if one wishes to

sign-normalize a monetary policy shock so that it is a contractionary monetary policy

shock, one could restrict the effect of the monetary policy shock (say, the j-th shock) on

the policy rate (say, the i-th variable) to be non-negative on impact, i.e., fi,j,0 > 0. This

can be done by setting si,j,0 = +1.

Now, we can formally define the admissible set with respect to the set of sign restrictions

S and model parameters (A,Σ):

Q(A,Σ,S) = {Q : Q ∈ O(n) and the impulse responses implied by Q and (A,Σ)

satisfy the restrictions in S}.

A popular algorithm to obtain draws uniformly from the admissible set Q(A,Σ,S) is

given in Rubio-Ramirez, Waggoner, and Zha (2010). It is an accept-reject algorithm and

is implemented as follows. First, obtain a draw Q uniformly from the orthogonal group

O(n) (i.e., according to the Haar measure). Then, set R = LQ, where L is the lower

triangular Cholesky factor of Σ. If the impulse responses implied by (A,R) satisfy all

the restrictions in S, then we accept Q (it is easy to see that Q ∈ Q(A,Σ,S)); otherwise,

we obtain another draw uniformly from O(n) and repeat the procedure.

This algorithm is flexible and easy to implement and works well for a wide range of

applications using small VARs. When the application requires a VAR that involves

more than a dozen variables and restrictions, this algorithm tends to be computationally

intensive, as it requires a large number of uniform draws from O(n) to get each draw from

the admissible set Q(A,Σ,S). When n is large, this approach is simply computationally
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infeasible.

2.1 A New Algorithm

For high-dimensional systems with a large number of sign restrictions, it is highly un-

likely that any given uniform draw from O(n), denoted as Q ∼ U(O(n)), would imply

impulse responses that satisfy all the restrictions in S. To make progress, we assume

that S = S0 where S0 collects sign restrictions that restrict only the signs of impulse

responses at impact, i.e., S0 = {si,j,0 : si,j,0 ∈ S}. There are two key reasons to focus

on the subset S0. First, there is often a strong consensus in economic theory about the

signs of impulse responses at impact but not at longer horizons (see, e.g., Canova and

Paustian, 2011). Second, verifying the sign restrictions on impulse responses at impact is

equivalent to verifying the signs of the elements in R, where R = LQ and L is the (lower

triangular) Cholesky factor of Σ. As such, this verification can be done very quickly

without computing impulse responses at all. Given a uniform draw Q, one can build a

huge collection of equivalent draws (defined below) and search through this collection to

obtain any members that satisfy all sign restrictions with trivial computations.

More specifically, given Q ∼ U(O(n)), let E(Σ,Q) denote the set

E(Σ,Q) = {E : E = LQPD,where L is the Cholesky factor of Σ,P is an n-dimensional

permutation matrix and D is a diagonal matrix with elements ± 1}.

In other words, E(Σ,Q) consists of all the permutations and sign switches of the columns

of LQ. Since there are n! permutation matrices of dimension n and 2n ways to construct

an n vector from the two values ±1, the cardinality of E(Σ,Q) is 2nn!.

There are three key reasons to consider the set E(Σ,Q). First, since each column of LQ

can be viewed as the responses of the endogenous variables to a particular structural

shock at impact, E(Σ,Q) includes all possible permutations and sign normalizations of

the structural shocks represented by Q. That is, any member in E(Σ,Q) represents

exactly the same structural shocks as Q—after relabeling the shocks and proper sign

normalizations. Second, for any fixed P or D (respectively, a permutation matrix and

a diagonal matrix with elements ±1), it is orthogonal. Therefore, the Haar measure is
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invariant under right multiplication of P and D. Hence, QPD is a uniform draw from

O(n). Third, one can efficiently search through all the elements—all 2nn! of them—in

E(Σ,Q) to find those that satisfy all the restrictions in S0 (discussed below). Put dif-

ferently, given each Q ∼ U(O(n)), we automatically obtain 2nn! economically equivalent

candidates with trivial additional computations. For n = 10, the number of orthogonal

matrices that we sort through is about 3.7 billion. When n = 30, the number is about

2.85× 1041.

To distinguish two structural shocks, we require that they have signed impacts on at least

two common endogenous variables. In addition, their impacts on one variable have the

same sign, while their impacts on the other variable have opposite signs. More formally,

we assume that S0 satisfies the following assumption:

Assumption 1. For any j 6= k, j, k = 1, . . . ,m, there exist i1 and i2 such that si1,j,0 =

si1,k,0 6= 0 and si2,j,0 = −si2,k,0 6= 0.

Example 1. Consider the following two sets of restrictions S1
0 and S2

0 :

S1
0 =

+1 +1 +1

−1 0 +1

0 +1 −1

 , S2
0 =

+1 +1 +1

−1 +1 +1

0 +1 −1

 .

S1
0 does not satisfy Assumption 1 because the first and second shocks (corresponding to

the first and second columns) have signed impacts on only one common variable (the first

variable). Intuitively, there is not enough information to separate these two structural

shocks. For instance, a column of R with (1,−2, 3)′ is consistent with both the first and

second structural shocks. In contrast, S2
0 satisfies Assumption 1: the first and second

shocks have the same signed impact on the first variable but different signed impacts on

the second variable; similarly for the first and third shocks; finally, the second and third

shocks have the same signed impact on the first variable but different signed impacts on

the third variable. Consequently, any column of R can be consistent with at most one

structural shock.

Next, we describe an efficient way to go through all the elements in E(Σ,Q) to locate

those that satisfy all the restrictions in S0. Suppose that we have n endogenous variables

and we are interested in m structural shocks. Let T denote an m × n matrix such that
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Tji, the (j, i) element, is +1 if the i-th column of R = LQ satisfies all the restrictions

in S0 corresponding to j-th structural shock. If the negative of the i-th column of R

satisfies all the inequalities in S0 corresponding to j-th structural shock, set Tji = −1;

otherwise Tji = 0. In other words, the j-th row of T encodes all potential candidates

among the columns of R that can represent the j-th structural shocks (those have entries

±1). Therefore, if any row of T contains all 0, then none of the elements in E(Σ,Q)

satisfies all the restrictions in S0. In addition, by Assumption 1, each column of T has

at most one +1 or −1—i.e., each column of R can satisfy (or violate) all the restrictions

of at most one structural shock.

Example 2. Suppose we have a set of restrictions to identify m = 2 structural shocks

using a VAR with n = 4 variables:

S3
0 =


+1 +1

+1 −1

0 0

0 0

 .

It is straightforward to verify that S3
0 satisfies Assumption 1. Further suppose we obtain

two draws of R:

R1 =


0.2 0.1 −0.3 0.8

0.3 0.2 −0.4 0.7

0.1 −1.1 1.2 −0.4

1.2 0.5 0.5 −1.2

 , R2 =


0.2 −0.1 −0.3 0.8

0.3 0.2 −0.4 0.7

0.1 −1.1 1.2 −0.4

1.2 0.5 0.5 −1.2

 .

The only difference between R1 and R2 is that their (1,2) elements have different signs.

Then, their corresponding T1 and T2 are:

T1 =

(
+1 +1 −1 +1

0 0 0 0

)
, T2 =

(
+1 0 −1 +1

0 −1 0 0

)
.

In other words, all columns of R1 can potentially represent the first structural shock

(e.g., after switching the signs of the elements in the third column), whereas none of

the columns are consistent with the second structural shock. For R2, the first, third

and fourth columns are consistent with the first structural shock, while the second col-

umn is consistent with the second structural shock. Finally, note that since S3
0 satisfies
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Assumption 1, each column of T1 and T2 has at most one +1 or −1.

It is important to note that to compute the matrix T, we only need to check each column

of R to see if all the relevant inequalities are all satisfied, all violated or neither, for each

structural shock j = 1, . . . ,m. Hence, it involves at most checking mn2 inequalities to

construct T, which can be done quickly.

Let E(Σ,Q,S0) denote the subset of elements in E(Σ,Q) that satisfy all the restrictions

in S0. In other words, E(Σ,Q,S0) consists of all the permutations and sign switches of the

columns of R = LQ, where Σ = LL′, that satisfy all the restrictions in S0. Hence, any

element in E(Σ,Q,S0) can be written as R∗ = RPD for some n-dimensional permutation

matrix P and diagonal matrix D with elements ±1. And since P and D are orthogonal

matrices, R∗ = RQ∗ with Q∗ = PD ∈ O(n).

Algorithm 1 A new accept-reject algorithm to uniformly draw from the admissible set.

1. Sample a posterior draw of (A,Σ), and obtain the lower triangular Cholesky factor
L of Σ such that Σ = LL′.

2. Sample Q ∼ U(O(n)). This can be done by sampling Z = (Zij), where Zij are
iid N (0, 1) random variables, and returning the orthogonal matrix Q from the QR
decomposition of Z.

3. Given L and Q, construct R = LQ and the associated m× n matrix T.

4. If any row of T contains all 0, then go back to Step 1; otherwise, let R∗ be an n×n
zero matrix and complete the following steps:

(a) For j = 1, . . . ,m, construct the index set Sj = {i : Tji = +1 or Tji = −1, i =
1, . . . , n} and sample an element uniformly from Sj, denoted as, ij. If Tjij =
+1, set the j-th column of R∗ as the ij-th column of R; if Tjij = −1, set the
j-th column of R∗ as the negative of the ij-th column of R.

(b) For j = m+ 1, . . . , n, let Sj = {1, . . . , n}\{i1, . . . , ij−1} and sample an element
uniformly from Sj, denoted as, ij. With probability 1/2, set the j-th column
of R∗ as the ij-th column of R; otherwise set it as the negative of the ij-th
column of R.

5. Return A and R∗, which represents the structural shocks that satisfy all the re-
strictions in S0.
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Given the matrix T, we can first determine whether or not E(Σ,Q,S0) is empty. If it

is not, we then uniformly obtain an element from it as follows. Since each row of T

contains at least one +1 or −1, for each j = 1, . . . ,m, we uniformly pick a column that

has entries +1 or −1, say, ij. And since each column contains at most one +1 or −1, we

would not pick the same column twice. Given the sampled i1, . . . , im, we can reconstruct

the element in E(Σ,Q,S0) that satisfies all the restrictions in S0. We summarize this

algorithm in Algorithm 1.

Proposition 1. Under Assumption 1, the output R∗ from Algorithm 1 satisfies R∗ =

LQ∗, where Q∗ is a uniform draw from O(n) and LL′ = Σ. In addition, R∗ satisfies all

the restrictions in S0.

In other words, the proposed algorithm returns structural shocks that satisfy all the

restrictions in S0 using a uniform draw Q∗ from the orthogonal group O(n) such that

R∗ = LQ∗. The proof of the proposition is given in Appendix A.

It is worth noting that in Algorithm 1 we accept or reject each pair (A,Σ) and Q jointly, in

contrast to the common practice of sampling Q conditional on a particular draw of (A,Σ)

until all the restrictions in S0 are satisfied. As pointed out in Arias, Rubio-Ramirez, Shin,

and Waggoner (2024), the latter approach has the unintended consequence of sampling

from a different distribution other than the target.2 It is also important to emphasize that

Algorithm 1 returns one draw R∗, instead of multiple draws, from the set E(Σ,Q,S0)
for each pair of (Σ,Q). This is because any two draws from E(Σ,Q,S0) are dependent,

as they differ by a permutation and sign switches of the columns. In contrast, given

independent posterior draws of (A,Σ), invoking Algorithm 1 multiple times to obtain

multiple draws of R∗ ensures that these draws are independent.3

2Algorithm 1 does not check whether the admissible set Q(A,Σ,S) is empty or not, but this can be
assessed using the procedure based on computing the Chebyshev center as proposed in Amir-Ahmadi
and Drautzburg (2021). Since Algorithm 1 accepts or rejects (A,Σ) and Q jointly, if the admissible set
Q(A,Σ,S) is empty, T will have a zero row for any Q. Algorithm 1 then iterates and samples a different
draw for (A,Σ). In practice, it is much faster to compute T than the Chebyshev center of Q(A,Σ,S).

3One can ensure that the Monte Carlo simulation error is a given fraction of the posterior standard
deviation by choosing the number of admissible draws appropriately, and this choice does not depend on
the dimension of the problem, provided that the retained admissible draws are independent. Specifically,
given R independent admissible draws, the Monte Carlo error of the posterior mean estimate is 1/

√
R

as a fraction of the posterior standard deviation. In other words, the Monte Carlo errors of the posterior
means obtained from 1,000 independent admissible draws are about 3.2% of the corresponding posterior
standard deviations.
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Assumption 1 is crucial for the implementation of Algorithm 1. Intuitively, its role is

to ensure that one can distinguish any two structural shocks via only the responses of

the variables at impact. This assumption allows us to use Algorithm 1 to uniformly

obtain a draw from the set E(Σ,Q,S0) without enumerating all the elements in the

set. Without this assumption, one would need to enumerate or label all the elements

in E(Σ,Q,S0), which could be time-consuming if the set is large. While Assumption 1

is satisfied in many commonly-used identification schemes (which is vacuously satisfied

when only one structural shock is identified), it would not be satisfied, e.g., when two

shocks cause exactly the same responses at impact; an example is the identification of

the TFP surprises vs TFP news shocks (Beaudry and Portier, 2006). In those cases,

Algorithm 1 cannot be directly applied.

Nevertheless, one can still uniformly obtain a draw from E(Σ,Q,S0) by modifying Algo-

rithm 1. More specifically, we can follow Steps 1-3 of the algorithm and construct the

matrix T. Then, instead of Step 4, we enumerate all the elements in E(Σ,Q,S0) and

obtain a draw from the set uniformly. Below we provide a concrete example to illustrate

the revised algorithm.

Example 3. Now consider a set of sign restrictions, S4
0 , that does not satisfy Assump-

tion 1, and a draw of R, denoted as R3:

S4
0 =


+1 +1

+1 +1

0 0

0 0

 , R3 =


0.2 −0.1 0.3 0.8

0.3 0.2 −0.4 0.7

0.1 −1.1 1.2 −0.4

1.2 0.5 0.5 −1.2

 .

Given S4
0 and R3, the corresponding T3 is:

T3 =

(
+1 0 0 +1

+1 0 0 +1

)
.

Note that it is no longer the case that each column of T3 has at most one +1 or −1,

and consequently, Algorithm 1 cannot be directly applied. Nevertheless, one can still

enumerate all the elements in E(Σ,Q,S0) (i.e., all the permutations and sign switches

of the columns of R3 that satisfy all the restrictions in S4
0 ) using the matrix T3. For

example, one can use the first column of R3 to represent the first structural shock and
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the fourth column to represent the second structural shock. Another possibility is to

represent the first and second structural shocks using, respectively, the fourth and first

columns of R3. After enumerating all the elements in E(Σ,Q,S0), one can then uniformly

obtain a draw from E(Σ,Q,S0).

2.2 Extensions

In this section we discuss how the proposed algorithm can be extended to handle some

other commonly-used identification schemes. We start with the ranking restrictions of

Amir-Ahmadi and Drautzburg (2021). In particular, consider the ranking restriction of

the form si,j,k,lfi,j,0 > si,j,k,lλi,j,k,lfk,l,0 for si,j,k,l ∈ {−1, 0, 1} and λi,j,k,l > 0, where fi,j,0

is the impulse response of the i-th variable from the j-th structural shock on impact, as

defined in (3).

For example, if i = k, si,j,k,l = 1 and λi,j,k,l = 1, then this ranking restriction implies

that the impact of the j-th structural shock on the i-th variable is at least as large as the

impact of the l-th shock on the same variable. On the other hand, if j = l, si,j,k,l = 1

and λi,j,k,l = 1, then this ranking restriction implies that the response of the i-th variable

to the j-th structural shock at least as large as the response of the k-th variable to the

same shock. Furthermore, it is easy to see that the ranking restriction includes the sign

restriction as a special case by setting λi,j,k,l = 0.

Let R0 = {(si,j,k,l, λi,j,k,l) : i, k = 1, . . . , n, j, l = 1, . . . ,m} denote the ranking restrictions

set on impact. We first consider the case where each ranking restriction involves only an

individual structural shock (i.e., for j 6= l, λi,j,k,l = 0); the general case will be discussed

afterward. In addition, to ensure that the structural shocks are distinct, we impose some

regularity conditions on R0. Intuitively, to distinguish two structural shocks, we require

that either 1) they have signed impacts on at least two common endogenous variables,

where on one variable they have the same sign and on the other they have opposite signs;

or 2) the impact on a linear combination of two variables from one shock is positive

whereas that from the other shock is negative. Formally, we assume R0 satisfies the

following assumption:

Assumption 2. For any j 6= l, j, l = 1, . . . ,m, at least one of the following conditions

hold:
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1. there exist i1 and i2 such that si1,j,k1,m1 = si1,l,k2,m2 6= 0 and si2,j,k3,m3 = −si2,l,k4,m4 6=
0 for some k1, k2, k3, k4,m1,m2,m3,m4, with λi1,j,k1,m1 = λi1,l,k2,m2 = λi2,j,k3,m3 =

λi2,l,k4,m4 = 0 ;

2. there exist i1 and i2 such that si1,j,i2,j = −si1,l,i2,l 6= 0 and λi1,j,i2,j = λi1,l,i2,l > 0.

Condition 1 in Assumption 2 is essentially an extension of Assumption 1 to the case of

ranking restrictions. For example, if si1,j,k1,j = si1,l,k2,l = 1 and si2,j,k3,j = −si2,l,k4,l = 1,

then Condition 1 implies fi1,j,0 > 0, fi1,l,0 > 0, fi2,j,0 > 0, fi2,l,0 6 0. Condition 2

discriminates the two structural shocks by their different signed impacts on a linear

combination of two variables. For instance, if si1,j,i2,j = −si1,l,i2,l = λi1,j,i2,j = λi1,l,i2,l = 1,

then Condition 2 implies fi1,j,0 − fi2,j,0 > 0 and fi1,l,0 − fi2,l,0 6 0.

Example 4. Consider an example with n = m = 3, and the set of ranking restrictions

R0 is characterized by two 4-dimensional arrays or tensors S = (si,j,k,l) and Λ = (λi,j,k,l),

where the only non-zero elements in S and Λ are:

s1,1,1,1 = 1, s1,2,1,1 = 1, s2,1,1,1 = 1, s2,2,1,1 = −1,

s3,1,1,1 = 1, s1,3,1,1 = 1, s3,3,1,1 = −1,

s1,1,1,2 = 1, s2,1,2,3 = −1, s1,2,3,2 = 1, s1,3,3,3 = −1, λ1,2,3,2 = 1, λ1,3,3,3 = 1.

Then, R0 satisfies Assumption 2. More specifically, to distinguish the first and second

structural shocks, note that s1,1,1,1 = s1,2,1,1 = s2,1,1,1 = −s2,2,1,1 = 1, so that Condition 1

is satisfied with i1 = 1, i2 = 2, j = 1 and l = 2 (i.e., the responses of the first and second

variables to the first shock are positive, whereas their responses to the second shock are

positive and negative, respectively). Similarly, one can distinguish the first and third

shocks since s1,1,1,1 = s3,1,1,1 = s1,3,1,1 = −s3,3,1,1 = 1, and Condition 1 is satisfied with

i1 = 1, i2 = 3, j = 1 and l = 3 (i.e., the responses of the first and third variables to

the first shock are positive, whereas their responses to the third shock are positive and

negative, respectively). Finally, the remaining restrictions ensure that Condition 2 is

satisfied with i1 = 1, i2 = 3, j = 2 and l = 3, and one can distinguish the second and

third shocks. In particular, the restrictions imply that the second shock causes a larger

response from the first variable than the third variable, whereas the third shock causes a

smaller response from the first than the third variables.

With Assumption 2, we can easily adopt Algorithm 1 to obtain draws uniformly from
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the admissible set E(Σ,Q,R0). In fact, the only modification one needs is to replace the

sign restrictions set S0 with the ranking restrictions set R0 in the construction of the

matrix T. More specifically, we construct the m × n matrix T as follows: set Tji = +1

if the i-th column of R = LQ satisfies all the restrictions in R0 corresponding to j-th

structural shock. If the negative of the i-th column of R satisfies all the inequalities in S0
corresponding to j-th structural shock, set Tji = −1; otherwise Tji = 0. As before, T can

be constructed with trivial computations. In addition, by Assumption 2, each column

of T has at most one +1 or −1 since each column of R can satisfy (or violate) all the

restrictions of at most one structural shock. The rest of the steps in Algorithm 1 remain

exactly the same.

More generally, ranking restrictions include cases where two different structural shocks

are involved. For example, one could impose fi,j,0 > λi,j,i,lfi,l,0 for λi,j,i,l > 1, i.e., the

response of the i-th variable to the j-th structural shock is larger than the response from

the l-th structural shock. This type of restrictions can be accommodated by an extra

accept-reject step. Specifically, one can first use Algorithm 1 to obtain A and R∗, which

represents the structural shocks that satisfy all the ranking restrictions in R0. If R∗ also

satisfies the additional ranking restrictions, we accept it; otherwise, we obtain another

draw of the pair A and R∗ and repeat the procedure. Similarly, this approach can be

applied to cases when one wishes to impose sign or ranking restrictions on longer-horizon

impulse responses. That is, we use Algorithm 1 to obtain A and R∗, and if the implied

longer-horizon impulse responses satisfy the required sign and ranking restrictions, we

accept it; otherwise, we sample A and R∗ again until a draw is accepted.

We have so far focused on the so-called B-model (Lütkepohl, 2005) in which the reduced-

form errors ut are linear combinations of the structural shocks vt, i.e., ut = B0vt, and the

researcher has useful prior information on B0. The proposed approach can be adapted to

handle the case when the researcher has useful prior information on A0 = B−10 instead.

More specifically, suppose we wish to impose sign restrictions on the elements of A0. Note

that A′0A0 = Σ−1. Let L denote the upper Cholesky factor of Σ−1 so that Σ−1 = L
′
L.

It is clear that if we let R = QL, where Q is an orthogonal matrix, we have R
′
R = Σ−1.

Therefore, Algorithm 1 can be directly applied to this case by simply replacing L and R

with, respectively, L and R.
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3 Comparison of Computational Efficiency

The goal of this section is to demonstrate the empirical performance of the proposed al-

gorithm in a variety of settings compared to other benchmarks such as the algorithms of

Rubio-Ramirez, Waggoner, and Zha (2010) and Read (2022). In the first subsection, we

consider an empirical example that involves a 15-variable VAR with over 40 sign and rank-

ing restrictions. We compare both the speed and the estimated impulse responses against

a benchmark. In the second subsection, we demonstrate how the proposed algorithm can

be applied in settings with dynamic sign restrictions by replicating the application in

Uhlig (2005). In the last subsection, we further compare the computational efficiency of

the proposed approach relative to Rubio-Ramirez, Waggoner, and Zha (2010) along a few

model dimensions.

3.1 An Illustration of a 15-Variable VAR

We first illustrate the empirical performance of the proposed algorithm using a 15-variable

VAR with over 40 sign and ranking restrictions to identify 5 structural shocks. As a

comparison, we also use the algorithm of Rubio-Ramirez, Waggoner, and Zha (2010) to

uniformly sample orthogonal matrices from the admissible set and compute the impulse

responses.

More specifically, Furlanetto, Ravazzolo, and Sarferaz (2019) first use a 6-variable VAR

to identify 5 structural shocks—demand, supply, monetary, investment and financial

shocks—using a set of sign and ranking restrictions on the contemporaneous impact

matrix. Chan (2022) augments their 6-variable system with 9 additional variables and

sign restrictions. The variables and the structural restrictions are given in Table 1. All

rows except the fourth present the sign restrictions on the contemporaneous impact ma-

trix. The fourth row represents ranking restrictions: the entries denote the signs of the

differential impacts on investment and output from each structural shock. For example,

−1 in the demand column indicates that the impact from demand shocks on investment

is smaller than the impact on output.

It is straightforward to see that this set of sign and ranking restrictions satisfies Assump-

tion 2. More specifically, supply and monetary shocks can be distinguished from other
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shocks using Condition 1 in Assumption 2. In addition, demand shocks have a negative

impact on the difference between investment and output, whereas the impacts from in-

vestment and financial shocks are positive. Hence, demand shocks can be distinguished

from the other two shocks using Condition 2.

Table 1: Sign restrictions, ranking restrictions and identified shocks for the 15-variable
VAR.

Supply Demand Monetary Investment Financial
GDP +1 +1 +1 +1 +1
GDP deflator −1 +1 +1 +1 +1
3-month tbill rate 0 +1 −1 +1 +1
Investment/GDP 0 −1 0 +1 +1
S&P 500 +1 0 0 −1 +1
Spread 0 0 0 0 0
Spread 2 0 0 0 0 0
Credit/Real estate value 0 0 0 0 0
Mortgage rates 0 0 0 0 0
CPI −1 +1 +1 +1 +1
PCE −1 +1 +1 +1 +1
employment 0 0 0 0 0
Industrial production +1 +1 +1 +1 +1
1-year tbill rate 0 +1 −1 +1 +1
DJIA +1 0 0 −1 +1

Note: All restrictions are imposed on the response of a particular variable, except for investment/GDP,
in which restrictions are imposed on linear inequalities of two responses.

As a benchmark, we use the algorithm of Rubio-Ramirez, Waggoner, and Zha (2010)

to uniformly sample orthogonal matrices in conjunction with the posterior sampler of

Chan (2022) designed for large VARs to obtain posterior draws of the model parameters.

This approach requires approximately 3.6 billion draws from U(O(n)) to obtain 1,000

admissible draws, and the estimation takes about 6 days on a standard desktop. In

contrast, the new algorithm requires only about 31,000 draws from U(O(n)) to obtain

1,000 admissible draws, and the entire exercise takes about 16 seconds.4

4In this illustration there are far more variables than identified structural shocks. One might wonder
how the proposed algorithm behaves in applications when the difference between the numbers of variables
and structural shocks is small, as there are fewer ‘free’ columns to potentially represent structural shocks.
It is expected in those cases that the proposal algorithm will take more candidate draws to obtain one
admissible draw. However, the speed-up relative to the benchmark remains the same—the cardinality
of E(Σ,Q) is still 2nn. As an example, we replicate the original application in Furlanetto, Ravazzolo,
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Next, we empirically verify that the impulse responses obtained from the two algorithms

are the same. In particular, Figure 1 reports the impulse responses of 6 variables to a

one-standard-deviation financial shock, obtained using the algorithm of Rubio-Ramirez,

Waggoner, and Zha (2010), and Figure 2 reports those from the proposed algorithm. As

expected, the impulse responses obtained using the two algorithms are identical. Thus,

these results highlight the utility of the proposed algorithm: it provides the same impulse

responses but is several orders of magnitude more efficient than the benchmark.
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Figure 1: Impulse responses from a 15-variable VAR to a one-standard-deviation financial
shock, obtained using the algorithm of Rubio-Ramirez, Waggoner, and Zha (2010).

and Sarferaz (2019) that uses a 6-variable VAR to identify 5 structural shocks and one ‘residual’ shock.
The benchmark requires over 9 million candidate posterior draws and takes 4 minutes to obtain 1,000
admissible draws, whereas the proposed algorithm requires only 2 seconds and takes 21,000 candidate
posterior draws.
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Figure 2: Impulse responses from a 15-variable VAR to a one-standard-deviation financial
shock, obtained using the proposed algorithm described in Algorithm 1.

3.2 Dynamic Sign Restrictions: Replication of Uhlig (2005)

Next, we demonstrate how the proposed algorithm can be applied in settings with both

static and dynamic sign restrictions. More specifically, we consider the application in

Uhlig (2005) that uses a 6-variable VAR to identify the monetary policy shock. The

6 monthly variables are industrial production, CPI, a commodity index (S&P GSCI),

total reserves, nonborrowed reserves and the effective federal funds rate. All variables are

sourced from the FRED database maintained by the Federal Reserve Bank of St. Louis,

except for the commodity index, which is obtained from S&P Capital IQ. The federal

funds rate is not transformed, whereas all other variables are in log. The sample period

is from December 1969 to December 2007.

To identify the monetary policy shock, we follow Uhlig (2005) and assume that the

responses of prices and nonborrowed reserves are nonpositive and the responses of federal

funds rate are nonnegative on impact and for the first 5 months. To implement the

proposed approach to this setting with dynamic restrictions, we first use Algorithm 1 to
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obtain admissible draws that satisfy the required sign restrictions on impact. We then

check if the impulse responses also satisfy the required sign restrictions for the first 5

months. If so, we accept the draw; otherwise, we obtain another admissible draw using

Algorithm 1 and repeat the procedure until a draw is accepted. As a comparison, we

also implement the algorithms of Rubio-Ramirez, Waggoner, and Zha (2010) and Read

(2022).5 Table 2 reports the computation time to obtain 5,000 posterior draws using the

three algorithms.

Table 2: The computation time (in minutes) to obtain 5,000 posterior draws using the pro-
posed method and the algorithms of Rubio-Ramirez, Waggoner, and Zha (2010) (RWZ)
and Read (2022) (Read).

Proposed method RWZ Read
Time 1.05 14.27 3.07

To get 5,000 admissible draws that satisfy all the static and dynamic sign restrictions, the

approach of Rubio-Ramirez, Waggoner, and Zha (2010) takes about 14 minutes, whereas

the algorithm of Read (2022) takes about three minutes. In contrast, the proposed

algorithm is substantially faster than both approaches and takes only one minute. To

verify that all three algorithms generate from the same target distribution, we compute

the dynamic responses of the 6 variables to the identified monetary policy shock. The

impulse-response functions are provided in Appendix B. The three methods give virtually

identical impulse responses; they are also similar to those reported in Uhlig (2005).

3.3 Computational Efficiency in High-Dimensional Settings

The purpose of this subsection is to compare the computational efficiency of the proposed

algorithm relative to Rubio-Ramirez, Waggoner, and Zha (2010) in high-dimensional set-

ting using simulated data. More specifically, we generate datasets with different numbers

of variables (n = 10, 30, 50) and structural shocks (m = 5, 8), while fixing the sample size

T = 200 and lag length p = 5 for all simulations.

5We adapt the code provided by Read (2022) to our setting. In particular, we run his Algorithm 2 to
draw uniformly the first column of Q given one set of posterior draws, after using Algorithm 1 to check
whether the admissible set is empty.
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For each (n,m) combination, we generate a dataset from the VAR in (1)-(2) as follows.

First, we draw the intercepts independently from the uniform distribution on the interval

(−1, 1), i.e., U(−1, 1). For the VAR coefficients, the diagonal elements of the first VAR

coefficient matrix are iid U(0, 0.5) and the off-diagonal elements are from U(−0.2, 0.2);

all other elements of the j-th (j > 1) VAR coefficient matrices are iid N (0, 0.12/j2).

Finally, to construct the impact matrix B0, we first draw the diagonal elements from

iid U(0.5, 1.5), and the off-diagonal elements from iid N (0, 1). We then store them and

change the signs of the elements in B0 to match the set of restrictions specified in each

case.

Given a dataset, we then estimate the model using the proposed algorithm and the

benchmark, together with the direct posterior sampler of Chan (2022) designed for large

VARs. Each algorithm is run for 10,000 seconds, and we record the numbers of posterior

draws and admissible draws (i.e., those posterior draws that satisfy all the structural

restrictions). The results are reported in Table 3. The top panel refers to the case where

only sign restrictions are used (and the set of sign restrictions satisfies Assumption 1);

the middle panel considers the case where three additional ranking restrictions are added;

lastly, the bottom panel considers the case with both static sign restrictions (as in the

top panel) and dynamic sign restrictions (on the first shock at horizon H = 1).

The results show that as the number of sign restrictions increases, the number of ad-

missible draws obtained—given a fixed number of candidate draws—decreases for both

algorithms. This is not surprising because the computational bottleneck of obtaining

admissible draws lies in the fact that the set Q(A,Σ,S) becomes thinner when more

restrictions are imposed. In many cases with large n or large m, the sampling efficiency

of the benchmark deteriorates so quickly that it becomes infeasible. In contrast, the pro-

posed method remains capable of obtaining a large number of admissible draws for large

n and m in a reasonable amount of time. Finally, the bottom panel shows that both

algorithms slow down considerably when dynamic restrictions are added. Nevertheless,

the proposed algorithm can still generate a reasonable number of admissible draws in

such hard cases.
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Table 3: Numbers of posterior draws (in millions) and admissible draws obtained for an
n-variable VAR with m shocks within 10,000 seconds using the proposed method and the
algorithm of Rubio-Ramirez, Waggoner, and Zha (2010) (RWZ).

Top panel: sign restrictions only
n = 10 n = 30 n = 50

m = 5 # restrictions 25 35 40
RWZ Posterior draws (×106) 240 35 14

Admissible draws 1,033 0 0
Proposed method Posterior draws (×106) 12 12 9

Admissible draws 489,030 166,590 14,099
m = 8 # restrictions 40 50 60

RWZ Posterior draws (×106) 232 36 14
Admissible draws 0 0 0

Proposed method Posterior draws (×106) 34 14 7
Admissible draws 266,280 57,804 2,460

Middle panel: 3 additional ranking restrictions
n = 10 n = 30 n = 50

m = 5 # restrictions 28 38 43
RWZ Posterior draws (×106) 258 34 13

Admissible draws 115 0 0
Proposed method Posterior draws (×106) 47 18 8

Admissible draws 310,970 14,230 1,214
m = 8 # restrictions 43 53 63

RWZ Posterior draws (×106) 260 34 14
Admissible draws 0 0 0

Proposed method Posterior draws (×106) 37 13 6
Admissible draws 99,607 2,525 1,000

Bottom panel: additional dynamic restrictions for the first shock
n = 10 n = 30 n = 50

m = 5 # restrictions 29 31 45
RWZ Posterior draws (×106) 81 13 3

Admissible draws 375 0 0
Proposed method Posterior draws (×106) 15 4 2

Admissible draws 229,920 733 316
m = 8 # restrictions 45 55 66

RWZ Posterior draws (×106) 67 14 3
Admissible draws 0 0 0

Proposed method Posterior draws (×106) 5 3 2
Admissible draws 2499 416 247
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4 A 35-Variable VAR of the US Economy

To showcase the usefulness of the proposed algorithm, we consider an application that in-

volves a 35-variable VAR with sign and ranking restrictions to identify 8 structural shocks,

namely, demand, investment, financial, monetary policy, government spending, technol-

ogy, labor supply and wage bargaining. The list includes many standard macroeconomic

and financial variables, such as national accounts variables, various inflation indexes and

interest rates, labor market variables, oil and stock prices. These variables are broadly

similar to those used in Crump, Eusepi, Giannone, Qian, and Sbordone (2021) and are

closely monitored by the Federal Reserve Staff and professional forecasters.

There are several reasons in favor of using a large set of macroeconomic and financial

variables in structural analysis. First, a large system provides a convenient and unified

framework to investigate the impacts of multiple structural shocks simultaneously. In

particular, it allows the researcher to tease out the impacts of different structural shocks—

such as different types of demand and supply shocks—and their individual contributions

to macroeconomic fluctuations.

Second, it mitigates the concern of informational deficiency of using a limited information

set, as pointed out in a series of influential papers by Hansen and Sargent (1991) and

Lippi and Reichlin (1993, 1994). By using a larger set of relevant variables, one can

close the gap between the set of variables considered by the economic agent and that

considered by the econometrician, thus alleviating the concern of non-fundamentalness

(see, e.g., Gambetti, 2021, for a recent review).

Third, as argued in Loria, Matthes, and Wang (2022), the mapping from variables in an

economic model to the data is typically not unique. For example, one could match the

economic variable ‘inflation’ to data based on the CPI, PCE, or the GDP deflator. One

natural way to avoid an arbitrary choice is to include multiple data series corresponding

to the same economic variable in the analysis.

The list of variables and the structural restrictions are given in Table 4.6 The top part of

the table lists the sign restrictions whereas the lower part lists the ranking restrictions. For

example, the row labeled ‘Government spending/GDP’ lists the signs of the differences

6Most variables are transformed by taking logs and multiplying 100, while others such as interest
rates and unemployment rates are not transformed and are in percentages.
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in impacts on government spending and GDP from each structural shock. In particular,

the +1 in the government spending column indicates that the impact from government

spending shocks on government spending is larger than the impact on GDP. It can be

easily verified that the set of restrictions in Table 4 satisfies Assumption 2.

Table 4: Sign restrictions, ranking restrictions and identified shocks for the 35-variable
VAR.
Sign restrictions Demand Investment Financial Monetary Government Technology Labor Wage

spending supply bargaining
GDP +1 +1 +1 −1 +1 +1 +1 +1
Personal consumption expenditure 0 0 0 0 0 +1 0 0
Residential investment 0 0 0 0 0 0 0 0
Nonresidential investment 0 0 0 0 0 +1 0 0
Exports 0 0 0 0 0 0 0 0
Imports 0 0 0 0 0 0 0 0
Government spending 0 0 0 0 +1 0 0 0
Federal budget surplus/deficit 0 0 0 0 −1 0 0 0
Federal tax receipts 0 0 0 0 +1 0 0 0
GDP deflator +1 +1 +1 −1 +1 −1 −1 −1
PCE index +1 +1 +1 −1 +1 −1 −1 −1
PCE index less food & energy +1 +1 +1 −1 +1 −1 −1 −1
CPI index +1 +1 +1 −1 +1 −1 −1 −1
CPI index less food & energy +1 +1 +1 −1 +1 −1 −1 −1
Hourly wage 0 0 0 0 0 +1 −1 −1
Labor productivity 0 0 0 0 0 +1 0 0
Utilization-adjusted TFP 0 0 0 0 0 +1 0 0
Employment 0 0 0 −1 0 0 0 0
Unemployment rate −1 −1 −1 +1 −1 −1 +1 −1
Industrial production index +1 +1 +1 −1 0 0 0 0
Capacity utilization +1 +1 +1 −1 0 0 0 0
Housing starts 0 0 0 0 0 0 0 0
Disposable income 0 0 0 0 0 0 0 0
Consumer sentiment 0 0 0 0 0 0 0 0
Fed funds rate +1 +1 +1 +1 +1 0 0 0
3-month tbill rate +1 +1 +1 +1 +1 0 0 0
2-year tnote rate 0 0 0 +1 0 0 0 0
5-year tnote rate 0 0 0 +1 0 0 0 0
10-year tnote rate 0 0 0 +1 0 0 0 0
Prime rate +1 +1 +1 +1 +1 0 0 0
Aaa corporate bond yield 0 0 0 +1 0 0 0 0
Baa corporate bond yield 0 0 0 +1 0 0 0 0
Trade-weighted US$ index 0 0 0 0 0 0 0 0
S&P 500 0 −1 +1 −1 0 0 0 0
Spot oil price 0 0 0 0 0 0 0 0
Ranking restrictions
Nonresidential investment/GDP −1 +1 +1 0 0 0 0 0
Government spending/GDP −1 −1 −1 0 +1 0 0 0

For large-n systems it becomes necessary to regularize the large number of VAR coeffi-

cients (e.g., a 35-variable VAR with 5 lags has 6,125 VAR coefficients). Here we use the

asymmetric conjugate prior and the direct sampling approach proposed in Chan (2022) to

obtain posterior draws from the 35-variable VAR. Unlike the conventional natural conju-

gate prior, which does not permit cross-variable shrinkage (i.e., asymmetric shrinkage of
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own lags and lags of other variables), this new prior is more flexible and can be used, e.g.,

to shrink coefficients on the other variables’ lags more aggressively to zero. At the same

time, this new prior maintains many useful analytical results of the traditional natural

conjugate prior, such as a closed-form expression of the marginal likelihood, and allows

direct, independent sampling from the posterior distribution instead of using MCMC

methods. The key step in formulating this new prior is to reparameterize the VAR in a

recursive structural form with a diagonal error covariance matrix. Then, one can show

that if the reduced-form error covariance matrix has a standard inverse-Wishart prior,

then the implied prior on the structural-form impact matrix and error variances is a

product of normal-inverse-gamma densities, which is conjugate for the likelihood.

Using this asymmetric conjugate prior, we obtain the values of the optimal shrinkage

hyperparameters on the VAR coefficients by maximizing the marginal likelihood of the

model. Then, we use Algorithm 1 to obtain 1,000 admissible draws that satisfy all the

sign and ranking restrictions. For this 35-variable VAR with over 100 sign and ranking

restrictions, the entire exercise takes about 14 minutes and requires 557,000 draws from

U(O(n)).

Figures 3–5 report the impulse responses of 6 selected variables to the (one-standard-

deviation) demand, investment and financial shocks. As expected, these demand-type

structural shocks raise output, short-term interest rate and inflation, while lowering both

unemployment rate and real wage, at least in the short-run. Compared to the generic

demand shock, both investment and financial shocks have a more substantive impact on

nonresidential investment.
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Figure 3: Impulse responses from a 35-variable VAR to a one-standard-deviation demand
shock.
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Figure 4: Impulse responses from a 35-variable VAR to a one-standard-deviation invest-
ment shock.
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Figure 5: Impulse responses from a 35-variable VAR to a one-standard-deviation financial
shock.

Compared to the results from the 15-variable VAR described in Section 3.1, responses of

the overlapping variables in the 35-variable VAR tend to be smaller in magnitude, but are

otherwise very similar. For example, Figure 6 reports the impulse responses of 6 selected

variables from both VARs to a financial shock.7 Consistent with earlier results reported

in Furlanetto, Ravazzolo, and Sarferaz (2019) and Chan (2022), we find a relatively large

effect on GDP and a smaller impact on prices; and both the responses of investment

and stock prices are persistent. However, with more variables and sign restrictions to

pin down the structural shocks, the credible bands from the 35-variable VAR tend to be

narrower (more results are provided in Appendix B).

7To obtain comparable results, we restrict the sample for the 35-variable VAR to the period from
1985Q1 to 2019Q4, so that it is the same as the setup in the 15-variable VAR.
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Figure 6: Impulse responses of 6 selected variables to a one-standard-deviation financial
shock from the 15- and the 35-variable VARs.

Next, Figures 7 and 8 plot the impulse responses of the same variables to the monetary

policy shock and the government spending shock. A contractionary monetary policy

shock depresses output and inflation, while raising the unemployment rate and the real

wage. In contrast, an expansionary government spending shock mostly raises inflation

and short-term interest rate, and has negligible effects on output, unemployment or the

real wage.
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Figure 7: Impulse responses from a 35-variable VAR to a one-standard-deviation mone-
tary policy shock.
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Figure 8: Impulse responses from a 35-variable VAR to a one-standard-deviation govern-
ment spending shock.
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Figure 9: Impulse responses from a 35-variable VAR to a one-standard-deviation tech-
nology shock.
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Figure 10: Impulse responses from a 35-variable VAR to a one-standard-deviation labor
supply shock.
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Figure 11: Impulse responses from a 35-variable VAR to a one-standard-deviation wage
bargaining shock.

Finally, Figures 9–11 report the impulse responses of the 6 variables to the 3 supply-

type structural shocks: technology, labor supply and wage bargaining shocks. While all 3

supply-type structural shocks raise output and depress inflation, the technology shock has

the largest impact on these two variables. In addition, the technology shock substantially

increases real wage over a relatively long horizon, whereas the other two structural shocks

have transient and negligible impacts on real wage.

Overall, this application demonstrates that it is practical to study the impacts of multiple

structural shocks jointly in a large VAR. Using a large number of sign and ranking restric-

tions to identify different structural shocks, we are able to disentangle their differential

effects on key macroeconomic variables.

5 Concluding Remarks and Future Research

Two recent developments have motivated our paper: the recognition of the need to include

a large number of variables in structural analysis and the desire to use more credible
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structural restrictions to identify structural shocks. In response to these developments,

we have introduced an efficient approach for estimating large VARs identified using a large

number of sign and ranking restrictions on the impulse responses. We showed that the

new approach is several orders of magnitude more efficient than the benchmark, reducing

the computational time from days to seconds. We illustrated the methodology using a

35-variable VAR with sign and ranking restrictions to identify 8 structural shocks.

For future research, it would be useful to extend the proposed algorithms to impose both

inequality and zero restrictions (Arias, Rubio-Ramı́rez, and Waggoner, 2018), where the

latter may arise in proxy VARs (Caldara and Herbst, 2019). One possibility is to incor-

porate the Gibbs sampling approach developed in Read (2022) to draw the orthogonal

matrix directly subject to zero and dynamic sign restrictions. Specifically, in higher di-

mensional settings, his algorithm could be used to draw the columns of Q that are subject

to zero or dynamic restrictions, whereas the proposed algorithm could then be applied

to other columns that are not subject to zero or dynamic restrictions. It would also be

interesting to incorporate richer prior information on the impact matrix or, more gener-

ally, impulse responses, as advocated in Baumeister and Hamilton (2015) and Bruns and

Piffer (2023).
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Appendix A: Proof of Proposition

In this appendix we provide a proof of the proposition stated in the main text.

Proof of Proposition 1. Let L denote the lower triangular Cholesky factor of Σ such that

Σ = LL′, and sample Q uniformly from the orthogonal group O(n), i.e., Q ∼ U(O(n)).

Recall that E(Σ,Q) consists of all the permutations and sign switches of the columns of

LQ. That is, an element E ∈ E(Σ,Q) can be represented as E = LQPD, where P is an

n-dimensional permutation matrix and D is a diagonal matrix with elements ±1. Since

the Haar measure is invariant under right multiplication of P and D (see, e.g., Muirhead,

1982, Section 2.1.4), QPD is a uniform draw from the orthogonal group O(n). Next,

recall that E(Σ,Q,S0) denotes the (finite) subset of elements in E(Σ,Q) that satisfy all

restrictions in S0. Step 4 of Algorithm 1 uniformly obtains an element R∗ in E(Σ,Q,S0),
which can be represented as R∗ = LQPD for some permutation matrix P and diagonal

matrix D with elements ±1. Hence, Q∗ = QPD ∼ U(O(n)) and R∗ = LQ∗. Finally,

since R∗ is an element in E(Σ,Q,S0), it satisfies all the restrictions in S0.
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Appendix B: Additional Empirical Results

This appendix reports additional empirical results from the replication exercise of Uhlig

(2005) and the empirical application. In particular, Figures 12-14 report the dynamic

responses of the 6 variables to a monetary policy shock identified using static and dynamic

restrictions, compared using the proposed method and the algorithms of Rubio-Ramirez,

Waggoner, and Zha (2010) and Read (2022).
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Figure 12: Impulse responses to a monetary policy shock, using the proposed algorithm.
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Figure 13: Impulse responses to a monetary policy shock, using the algorithm of Rubio-
Ramirez, Waggoner, and Zha (2010).
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Figure 14: Impulse responses to a monetary policy shock, using the algorithm of Read
(2022).

36



Next, we report additional results from the empirical application that involves a 35-

variable VAR. In particular, we compute the widths of 68% credible bands of impulse

responses to a financial shock from the 35-variable VAR relative to those from the 15-

variable VAR. The results are reported in Figure 15.
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Figure 15: Relative width of impulse-response credible bands between a 35-variable VAR
and a 15-variable VAR under a financial shock.

It is clear from the plots that the credible bands from the 35-variable VAR tend to be

narrower. For instance, for GDP, GDP deflator and investment, the credible bands from

the 35-variable VAR are all smaller than those from the 15-variable VAR for all horizons.
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