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Abstract

This paper generalizes the popular stochastic volatility in mean model of Koopman
and Hol Uspensky (2002) to allow for time-varying parameters in the conditional
mean. The estimation of this extension is nontrival since the volatility appears
in both the conditional mean and the conditional variance, and its coefficient in
the former is time-varying. We develop an efficient Markov chain Monte Carlo
algorithm based on band and sparse matrix algorithms instead of the Kalman fil-
ter to estimate this more general variant. We illustrate the methodology with an
application that involves US, UK and Germany inflation. The estimation results
show substantial time-variation in the coefficient associated with the volatility, high-
lighting the empirical relevance of the proposed extension. Moreover, in a pseudo
out-of-sample forecasting exercise, the proposed variant also forecasts better than
various standard benchmarks.
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1 Introduction

A voluminous literature has demonstrated that structural instability is present in a wide
variety of macroeconomic time series (see, e.g., Canova, 1993; Cogley and Sargent, 2001;
Koop and Potter, 2007, among many others). One popular approach to model this struc-
tural instability is via a time-varying parameter (TVP) model in which the parameters in
the conditional mean can evolve gradually over time. A related literature has highlighted
the importance of allowing for time-varying volatility in macroeconomic time series, where
the heteroscedastic errors are typically modeled using a stochastic volatility specification
(see, e.g., Cogley and Sargent, 2005; Primiceri, 2005). For macroeconomic forecasting,
D’Agostino, Gambetti, and Giannone (2013) find that both features are crucial in pro-
ducing accurate forecasts.

We contribute to this line of research by developing a model where the stochastic volatility
has a direct and time-varying impact on the variable of interest. More specifically, we
build upon the stochastic volatility in mean (SVM) model of Koopman and Hol Uspensky
(2002)—originally developed for financial time series as an alternative of the ARCH-M
model of Engle, Lilien, and Robins (1987)—in which the volatility enters the conditional
mean as a covariate. More recently, the SVM model has been used to fit macroeconomic
data, as in Berument, Yalcin, and Yildirim (2009) for investigating the inflation-inflation
uncertainty relationship and Mumtaz and Zanetti (2013) for examining the impact of
monetary shocks volatility. However, so far all studies are limited to models with constant
coefficients. We extend the standard SVM model to allow for time-varying coefficients
in the conditional mean as this feature is generally recognized as important for typical
macroeconomic time series. In fact, in our application involving US inflation, the TVP
variant fits the inflation data better even after penalizing the additional model complexity.
Further, it outperforms the standard version with constant coefficients in a recursive
forecasting exercise.

A second contribution of this paper is to develop an efficient Markov chain Monte Carlo
(MCMC) sampler for estimating this new model. In the original setting with constant
coefficients, Koopman and Hol Uspensky (2002) propose a simulated maximum likelihood
estimator based on the Kalman filter to fit the model. However, this approach cannot be
easily generalized to the time-varying parameter setting as likelihood evaluation would
involve “integrating out” both the time-varying coefficients and the volatility by Monte
Carlo methods. Instead, we adopt a Bayesian approach and propose an MCMC algorithm
to simulate from the joint posterior distribution. A key novel feature of our approach is
that it is based on band and sparse matrix algorithms instead of the Kalman filter. This
achieves efficiency gains by exploiting the special structure of the problem: the Hessian
of the log-conditional density of the log-volatility is a band matrix—i.e., it contains only
a few nonzero elements confined along a narrow diagonal band. This feature is essential
for reducing the computational costs.

A third contribution involves an empirical application on modeling and forecasting US
quarterly consumer price index (CPI) inflation and real-time GDP deflator. Our point
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of departure is a version of the unobserved components model with stochastic volatility
in Stock and Watson (2007). By adding the SVM component in the conditional mean,
the proposed SVM model allows us to study the impact of the volatility feedback—
how inflation volatility affects the level of inflation. There is a large literature that
examines the relationship between inflation and inflation uncertainty. Empirical work
generally supports the claim that higher inflation generates higher inflation uncertainty,
as first postulated in the Nobel lecture of Friedman (1977) and formalized in Ball (1992),
whereas there is mixed support in the reverse direction. On the one hand, the game-
theoretic model of Cukierman and Meltzer (1986) shows that the central bank has an
incentive to create inflation surprises in times of high inflation uncertainty to exploit the
trade-off between inflation and unemployment—hence, the model predicts higher inflation
uncertainty leads to higher inflation. On the other hand, Holland (1995) suggests that
if central bankers view inflation uncertainty as costly, they would be induced to reduce
inflation uncertainty when inflation is high, thus creating a negative relationship between
inflation and inflation uncertainty.

To shed some light on this issue, we use the proposed model to investigate if inflation
uncertainty affects the level of inflation using US inflation. In contrast to previous stud-
ies that consider only models with constant coefficients in the conditional mean, our
time-varying parameter model allows us to assess if the inflation-inflation uncertainty
relationship has changed over time. In fact, the coefficient associated with volatility is
estimated to be positive in the early sample and it drops substantially or even to negative
values since the early 1980s. In addition, we examine if this time-variation can be ex-
ploited to improve inflation forecasts. In a pseudo out-of-sample forecasting exercise, we
find that the TVP variant outperforms standard benchmarks for both point and density
forecasts.

The rest of this article is organized as follows. In Section 2 we first introduce the SVM
model with time-varying parameters. Then, an efficient posterior simulator is developed
to estimate this new model. Section 3 presents empirical results for modeling and fore-
casting US inflation. Additional estimation results for UK and Germany data are also
provided. In the last section we conclude our findings and discuss some future research
directions.

2 SVM with Time-Varying Parameters

In this section we first introduce the time-varying parameter stochastic volatility in mean
(TVP-SVM) model that generalizes the original specification in Koopman and Hol Us-
pensky (2002). In particular, we allow the coefficients in the conditional mean to be
time-varying. We then propose an efficient MCMC sampler—based on fast band and
sparse operations rather than on the conventional Kalman filter—to estimate this model.
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2.1 The Model

We consider a time-varying parameter model with stochastic volatility where the stochas-
tic volatility also enters the conditional mean equation. Specifically, let yt denote the time
series of interest. Then, consider

yt = x′

tβt + αte
ht + εyt , εyt ∼ N (0, eht), (1)

ht = µ+ φ(ht−1 − µ) + εht , εht ∼ N (0, σ2), (2)

where xt is a k × 1 vector of covariates, βt is the associated k × 1 vector of time-varying
parameters, and the disturbances εyt and εht are mutually and serially uncorrelated. The
log-volatility ht follows a stationary AR(1) process with |φ| < 1, and it is initialized with
h1 ∼ N (µ, σ2/(1 − φ2)). The model (1)–(2) generalizes the original setup in Koopman
and Hol Uspensky (2002) by allowing the conditional mean of yt to have time-varying
parameters, i.e., both αt and βt are time-varying. This feature is empirically important
for typical macroeconomic applications. The vector of coefficients γt = (αt,β

′

t)
′ in turn

evolves according to a random walk process:

γt = γt−1 + ε
γ

t , ε
γ

t ∼ N (0,Ω), (3)

where Ω is a (k+1)× (k+1) covariance matrix. Following the literature on time-varying
parameters vector autoregressions (e.g., Cogley and Sargent, 2005; Cogley, Primiceri,
and Sargent, 2010), we allow for a generic correlation structure among the innovations to
the random-walk coefficients. Finally, the random walk process in (3) is initialized with
γ1 ∼ N (γ0,Ω0) for constant matrices γ0 and Ω0.

Of course, when αt = 0 for all t = 1, . . . , T , the model in (1)–(3) reduces to a standard
TVP regression with stochastic volatility. By allowing αt to be nonzero, the model permits
an additional channel of persistence—since the log-volatility follows an AR(1) process, a
shock to ht−1 would affect ht, which in turns has a direct impact on the conditional mean
of yt. This channel is shown to be empirically important in both the model comparison
exercise and the forecasting exercise below. Also note that (1)–(3) define a Gaussian
state space model with two types of states, namely, γt and ht. The model is linear in γt

but nonlinear in ht, and the this nonlinearity makes estimation more difficult.

2.2 Bayesian Estimation

We now introduce an MCMC sampler to simulate from the posterior distribution of
the model in (1)–(3). In the original setting with constant coefficients, Koopman and
Hol Uspensky (2002) develop a simulated maximum likelihood estimator based on the
Kalman filter to fit the SVM model. Specifically, the likelihood—or more precisely the
observed-data or integrated likelihood, obtained by integrating out ht—can be evaluated
using importance sampling, where the importance density is constructed by approximat-
ing the conditional likelihood—the conditional density of yt given ht—using a Gaussian
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density. Independent draws from this high-dimensional Gaussian density can be sampled
using Kalman filter-based algorithms such as those in Carter and Kohn (1994), Früwirth-
Schnatter (1994), de Jong and Shephard (1995) and Durbin and Koopman (2002). Since
there are only a few parameters in a constant coefficient SVM model, one can maximize
the likelihood numerically to obtain the maximum likelihood estimates.

However, this approach cannot be easily generalized to our time-varying parameter setting
as likelihood evaluation in this case would involve “integrating out” both types of states,
namely, γt and ht, by Monte Carlo methods. Since the states are much higher dimensional
in our case, this likelihood evaluation step is in general nontrival. To get around this
difficulty, we adopt a Bayesian approach and develop an MCMC algorithm to simulate
from the joint posterior distribution. Due to the modular nature of MCMC algorithms,
we can simulate each type of states one at a time, which reduces the dimension of the
problem and makes estimation much easier.

Another novel feature of our proposed approach is that it builds upon recent advances
in band and sparse matrix algorithms rather than using the conventional Kalman filter.
Recent papers using the former approach include Rue (2001) for linear Gaussian Markov
random fields; Chan and Jeliazkov (2009) and McCausland, Miller, and Pelletier (2011)
for linear Gaussian state space models; Rue, Martino, and Chopin (2009) for nonlinear
Markov random fields; McCausland (2012), Chan, Koop, and Potter (2013), Chan and
Strachan (2014) and Djegnéné and McCausland (2014) for nonlinear state space models.
Our new approach achieves efficiency gains by exploiting the special structure of the
problem, particularly that the Hessian of the log-conditional density of the log-volatilities
(given the data and other parameters) is a band matrix, i.e., it contains only a few nonzero
elements arranged along a diagonal band. This feature turns out to be important in
developing efficient sampling algorithms.

To elaborate, there are two related notions of efficiency. The first is the computational
speed—how much time it takes to obtain a certain number of posterior draws. The second
is related to the autocorreleations of the MCMC draws—by construction MCMC draws
are autocorrelated; the lower the autocorrelation, the closer they are to the ideal case of
independent draws. A sampler is efficient if it produces draws with low autocorrelations.
The proposed algorithm is efficient in both senses. The first criterion is easy to evaluate;
we document the speed of the algorithm at the end of the section. To achieve efficiency in
the second sense, the proposed approach samples all the log-volatiliies h1, . . . , hT jointly,
in contrast to the single-move sampler of Mumtaz and Zanetti (2013) that samples each ht

at a time. (Note that the auxiliary mixture sampler of Kim, Shepherd, and Chib (1998)
cannot be applied to the SVM model as ht also enters the conditional mean equation).

To complete the model specification, we assume independent priors for σ2, µ, φ and Ω:

µ ∼ N (µ0, Vµ), φ ∼ N (φ0, Vφ)1l(|φ| < 1), σ2 ∼ IG(νσ2 , Sσ2), Ω ∼ IW(νΩ,SΩ),
(4)

where IG(·, ·) denotes the inverse-gamma distribution and IW(·, ·) represents the inverse-
Wishart distribution. Note that we impose the stationarity condition |φ| < 1 on the
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prior for φ. For notational convenience, let x denote the covariates, y = (y1, . . . , yT )
′,

γ = (γ ′

1, . . . ,γ
′

T )
′ and h = (h1, . . . , hT )

′. Then posterior draws can be obtained by
sequentially sampling from:

1. p(h |y,x,γ, µ, φ, σ2,Ω) = p(h |y,x,γ, µ, φ, σ2);

2. p(γ |y,x,h, µ, φ, σ2,Ω) = p(γ |y,x,h,Ω);

3. p(Ω, σ2 |y,x,γ,h, µ, φ) = p(Ω |γ)p(σ2 |h, µ, φ);

4. p(µ, φ |y,x,γ,h, σ2,Ω) = p(µ, φ |h, σ2).

In Step 1 the joint conditional density p(h |y,x,γ, µ, φ, σ2) is high-dimensional and non-
standard. To simulate from this density, we follow the approach in Chan and Strachan
(2014) by exploiting the fact that the Hessian of log p(h |y,x,γ, µ, φ, σ2) is a band ma-
trix. As such, a Gaussian approximation can be quickly obtained, which is then used as
a proposal density in an acceptance-rejection Metropolis-Hastings algorithm. Moreover,
since the Hessian of this Gaussian proposal density is also a band matrix, we use the pre-
cision sampler in Chan and Jeliazkov (2009)—so called as it exploits the band structure
of the precision matrix (inverse covariance matrix) of the states—to obtain candidate
draws instead of Kalman filter-based algorithms.

We first discuss an efficient way to obtain a Gaussian approximation of p(h |y,x,γ, µ, φ, σ2).
By Bayes’ Theorem, we have

p(h |y,x,γ, µ, φ, σ2) ∝ p(y |x,γ,h)p(h |µ, φ, σ2).

In what follows, we derive explicit expressions for the two densities on the right-hand
side. It turns out that the prior density p(h |µ, φ, σ2) is Gaussian (see below). If we
approximate the likelihood p(y |x,γ,h) by a Gaussian density in h, we immediately ob-
tain a Gaussian approximation of p(h |y,x,γ, µ, φ, σ2). To that end, note that given

a point h̃ = (h̃1, . . . , h̃T )
′ ∈ RT , we can approximate the log conditional likelihood

log p(y |x,γ,h) =
∑T

t=1 log p(yt |xt,γt, ht) using a second-order Taylor expansion around

h̃ to obtain

log p(y |x,γ,h) ≈ log p(y |x,γ, h̃) + (h− h̃)′f −
1

2
(h− h̃)′G(h− h̃)

=−
1

2
(h′Gh− 2h′(f +Gh̃)) + c1, (5)

where c1 is a constant independent of h, f = (f1, . . . , fT )
′ and G = diag(G1, . . . , GT ) with

ft =
∂

∂ht

log p(yt |xt,γt, ht)|ht=h̃t
, Gt = −

∂2

∂h2
t

log p(yt |xt,γt, ht)|ht=h̃t
.

In other words, G is the negative Hessian of the log conditional likelihood evaluated at
h̃. Also note that G is diagonal (hence a band matrix). Since the log-conditional density
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of yt given the latent variables ht and γt = (αt,β
′

t)
′ is given by

log p(yt |xt,γt, ht) =−
1

2
log(2π)−

1

2
ht −

1

2
e−ht(yt − x′

tβt − αte
ht)2

−
1

2
log(2π)−

1

2
ht −

1

2

(
α2
t e

ht + e−ht(yt − x′

tβt)
2 − 2αt(yt − x′

tβt)
)
,

it is easy to check that

∂

∂ht

log p(yt |xt,γt, ht) =−
1

2
−

1

2
α2
t e

ht +
1

2
e−ht(yt − x′

tβt)
2,

∂2

∂h2
t

log p(yt |xt,γt, ht) =−
1

2
α2
t e

ht −
1

2
e−ht(yt − x′

tβt)
2.

Next, we derive the prior density p(h |µ, φ, σ2). To that end, let

Hφ =




1 0 0 · · · 0
−φ 1 0 · · · 0
0 −φ 1 · · · 0
...

. . . . . .
...

0 0 · · · −φ 1




.

Note that the determinant of Hφ is 1—hence, it is invertible—regardless of the value of φ.
Also observe that Hφ is a lower bidiagonal matrix, i.e., its nonzero elements are confined
along the main diagonal and the diagonal below. Now, write the state equation of ht

in (2) as:

Hφh = δ̃h + εh, εh ∼ N (0,Sh)

where δ̃h = (µ, (1 − φ)µ, . . . , (1 − φ)µ)′, εh = (εh1 , . . . , ε
h
T )

′ and Sh = diag(σ2/(1 −
φ2), σ2, . . . , σ2). That is, (h |µ, φ, σ2) ∼ N (δh, (H

′

φS
−1
h Hφ)

−1) with log-density

log p(h |µ, φ, σ2) = −
1

2
(h′H′

φS
−1
h Hφh− 2h′H′

φS
−1
h Hφδh) + c2, (6)

where δh = H−1
φ δ̃h and c2 is a constant independent of h. Finally, combining (5) and (6),

we have

log p(h |y,x,γ, µ, φ, σ2) = log p(y |x,γ,h) + log p(h |µ, φ, σ2) + c3,

≈ −
1

2
(h′Khh− 2h′kh) + c4, (7)

where c3 and c4 are constants independent of h, Kh = H′

φS
−1
h Hφ + G and kh = f +

Gh̃ + H′

φS
−1
h Hφδh. It can be shown that the expression in (7) is the log-kernel of the

N (ĥ,K−1
h ) density, where ĥ = K−1

h kh (see, e.g., Kroese and Chan, 2014, p. 238). In
other words, p(h |y,x,γ, µ, φ, σ2) can be approximated by the Gaussian density with

mean vector ĥ and precision matrix Kh. For our purpose it is important to realize that
the precision matrix Kh is tridiagonal—i.e., its nonzero elements appear only on the
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main diagonal and the diagonals above and below the main one. One consequence is
that ĥ can be computed efficiently by solving the linear system Khx = kh for x without
calculating the inverse K−1

h . In addition, draws from N (ĥ,K−1
h ) can be quickly obtained

using the precision sampler in Chan and Jeliazkov (2009). This Gaussian approximation
is then used as the proposal density in the acceptance-rejection Metropolis-Hastings step.
It remains to select the point h̃ for the Taylor expansion in (5). We choose h̃ to be the
mode of p(h |y,x,γ, µ, φ, σ2), which can be quickly obtained by the Newton-Raphson
method (see Appendix A for details).

To implement Step 2, first note that we can rewrite (1) as

yt = z′tγt + εyt , εyt ∼ N (0, eht), (8)

where zt = (exp(ht),x
′

t)
′ and γt = (αt,β

′

t)
′. Then (3) and (8) define a linear Gaussian

state space model in γt. Hence, a draw from p(γ |y,x,h,Ω) can be obtained either
by conventional Kalman filter-based algorithms (e.g., Carter and Kohn, 1994; Durbin
and Koopman, 2002) or the more efficient precision sampler (Chan and Jeliazkov, 2009;
McCausland, Miller, and Pelletier, 2011); we adopt the latter approach and the details
are given in Appendix A. Lastly, Step 3 to Step 4 are standard and we refer the readers
to Appendix A for details.

To get a sense of the speed of this MCMC sampler, we fit the model using US quarterly
CPI inflation with a total of T = 262 observations. In particular, we consider the unob-
served components model—i.e., xt includes only an intercept (see Section 3 for details).
The algorithm is implemented using Matlab on a desktop with an Intel Core i7-870
@2.93 GHz process. It takes about 31 seconds to obtain 10000 posterior draws.

3 Modeling and Forecasting Inflation

There is a large literature on understanding the relationship between inflation and infla-
tion uncertainty. Friedman (1977) in his Nobel lecture postulates that higher inflation
might potentially generate higher inflation uncertainty in the future. This insight is for-
malized in a model of asymmetric information in Ball (1992), which predicts that the
public is more unsure about future inflation—due to the uncertainty around the direc-
tion of government policy—when the current inflation is high. In the reverse direction
of causation, Cukierman and Meltzer (1986) consider a game-theoretic model, where the
central bank has a stronger incentive to create inflation surprises in time of high infla-
tion uncertainty. This model thus predicts that high inflation uncertainty leads to higher
inflation.

Early empirical work using survey data as a measure of inflation uncertainty generally
finds evidence of Granger causality in both directions (e.g., Holland, 1995). However,
in contrast to what Cukierman and Meltzer (1986) predict—high inflation uncertainty
leads to higher inflation—the relationship is often found to be negative. Holland (1995)
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suggests one possible reason: central bankers view inflation uncertainty as costly. When
the current inflation is high, they have an incentive to reduce it in the future so as to
reduce the welfare cost of inflation uncertainty. Survey based measures of inflation un-
certainty are later criticized as inappropriate, as they only reflect dispersion of inflation
forecasts across professional forecasters, but not the individual’s uncertainty about her
own forecast. In view of this, Grier and Perry (1998) construct instead an inflation un-
certainty proxy using the conditional variance estimates from GARCH models. Using
this as a measure of inflation uncertainty, they find evidence that inflation uncertainty
Granger-causes inflation in the G7 countries. However, in some countries higher inflation
uncertainty lowers inflation, whereas in others the direction is reversed. Treating condi-
tional variance estimates from GARCH models as observed might be problematic, espe-
cially when these estimates cannot be pinned down precisely. More recently, Berument,
Yalcin, and Yildirim (2009) consider a direct approach to study the inflation-inflation
uncertainty relationship. Specifically, they consider a constant coefficient SVM model in
which the stochastic volatility enters the conditional mean equation. Using US data they
find evidence suggesting that higher inflation uncertainty increases inflation, supporting
the prediction of Cukierman and Meltzer (1986).

We use the proposed TVP-SVM model to analyze the behavior of US inflation and in-
vestigate if inflation uncertainty affects the level of inflation. In contrast to previous
studies that consider only models with constant coefficients in the conditional mean, our
time-varying parameter model allows us to assess if the inflation-inflation uncertainty
relationship has changed over time. In fact, estimation results strongly suggest that it
does. Additional results for UK and Germany show a similar pattern. Next, we examine
if this information can be used to improve inflation forecasts. In a pseudo out-of-sample
forecasting exercise using US vintage CPI and real-time GDP deflator, we find that the
proposed model outperforms standard benchmarks for both point and density forecasts.

3.1 Full Sample Estimation Results

A popular specification for modeling inflation is the unobserved components model pop-
ularized by Stock and Watson (2007). In particular, they decompose the inflation into
a trend and a transitory component, and both components have time-varying volatili-
ties. Our point of departure is a version where the transitory component has stochastic
volatility whereas the variance of the trend is constant. This variant is used in various
applications such as those in Chan (2013) and Chan, Koop, and Potter (2013). Here we
allow for the possibility of volatility feedback—the inflation volatility may impact the
level of inflation. In addition, we also allow past inflation to affect the current inflation
volatility. Specifically, we consider the following TVP-SVM model:

yt = τt + αte
ht + εyt , εyt ∼ N (0, eht), (9)

ht = µ+ φ(ht−1 − µ) + βyt−1 + εht , εht ∼ N (0, σ2), (10)

γt = γt−1 + ε
γ

t , ε
γ

t ∼ N (0,Ω), (11)
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where γt = (αt, τt)
′ and Ω is a 2× 2 covariance matrix. Since exp(ht) is the variance of

the transitory component, its associated coefficient in the conditional mean equation, αt,
may be interpreted as the impact of the transitory volatility on the level of inflation. We
assume the independent priors as described in (4) and the values of the hyper-parameters
are detailed in Appendix C. The basic setup can be extended to more complex stochastic
volatility processes, such as the one with structural breaks in Eisenstat and Strachan
(2015).

The model in (9)–(11) adds a feature to the general model introduced in Section 2.1
by letting past inflation yt−1 affect volatility ht. The sampler in Section 2.2 can be
easily modified to handle this new feature. In particular, we add an extra block to
sample β from its full conditional distribution: (β |y,h, µ, φ, σ2) ∼ N (β̂, Dβ), where

D−1
β = V −1

β + X′

βXβ/σ
2 and β̂ = Dβ(V

−1
β β0 + X′

βzβ/σ
2) with Xβ = (y1, . . . , yT−1)

′

and zβ = (h2 − φh1 − µ(1 − φ), . . . , hT − φhT−1 − µ(1 − φ))′. Other blocks can be

adjusted accordingly. For instance, in sampling h, we only need to change δ̃h to δ̃h =
(µ, (1− φ)µ+ βy1, . . . , (1− φ)µ+ βyT−1β)

′.

We first fit the model using US quarterly CPI inflation from 1948Q1 to 2013Q2. More
specifically, given the quarterly CPI figures zt, we use yt = 400 log(zt/zt−1) as the CPI
inflation. A plot of the data is given in Figure 1.

1950 1960 1970 1980 1990 2000 2010
−10

−5

0

5

10

15

20

Figure 1: US quarterly CPI inflation from 1948Q1 to 2013Q2.

The results reported below are based on 50000 posterior draws—after a burn-in period
of 50000—obtained using the sampler described in Section 2.2. The acceptance rate of
the acceptance-rejection Metropolis-Hastings step to sample h is 98%, indicating that
the Gaussian proposal well approximates the conditional posterior density of h.

To further assess the efficiency of the sampler, we report the inefficiency factors of the
posterior draws, defined as

1 + 2
L∑

l=1

ρl,
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where ρl is the sample autocorrelation at lag length l and L is chosen to be large enough
so that the autocorrelation tapers off. In the ideal case where the posterior draws are
independent, the corresponding inefficiency factor is 1. More generally, the inefficiency
factor measures how many extra draws are needed to give results equivalent to this ideal
case. For example, an inefficiency factor of 100 indicates that roughly 10000 posterior
draws are required to give the same information as 100 independent draws.

In Figure 2 we report the inefficiency factors corresponding to the posterior draws of
τ = (τ1, . . . , τT )

′, α = (α1, . . . , αT )
′ and h = (h1, . . . , hT )

′. Note that each vector is of
length T , so we have a total of 3T inefficiency factors. To present the information visually,
boxplots are reported, where the middle line of the box denotes the median, while the
lower and upper lines represent respectively the 25- and the 75-percentiles. The whiskers
extend to the maximum and minimum. For example, the boxplot associated with h

indicates that about 75% of the log-volatilities have inefficiency factors less than 15, and
the maximum is about 40. These values are comparable to those of the standard stochastic
volatility model—i.e., when αt = 0—estimated by the auxiliary mixture sampler of Kim,
Shepherd, and Chib (1998). The inefficiency factors of the model parameters are reported
in Table 2. All in all, the results suggest that the proposed sampler is quite efficient in
terms of producing posterior draws that are not highly autocorrelated.

0

10

20

30

40

50

60

 tau alpha   h

Figure 2: Boxplots of the inefficiency factors corresponding to the posterior draws of τ
(tau), α (alpha) and h (h).

Next, we compare the unobserved components SVM model with time-varying parameters
in (9)–(11)—which we denote as the UC-SVM—to two variants to see which model fits
the inflation data best while controlling for model complexity. The first variant is the
standard unobserved components model with stochastic volatility, which we call the UC,
where we simply set αt = 0 for t = 1, . . . , T . The second version is a constant coefficient
SVM where α1 = · · · = αT = α, which we denote as the UC-SVM-const.

We use the Bayes factor as our model comparison criterion. Specifically, to compare two
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models, say, M1 and M2, the Bayes factor in favor of M1 against M2 is defined as

BF12 =
p(y |M1)

p(y |M2)
,

where p(y |Mi) is the marginal likelihood for Mi, i = 1, 2, which is simply the marginal
data density under model Mi evaluated at the observed data y. If the observed data are
unlikely under the model, the associated marginal likelihood would be “small” and vice
versa. Moreover, the Bayes factor is related to the posterior odds ratio PO12 as follows:

PO12 =
P(M1 |y)

P(M2 |y)
=

P(M1)

P(M2)
× BF12,

where P(M1)/P(M2) is the prior odds ratio. Thus, under equal prior model probabilities,
i.e., P(M1) = P(M2), the posterior odds ratio in favor of M1 reduces to the Bayes factor
BF12. In that case, if, for example, BF12 = 10, then model M1 is 10 times more likely
than model M2 given the data.

We compute the marginal likelihoods for the three models using the method of Chib
and Jeliazkov (2001) and the results are reported in Table 1. The numerical standard
errors are computed based on 20 independent chains, each of which of length 50000.
Using a total of one million draws for each model, the marginal likelihoods are estimated
accurately. Out of the three models, the SVM model with time-varying parameters is
the most preferred. In fact, its Bayes factor against the next best model is about 1.2
million (exp(−536.4 + 550.4)), indicating overwhelming support for the proposed model.
It is also interesting to note that the data favor the UC and the UC-SVM-const about
equally. Apparently, adding the SVM term but restricting the associated coefficient to
be constant does not help fit the data substantially better compared to the simplest
unobserved components model.

Table 1: The estimated log marginal likelihoods for the unobserved components model
(UC), the UC-SVM model with constant coefficients (UC-SVM-const), and the UC-
SVM model with time-varying coefficients (UC-SVM).

log marginal likelihood numerical standard error
UC-SVM −536.4 0.08
UC-SVM-const −550.5 0.08
UC −550.4 0.03

We report the posterior moments and quantiles of the model parameters, which are
summarized in Table 2. The estimates associated with the parameters in the AR(1)
process of ht are similar to those obtained in previous studies. For instance, the transition
of ht is highly persistent, with the posterior mean of φ estimated to be 0.963 with a
90% credible interval (0.928, 0.995). It is also interesting to note that β, the coefficient
associated with the lagged inflation, is estimated to be quite small. In fact, its 90%
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credible interval includes 0, indicating that past inflation has a limited impact on current
log-volatility.

Table 2: Estimated posterior moments and quantiles of model parameters as well as the
corresponding inefficiency factors.

parameter posterior posterior standard 5%-tile 95%-tile inefficiency
mean deviation factor

µ 0.121 0.947 -1.445 1.217 73.0
β 0.003 0.005 -0.005 0.011 4.7
φ 0.963 0.021 0.928 0.995 16.4
σ2 0.072 0.020 0.045 0.110 25.9
ω2
α 0.044 0.039 0.014 0.103 154.1

ωατ 0.011 0.033 -0.033 0.055 120.3
ω2
τ 0.117 0.057 0.053 0.224 63.7

In Figure 3 we plot the evolution of ht and αt and the associated 90% credible intervals.
The estimates of ht are similar to those reported in the literature—e.g., the inflation
volatility increases substantially during the Great Inflation period and subsides during the
Great Moderation, until it peaks again following the aftermath of the Global Financial
Crisis. The right panel of the figure reports the estimates of αt. There is apparently
substantial time-variation in the estimates, highlighting the relevance of the time-varying
parameter extension. For example, before 1980 the estimates are mostly between 0.5 and
2, whereas they become much smaller and even negative after the early 1980s. Using a
time-invariant model that averages these two episodes is likely to give an estimate that
is close to zero.
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Figure 3: The evolution of ht (left panel) and αt (right panel). The solid lines are the
estimated posterior means and the dotted lines are the 5- and 95-percentiles.

As mentioned above, using the conditional variance estimates from GARCH models as
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a measure of inflation uncertainty, Grier and Perry (1998) find mixed evidence on the
impact of inflation uncertainty on inflation—for some G7 countries (including US) higher
inflation uncertainty in fact lowers inflation. In contrast, our results show that inflation
uncertainty—measured by the stochastic volatility—has a positive impact on inflation
from the beginning of the sample till early 1980s, whereas in the latter part of the sample
the impact is close to zero or even negative. The differences in results may come from
two sources. First, Grier and Perry (1998) use a constant coefficient model whereas we
allow for time-variation in the impact of the inflation uncertainty. Second, the measure
of inflation uncertainty is different—under a GARCH model the conditional variance
is a deterministic function of the data and the parameters, whereas under a stochastic
volatility model the log-volatility is a random variable.

Earlier we compared the proposed UC-SVM to a restricted version where αt = 0 for all
t, and found that the data favor the former model. In other words, the restriction αt = 0
is unlikely to hold over the whole sample period. It can be seen in Figure 3, however,
that the 90% credible intervals for αt typically exclude zero before 1980, but they tend
to include zero after the early 1990s. This can be taken as casual evidence against the
restriction αt = 0 in the early sample and in favor of it afterward. To formally assess the
evidence for this restriction over time, we adopt the approach in Koop, Leon-Gonzalez,
and Strachan (2010) to compute the dynamic posterior probabilities P(αt 6= 0 |y) for
t = 1, . . . , T .
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Figure 4: The dynamic posterior probabilities that αt 6= 0.

More specifically, we assume that a priori it is equally likely that the restriction αt = 0
holds or not—i.e., P(αt = 0) = P(αt 6= 0) = 0.5. Then, the posterior odds ratio in favor
of the restriction αt = 0 can be computed via the Savage-Dickey density ratio

POt =
p(αt = 0 |y)

p(αt = 0)
,

where the numerator quantity is the value of the marginal posterior density of αt evaluated
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at zero, whereas the denominator term is the marginal prior density evaluated at zero.
Koop, Leon-Gonzalez, and Strachan (2010) describe how one can compute both quantities
using Monte Carlo methods based on the Kalman filter. We follow a similar approach,
but using a direct method based on band matrix routines instead of the Kalman filter;
the computational details are given in Appendix B. Once we have obtained the posterior
odd ratios, we can calculate the posterior probabilities as P(αt 6= 0 |y) = 1/(1 + POt).
These dynamic probabilities are reported in Figure 4.

In agreement with the estimation results of αt, Figure 4 indicates that there is substantial
time-variation in the support for the restriction αt = 0. For example, for much of the
1960s up till 1980, it is highly likely that αt 6= 0. However, there is a sharp drop in the
posterior probability that αt 6= 0 in around 1980, coinciding with the Volcker’s October
1979 revolution. Since then it becomes more likely that the restriction αt = 0 holds.
Once again these results highlight the relevance of extending the constant coefficient
SVM model to one with time-varying parameters. In the next section we further show
that the proposed UC-SVM forecasts better than the constant coefficient variant and
other standard benchmarks. Additional estimation results for UK and Germany data are
provided in Section 3.3.

3.2 Forecasting Results

There is a large and growing literature on forecasting inflation using time-varying models.
Recent papers include Koop and Potter (2007), Canova (2007), Stock and Watson (2007,
2010), Clark and Doh (2011), Chan, Koop, Leon-Gonzalez, and Strachan (2012), Koop
and Korobilis (2012, 2013), Chan (2013), D’Agostino, Gambetti, and Giannone (2013)
and Clark and Ravazzolo (2014). Using both vintage and real-time data, we investigate
the out-of-sample forecast performance of the unobserved components SVM model in
(9)–(11) (recall that it is denoted as the UC-SVM). We consider a few standard bench-
marks for comparison. In particular, we include UC-SVM-const, UC and the following
random walk model, denoted as the RW:

yt = yt−1 + εyt εyt ∼ N (0, σ2
y).

Moreover, we also consider the unobserved components model in Stock and Watson
(2007), denoted as the UCSV, where both the trend and transitory components fol-
low stochastic volatility processes.

For easy comparison, we choose broadly similar priors across models. In particular, we
use exactly the same priors for the common model parameters in the four unobserved
components models. The priors for the UC-SVM are exactly those described in Section
3.1. For the UC-SVM-const, we consider a Gaussian prior for the time-invariant α:
α ∼ N (0, Vα) with Vα = 5. Finally, for the RW without stochastic volatility, the
error variance of the measurement equation σ2

y is assumed to have an inverse-gamma
prior σ2

y ∼ IG(νy, Sy) with νy = 10 and Sy = 9. This implies E σ2
y = 1, which is
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comparable to the four specifications with stochastic volatility, where the prior mean for
µ, the unconditional mean of the log-volatility, is µ = 0 (and hence eµ = 1).

In addition to point forecasts, we also compute density forecasts—it is generally acknowl-
edged that when assessing the quality of competing models, both the ability to accurately
predict the central tendency and the uncertainty around the forecasts should be taken
into account (see, e.g., Amisano and Giacomini, 2007; Clark, 2011). Specifically, we use
each of the five models to produce both point and density m-step-ahead iterated forecasts
withm = 1 andm = 4, i.e., one-quarter-ahead and one-year-ahead forecasts, respectively.
We run the MCMC sampler described in Section 2.2 multiple times with an expanding
sample. More precisely, we first obtain posterior draws given the data up to time t, which
we denote as y1:t. Then, we compute the predictive mean E(yt+m |y1:t) as the point fore-
cast and the predictive density p(yt+m |y1:t) as the density forecast. Next, we move one
period ahead and repeat the whole exercise with data y1:t+1, and so forth. These forecasts
are then evaluated for t = t0, . . . , T − m, where t0 is 1975Q1. Note that the predictive
mean and the predictive density of yt+m can be computed using predictive simulation.
We refer the readers to the discussion in Chan (2013) for details.

The metric used to evaluate the point forecasts is the root mean squared forecast error
(RMSFE) defined as

RMSFE =

√∑T−m

t=t0
(yot+m − E(yt+m |y1:t))2

T −m− t0 + 1
,

where yot+m is the observed value of yt+m that is known at time t+m. For the evaluation of
the density forecast p(yt+m |y1:t), we use a metric that is based on the predictive likelihood
p(yt+m = yot+m |y1:t), i.e., the predictive density of yt+m evaluated at the observed value
yot+m. If the actual observation yot+m is likely under the density forecast, the value of the
predictive likelihood will be large, and vise versa; we refer the readers to Geweke and
Amisano (2011) for a more detailed discussion of the predictive likelihood. Finally, we
evaluate the density forecasts using the average log predictive likelihoods:

1

T −m− t0 + 1

T−m∑

t=t0

log p(yt+m = yot+m |y1:t).

For this metric, a larger value indicates better forecast performance.

Table 3 presents the point and density forecast results of the five models using US vintage
CPI data. For easy comparison, all results are computed relative to the RW model.
In particular, we present ratios of RMSFEs relative to those of the RW, where values
smaller than unity indicate better forecast performance than the benchmark. For density
forecasts, we report differences of average log predictive likelihoods of a given model from
those of the RW—hence positive values indicate better forecast performance compared
to the RW.

A few broad observations can be drawn from these forecasting results. First, the four
unobserved components model all forecast better than the benchmark RW in both point

16



and density forecasts. For instance, in comparing one-quarter-ahead point forecasts, the
RMSFE for theUCSV is 9% lower than the value for theRW. Second, the proposedUC-

SVM performs the best in both point and density forecasts and for both forecast horizons.
In particular, it outperforms the popular UCSV, showing the value of incorporating the
inflation-inflation uncertainty relationship into the forecasting model. Furthermore, the
proposed model also forecasts better than the UC-SVM-const—the SVM model with
constant coefficients—highlighting the empirical importance of allowing for time-varying
parameters.

Table 3: Point and density forecast performance of competing models relative to the
random walk model (RW); vintage US CPI inflation.

relative RMSFE relative average predictive likelihood
1-quarter-ahead 1-year-ahead 1-quarter-ahead 1-year-ahead

RW 1.00 1.00 0.00 0.00
UC 0.94 0.88 0.27∗ 0.46∗

UCSV 0.91∗ 0.88∗ 0.26∗ 0.45∗

UC-SVM-const 0.92∗ 0.90 0.23∗ 0.45∗

UC-SVM 0.89∗ 0.88∗ 0.31∗ 0.56∗#

Note: ∗ indicates superior forecast performance relative to the RW at significance level 0.05 using an asymptotic test in
Diebold and Mariano (1995); # indicates superior performance relative to the UCSV.

Table 3 reports the average forecast performance of the five models over the whole evalu-
ation period. Since a growing body of work has shown that forecast performance is often
not stable over time, we investigate the forecast performance of the proposed model over
time by plotting the cumulative sums of log predictive likelihoods in Figure 5.
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Figure 5: Cumulative sums of log predictive likelihoods for one-quarter-ahead forecasts
relative to the random walk model (RW); vintage US CPI inflation.
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Overall, it can be seen that the UC-SVM consistently forecasts better than the alter-
natives. Moreover, a few particular patterns are worth mentioning. First, the two SVM
models consistently forecast better than the random walk benchmark, whereas the UC

outperforms the benchmark only after the early 1990s. Second, the UC-SVM-const

forecasts better than the UC for most of the sample, but it is overtaken by the latter
at around the Global Financial Crisis, whereas the time-varying UC-SVM remains the
best. This shows that models with time-varying parameters are better at capturing the
abrupt shock of the Global Financial Crisis than models with constant coefficients.

Next, we evaluate the performance of the proposed model in a real-time forecasting exer-
cise. Specifically, real-time data on GDP price index (vintages from 1965Q4 to 2013Q4)
are obtained from the Real-Time Data Set for Macroeconomists compiled by the Philadel-
phia Federal Reserve Bank. As before, the evaluation period starts from 1975Q1 till the
end of the sample. To produce a one-quarter-ahead forecast for the inflation at time t,
we use the vintage dated time t, which contains data up to only time t− 1. To evaluate
this forecast, we use the relevant observation in the vintage dated time t + 1. Similarly,
to produce a four-quarter-ahead forecast for the inflation at time t, we use the vintage
dated time t − 3, which contains data up to time t − 4. Again, the vintage dated time
t+ 1 is used for forecast evaluation.

Table 4: Point and density forecast performance of competing models relative to the
random walk model (RW); real-time US GDP deflator.

relative RMSFE relative average predictive likelihood
1-quarter-ahead 1-year-ahead 1-quarter-ahead 1-year-ahead

RW 1.00 1.00 0.00 0.00
UC 0.90 0.93 0.18∗ 0.37∗

UCSV 0.89∗ 0.95∗ 0.15∗ 0.28∗

UC-SVM-const 0.87∗ 0.95 0.22∗# 0.40∗#

UC-SVM 0.87∗ 0.95 0.23∗# 0.40∗#

Note: ∗ indicates superior forecast performance relative to the RW at significance level 0.05 using an asymptotic test in
Diebold and Mariano (1995); # indicates superior performance relative to the UCSV.

As before, both point and density forecasts are produced for the five models and the
results are reported in Table 4. The main conclusions remain the same: while all unob-
served components models do better than the RW, the proposed UC-SVM generally
outperforms other UC variants.

3.3 Additional Results for UK and Germany Inflation

In this section we report additional estimation results using data from the UK and Ger-
many. We select these two countries primarily because of their very different inflation
experience after World War II. Figure 6 plots the quarterly CPI inflation of both countries
from 1955Q1 to 2013Q4 obtained from the OECD economic database.
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Figure 6: UK and Germany quarterly CPI inflation from 1955Q1 to 2013Q4.

It can be seen from the left panel that UK inflation had been remarkably volatile before
the Bank of England adopted inflation targeting and gained independence in the 1990s.
Since then UK inflation has become less volatile and remained low. In contrast, Germany
essentially escaped the Great Inflation and always had very low and stable inflation.
Hence, comparing these two countries might show interesting results.
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Figure 7: The evolution of ht (left panel) and αt (right panel) for UK data.

Figures 7 and 8 plot the evolution of the log-volatility ht and its time-varying impact
αt for UK and Germany data, respectively, as well as the the associated 90% credible
intervals (dashed lines). It is also not surprising that the log-volatility estimates of the
UK are generally larger than those of Germany, indicating that UK inflation is typically
more volatile. The estimates of ht for the UK are qualitatively similar to US estimates—
e.g., inflation volatility increases substantially during the Great Inflation, followed by an
overall decline starting from the early 1980s (except for a spike during the Exchange Rate
Mechanism Crisis in 1992). In contrast, the estimates of ht for Germany are remarkably
flat during the Great Inflation. They show a similar general decline throughout the 1980s,
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which is only interrupted briefly following the unification of West and East Germany in
1990.
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Figure 8: The evolution of ht (left panel) and αt (right panel) for Germany data.

In contrast to the results in Grier and Perry (1998) who find mixed evidence on the
impact of inflation uncertainty on inflation—both positive and negative estimates are
obtained for G7 countries—our estimates of αt for UK and Germany are always positive.
Similar to the results of US data, UK estimates of αt show substantial time-variation—the
estimates increase from about 0 in 1960 to around 1 in mid-1970s, which is followed by a
steady decline in the 1980s and 1990s. The corresponding 90% credible intervals follow a
similar pattern: they tend to exclude 0 from the early 1970s onwards, but they become
wider and include 0 from the early 1990s, where the timing seems to coincide with the
adoption of inflation targeting by the Bank of England in 1992. Although the estimates
for Germany are always positive and follow a qualitatively similar pattern, the estimates
are substantially more imprecise—the 90% credible intervals of αt are much wider and
typically include 0 except for a few episodes. For Germany inflation volatility feedback
seems to be a less important channel compared to the UK and the US.

4 Concluding Remarks and Future Research

We have extended the popular stochastic volatility in mean model of Koopman and
Hol Uspensky (2002) to allow for time-varying parameters in the conditional mean. An
efficient sampler building upon recent advances in state space simulation techniques is
developed to estimate this more general model. We demonstrated the methodology with
an empirical application involving inflation modeling and forecasting. The estimation
results showed substantial time-variation in the coefficient associated with the stochastic
volatility, highlighting the empirical relevance of the proposed extension. Furthermore, in
a recursive forecasting exercise, the time-varying parameter variant also performed better
than various standard benchmarks in both point and density forecasts.
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For future research, it would be interesting to investigate if the proposed time-varying
parameter variant also fits other macroeconomic or financial time series better than the
standard SVM model. Furthermore, it would also be of interest to generalize the proposed
model to a multivariate setting, e.g., in the spirit of Mumtaz and Zanetti (2013).

Appendix A: Estimation of the TVP-SVM Model

In this appendix we provide details of the Metropolis-within-Gibbs sampler for estimating
the TVP-SVM model in (1)–(3).

We first discuss how one can quickly locate the maximum of p(h |y,x,γ, µ, φ, σ2), or
equivalently that of log p(h |y,x,γ, µ, φ, σ2), using the Newton-Raphson method (see,
e.g., Kroese, Taimre, and Botev, 2011, pp. 688-689). It follows from (7) that the negative

Hessian of log p(h |y,x,γ, µ, φ, σ2) evaluated at h = h̃ is Kh and the gradient at h = h̃ is

−Khh̃+kh. Hence, we can implement the Newton-Raphson method as follows: initialize
with h = h(1) for some constant vector h(1). For t = 1, 2, . . . , use h̃ = h(t) in the
evaluation of Kh and kh, and compute

h(t+1) = h(t) +K−1
h (−Khh

(t) + kh) = K−1
h kh.

Repeat this procedure until some convergence criterion is reached, e.g., when ‖h(t+1) −
h(t)‖ < ε for some prefixed tolerance level ε.

Next, we discuss Step 2 of the sampler: to efficiently sample from p(γ |y,x,h,Ω). Stack-
ing (8) over t = 1, . . . , T , we have

y = Zγ + εy, εt ∼ N (0,Sy), (12)

where εy = (εy1, . . . , ε
y
T )

′,

Sy =




eh1 0 · · · 0
0 eh2 · · · 0
...

. . .
...

0 0 · · · ehT


 , Z =




z′1 0 · · · 0

0 z′2 · · · 0
...

. . .
...

0 0 · · · z′T


 .

To derive the prior density of γ implied by (3), rewrite the state equation of γt in matrix
notations:

Hγ = δ̃γ + εγ , εγ ∼ N (0,Sγ)

where δ̃γ = (γ ′

0,0, . . . ,0)
′, εγ = (εγ1

′, . . . , εγT
′)′, Sγ = diag(Ω0,Ω, . . . ,Ω) and H is the

first difference matrix

H =




Ik+1 0 0 · · · 0

−Ik+1 Ik+1 0 · · · 0

0 −Ik+1 Ik+1 · · · 0
...

. . . . . .
...

0 0 · · · −Ik+1 Ik+1




.
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That is, (γ |Ω) ∼ N (δγ , (H
′S−1

γ
H)−1), where δγ = H−1δ̃γ . Now, using standard results

from linear regression (see, e.g., Kroese and Chan, 2014, Corollary 8.1), we have,

(γ |y,h,Ω) ∼ N (γ̂,Dγ), (13)

whereD−1
γ

= H′S−1
γ
H+Z′S−1

y Z and γ̂ = Dγ(H
′S−1

γ
Hδγ+Z′S−1

y y). SinceDγ is typically a
high-dimensional full covariance matrix, the conventional sampling approach that requires
the Cholesky factor of Dγ is time-consuming. However, since the precision D−1

γ
is a band

matrix, one can efficiently sample from N (γ̂,Dγ) using band and sparse matrix routines;
we refer the readers to Chan and Jeliazkov (2009) for details.

To implement Step 3, first note that Ω and σ2 are conditionally independent given the
latent states γ and h. In fact, both conditional distributions are standard distributions:

(Ω |γ) ∼ IW

(
νΩ + T − 1,SΩ +

T∑

t=2

(γt − γt−1)(γt − γt−1)
′

)
,

(σ2 |h, µ, φ) ∼ IG

(
νσ2 +

T

2
, S̃σ2

)
,

where S̃σ2 = Sσ2 + ((1− φ2)(h1 − µ)2 +
∑T

t=2(ht − µ− φ(ht−1 − µ))2)/2.

Lastly, we sample µ and φ jointly to improve efficiency. Specifically, we implement an
independence-chain Metropolis-Hastings step with a bivariate Student-t proposal with
degree of freedom parameter set to 5. Recall that φ is bounded between −1 and 1. For
computational convenience, we consider the transformation η = tanh(φ) so that η takes
any real value. Then the mode of the joint density of (µ, η) can be obtained using the
Newton-Raphson method.

Appendix B: Computation of Dynamic Probabilities

In this appendix we provide details of computing the time-varying probabilities that
αt 6= 0 as reported in Figure 4. Recall that the posterior odds ratio in favor of the
restriction αt = 0 can be obtained via the Savage-Dickey density ratio

POt =
p(αt = 0 |y)

p(αt = 0)
.

Hence, it suffices to calculate the two quantities p(αt = 0 |y) and p(αt = 0). First, note
that even though the marginal posterior density p(αt |y) is unknown, the conditional

posterior density p(αt |y,h,Ω) is Gaussian. To see this, recall from (13) that the joint
density p(γ |y,h,Ω) is Gaussian, where γ = (α1, τ1, . . . , αT , τT )

′. Since all marginals of
a jointly Gaussian density is Gaussian, so is p(αt |y,h,Ω). Therefore, we can evaluate
p(αt = 0 |y,h,Ω) exactly. It follows that p(αt = 0 |y) can be estimated using the Monte
Carlo average:

̂p(αt = 0 |y) =
1

R

R∑

i=1

p(αt = 0 |y,h(i),Ω(i)),
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where (h(1),Ω(1)), . . . , (h(R),Ω(R)) are posterior draws. Similarly, we can estimate p(αt =
0) using Monte Carlo methods since the prior density p(γ |Ω) is also Gaussian; see
Appendix A for the exact expression. Finally, we can calculate the posterior probabilities
using P(αt 6= 0 |y) = 1/(1 + POt).

Appendix C: Hyper-parameters for the Application

In this appendix we provide the details of the hyper-parameters used in the inflation
application. The prior distributions are described in (4). In particular, µ follows a
Gaussian distribution with mean µ0 = 0 and variance Vµ = 10; φ has a truncated
Gaussian distribution with φ0 = 0.97 and Vφ = 0.12. In addition, β has a normal prior
N (β0, Vβ) with β0 = 0 and Vβ = 10.

The variance parameters are independently distributed as σ2 ∼ IG(νσ2 , Sσ2) and Ω ∼
IW(νΩ,SΩ). We choose relatively small—hence relatively noninformative—values for the
degrees of freedom parameters: νσ2 = νΩ = 10. For the scale parameters, we set S = 0.36
and SΩ = diag(0.13, 0.8125). These values imply E σ2 = 0.22, EΩ = diag(0.12, 0.252).
The chosen prior means reflect the desired smoothness of the corresponding state tran-
sition, and are comparable to those used in previous studies, such as Chan (2013) and
Stock and Watson (2007).
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