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Abstract

We introduce a novel time-varying parameter mixed-data sampling (TVP-MIDAS)

framework. Specifically, we allow both the MIDAS weights and the coefficients rep-

resenting the overall impacts of the high-frequency variables to vary over time. This

is done by introducing a class of linear parameterizations, which facilitate estimation

in settings with a large number of high-frequency predictors. We demonstrate the

usefulness of this framework via an application of nowcasting US GDP in real-time

using monthly, weekly and daily predictors. The results show that the TVP-MIDAS

models produce superior nowcasts, and are particularly effective in capturing the

downside risk compared to their time-invariant counterparts.

∗We thank Todd Clark, James Mitchell and Saeed Zaman for their constructive comments and helpful
suggestions on a previous version of the paper.



1 Introduction

Mixed-data sampling (MIDAS) regressions have garnered significant attention in empiri-

cal macroeconomics for their utility in nowcasting key macroeconomic indicators such as

real GDP and inflation. A key advantage of MIDAS is that it provides a straightforward

and parsimonious framework for forecasting a variable of interest using predictors sam-

pled at different frequencies. For example, a prevalent application of MIDAS regressions

involves nowcasting the real GDP, a quarterly variable, using higher frequency predictors

such as monthly industrial production or employment (e.g., Marcellino and Schumacher,

2010; Kuzin, Marcellino, and Schumacher, 2011; Foroni and Marcellino, 2014; Mogliani

and Simoni, 2021). GDP figures are released with a significant delay, and the MIDAS

framework allows forecasters to exploit timely, high-frequency predictors to update the

GDP nowcasts. More recently, MIDAS regressions have been applied in other areas be-

yond empirical macroeconomics, particularly in financial applications such as forecasting

stock price volatility (see Andreou, 2016; Wang, Ma, Liu, and Yang, 2020).

Standard applications of MIDAS regressions assume constant parameters, mostly due to

necessity. This is because common parameterizations of the MIDAS weighting function,

such as exponential Almon lag and beta polynomials, are nonlinear in the parameters.

As such, extending them to be time varying typically involves the estimation of nonlinear

state space models, which is computationally intensive. But this assumption of constant

parameters appears to be overly restrictive given the documented importance of the role

of time-varying parameters in forecasting macroeconomic variables (see Primiceri, 2005;

Koop and Korobilis, 2013; D’Agostino, Gambetti, and Giannone, 2013; Barnett, Mum-

taz, and Theodoridis, 2014; Chan and Eisenstat, 2018). Furthermore, macroeconomic

variables often exhibit both time-varying conditional means and volatilities, reflecting

fluctuations in government policies, global economic conditions, technological advance-

ments, and other socio-economic factors. Comprehensive understanding and modeling of

these time-varying distributions is imperative for accurate risk assessment and informed

policy formulation, especially in the aftermath of the COVID-19 pandemic.

To address the limitations inherent in existing approaches, we propose a novel MIDAS

framework that accommodates time-varying parameters, stochastic volatility and COVID-

19 outliers. Specifically, we first introduce a class of linear parameterizations that are both

flexible and conducive to fast estimation. The proposed setup can be motivated as finite-

dimensional approximations of weighting functions using suitable basis functions. This
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setup includes the Almon polynomial, as well as many other basis functions, such as

Fourier series and B-splines. A key advantage is that all these basis functions can be rep-

resented as linear regressions. As such, extending them to time-varying parameter settings

is relatively straightforward. In addition to the time-varying weighting function, we also

allow other coefficients, such as the scalar parameter representing the overall impact of

the lags of the high-frequency variable, to be time-varying. In order to separately identify

the overall impact parameter and the parameters in the weighting function, we develop an

alternative identification scheme that preserves linearity and facilitates estimation. While

normalization and identification are not strictly required in MIDAS regressions, they can

prove beneficial in applications where the overall impact coefficient has an interesting

economic interpretation, as exemplified in Ghysels, Santa-Clara, and Valkanov (2005).

In addition to time-varying parameters in the conditional mean, the proposed TVP-

MIDAS framework also includes stochastic volatility and an explicit outlier component

to address the extreme movements of many macroeconomic variables at the onset of the

COVID-19 pandemic. Furthermore, we also discuss how the proposed framework can

handle some complex but frequently encountered data issues. These include applications

with predictors in multiple high frequencies (e.g., forecasting a quarterly variable with

both monthly and weekly predictors), settings in which the numbers of observations of

the high-frequency variables vary across time periods (e.g., a quarter has 13 or 14 weeks)

and irregularly spaced mixed-frequency data (e.g., two weekly observations are available

3 and 10 days before the release of the monthly variable).

This paper is related to a few recent MIDAS studies, each offering distinct insights into

modeling the dynamics between low- and high-frequency variables. Firstly, Potjagailo

and Kohns (2023) propose a Bayesian MIDAS model incorporating a time-varying trend

and stochastic volatility for nowcasting UK real GDP. Their model is a restricted ver-

sion of the proposed TVP-MIDAS model, as theirs solely permits time variation in the

intercept of the MIDAS regression, while maintaining a time-invariant structure for the

MIDAS weighting function. Secondly, Guérin and Marcellino (2013) extend the MIDAS

framework to accommodate parameter changes, albeit using a Markov switching model

with two regimes. Thirdly, Schumacher (2014) develops a MIDAS regression with time-

varying parameters, but the weighting function is parameterized using the exponential

Almon polynomial, which is nonlinear in the parameters. As such, the estimation of

the nonlinear state space model requires particle filtering techniques, which are compu-

tationally burdensome. Consequently, Schumacher (2014) only allows for time variation
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in a single high-frequency predictor in the MIDAS regression. In contrast, the proposed

approach uses linear parameterizations of the weighting function, each of which defines

a linear Gaussian state space model. As such, standard estimation approaches, such as

the precision-based method in Chan and Jeliazkov (2009), can be used to estimate the

proposed model. The computational efficiency and flexibility of this approach thus allow

the researcher to consider multiple high-frequency predictors, with different time-varying

weights and impact parameters.

We demonstrate the flexibility of the proposed TVP-MIDAS framework with a nowcasting

application. Specifically, we use monthly, weekly and daily predictors to nowcast the

quarterly US real GDP: the monthly industrial production, the weekly National Financial

Condition Index (NFCI) and a daily interest rate spread (defined as the difference between

the 10-year and 3-month treasury yields) that represents the slope of the yield curve. We

also consider a larger dataset with 12 additional monthly predictors. For each quarter

we generate three GDP nowcasts at the end of each month within the quarter, with our

evaluation period spanning from 1990Q1 to 2021Q2.

The nowcast results indicate that the TVP-MIDAS models yield superior point and den-

sity forecasts compared to a variety of machine learning-based MIDAS models with con-

stant parameters (Mogliani and Simoni, 2021; Babii, Ghysels, and Striaukas, 2022). For

example, using the model confidence set approach of Hansen, Lunde, and Nason (2011),

8 models are included in M̂∗
75%, the model confidence set with 75% coverage, for den-

sity nowcasts (with forecast horizon h = 0) and evaluation period 1990Q1-2019Q4, and

they all feature time-varying parameters. For the sample that includes the COVID-19

pandemic, 16 models are included in the model confidence set M̂∗
75%, and 11 feature

time-varying parameters.

Furthermore, we explore the performance of the TVP-MIDAS models in nowcasting the

downside risk of real GDP. Specifically, we find that the TVP-MIDAS specifications out-

perform their time-invariant versions in nowcasting the left tail of the GDP distribution.

In fact, the best performing specifications in the model confidence sets for nowcasting

left-tail risks are all TVP-MIDAS models. These results suggest that during periods of

heightened volatility, the incorporation of time variation is crucial in predicting economic

slowdown or recessionary events. This conclusion is in line with the findings of Adrian,

Boyarchenko, and Giannone (2019) and Estrella and Hardouvelis (1991), who underscore

the significance of financial conditions and the yield curve slope as predictors for future

recessions in the economy.
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The rest of the paper is organized as follows. Section 2 introduces and discusses the

proposed TVP-MIDAS framework. Section 3 outlines the posterior sampler. Section 4

assesses the accuracy of the proposal linear parameterizations in finite samples through a

series of Monte Carlo experiments. Section 5 presents the real-time out-of-sample nowcast

results. Finally, Section 6 concludes.

2 MIDAS Regressions

To illustrate the MIDAS approach, we start with a simple setting in which we are inter-

ested in forecasting the variable yt, which is observed only at discrete times t = 1, 2, . . . , T ,

using the history of another variable x
(m)
t , which is observed m times between the discrete

time periods. More specifically, the observations of the high-frequency variable between

t − 1 and t are denoted as x
(m)
t−k/m, k = 0, . . . ,m − 1, where x

(m)
t−(m−1)/m and x

(m)
t are, re-

spectively, the first and last available observations between the periods. An example is

the forecasting of monthly inflation yt using daily interest rates x
(m)
t with m = 22, if

we assume that there are 22 daily available observations within each month. In Subsec-

tion 2.3, we will consider more complex settings where the numbers of observations of the

high-frequency variable between discrete time periods are not constant.

2.1 MIDAS Weighting Functions

One challenge even in this simple setting is the proliferation of parameters when m is large.

A common approach is to use the average of the high-frequency variable observations

between t − 1 and t, 1
m

∑m−1
k=0 x

(m)
t−k/m, as a single predictor. More specifically, let h ≥ 1

denote the forecast horizon, and consider the following direct forecasting approach:

yt+h = α + β

(
1

m

m−1∑
k=0

x
(m)
t−k/m

)
+ εt+h. (1)

Alternatively, one could use only the last observation of the high-frequency variable be-

tween periods t− 1 and t:

yt+h = α + βx
(m)
t + εt+h. (2)

Obviously, both approaches are ad hoc and application specific. The key feature of the

MIDAS regression is the use of a parsimonious and data-driven weighting function to
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summarize the information of the high-frequency variable x
(m)
t for predicting yt. As a

simple example, consider the predictive regression

yt+h = α + βw′tx
(m)
t + εt+h,

where wt is an m×1 vector of weights and x
(m)
t = [x

(m)
t , x

(m)
t−1/m, . . . , x

(m)
t−(m−1)/m]′. It is easy

to verify that the predictive regressions in (1) and (2) are special cases with wt = 1
m

1m

and wt = [1, 0, . . . , 0]′, respectively.

Following Ghysels, Sinko, and Valkanov (2007) and Pettenuzzo, Timmermann, and Valka-

nov (2016), we consider a general MIDAS regression of the form

yt+h = α + ρ′yt + γ ′zt + βB
(
L1/m;θ

)
x

(m)
t + εt+h, (3)

where the scalar β captures the overall impact of the lagged values of x
(m)
t on yt+h, ρ is

the vector of autoregressive coefficients on yt = [yt, yt−1, . . . , yt−py ]′, and zt is a vector of

exogenous predictors. The MIDAS weighting function B
(
L1/m;θ

)
is parameterized as

B
(
L1/m;θ

)
=

K∑
k=0

B(k;θ)Lk/m,

where Lk/m is a lag operator such that Lk/mx
(m)
t = x

(m)
t−k/m and each component function

B(k;θ) depends on a low-dimensional vector of parameters θ.

Ghysels, Sinko, and Valkanov (2007) consider two parameterizations of the component

function B(k;θ): the exponential Almon lag and the beta polynomial. Both parameter-

izations are parsimonious, and yet flexible enough to model a wide variety of dynamic

patterns. However, they are nonlinear in the parameters, which makes estimation more

difficult, especially in time-varying parameter settings. A further challenge is the imposi-

tion of the conventional identification restriction: in order to separately identify β and θ,

one typically normalizes the weighting function B
(
L1/m;θ

)
, i.e., replacing the component

function B(k;θ) by its normalized version

B̃(k;θ) =
B(k;θ)∑K
k=1B(k;θ)

. (4)

This type of normalization further complicates the estimation procedure.1

1While the normalization and identification of β and θ are not necessary for our forecasting application,
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To tackle these challenges, we consider a class of parameterizations that are linear in

the parameters for fast estimation. They may also be motivated as finite-dimensional

approximations of weighting functions with desirable properties (e.g., smooth, bounded,

square-integrable). In addition, we develop an alternative identification scheme that fa-

cilitates estimation. These two features are vitally important when we generalize the

MIDAS model to time-varying parameter settings in the next section.

More specifically, suppose we wish to approximate a function B(s) using the finite-

dimensional approximation

B(s;θ) =

p∑
j=0

θjφj(s),

where φ0, . . . , φp are the basis functions and θ = [θ0, . . . , θp]
′ is the associated vector of

coefficients. By evaluating B(s;θ) at discrete values s = k = 0, . . . , K, it takes the form

B(k;θ) = θ′vk, (5)

where vk = [φ0(k), . . . , φp(k)]′. As an example, this formulation recovers the widely used

Almon lag polynomial by setting vk = [1, k, k2, . . . , kp]′, so that

B(k;θ) =

p∑
j=0

θjk
j. (6)

That is, the Almon lag polynomial may be viewed as using the polynomials φj(s) = sj, j =

0, 1, . . . , p, as basis functions.

While polynomial basis functions are simple and easy to use, they are not orthogonal

and do not provide an efficient basis system. An alternative is the set of Fourier basis

functions — i.e., φ0(s) = 1, φj(s) = cos(jωs) if j is odd and φj(s) = sin(jωs) if j is

even — that forms an orthonormal basis (for square-integrable functions).2 By setting

they are useful for other applications that focus on the economic interpretation of the impact of the high-
frequency variable on the low-frequency one. See Ghysels, Sinko, and Valkanov (2007) for some interesting
examples.

2Compared to Almon lag polynomial, Fourier basis functions are less frequently used in mixed-
frequency settings. A notable exception is Bekierman and Gribisch (2021), who utilize a Fourier series
expansion to capture the periodic intraday patterns in their mixed-frequency stochastic volatility model
for intraday returns.
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ω = 2π/(pm), B(k;θ) can be represented as

B(k;θ) = θ0 +

p∑
j=1

(
θj1 cos

(
2π

pm
jk

)
+ θj2 sin

(
2π

pm
jk

))
. (7)

This formulation opens up many possibilities, as any basis functions, such as B-splines

or wavelets, can be represented using the linear parameterization in (5). Not only is

the linear parameterization flexible, it also makes estimation of the unknown parameter

vector θ straightforward.

Finally, instead of following the standard normalization approach that introduces ad-

ditional nonlinearities in θ, we directly impose the linear equality constraint that the

component functions sum to unity:

K∑
k=1

B(k;θ) =
K∑
k=1

θ′vk = 1.

While this identification assumption is equivalent to the standard normalization approach

given in (4), estimation following the former is much easier and it generalizes well to time-

varying parameter settings, as we will show in the following section.

2.2 Time-Varying Coefficients, Stochastic Volatility and Outlier

Adjustment

The conventional MIDAS regression in (3) assumes both a time-invariant weighting func-

tion B(L1/m;θ) and a constant overall impact of the high-frequency variable x
(m)
t on yt.

However, when forecasting macroeconomic variables, such as GDP or inflation, these

assumptions are overly restrictive. In fact, an extensive literature has highlighted the

significant benefits of accommodating parameter variations over time when forecasting

such macroeconomic variables (see Barnett, Mumtaz, and Theodoridis, 2014; Koop and

Korobilis, 2013; D’Agostino, Gambetti, and Giannone, 2013).

Consequently, we develop a novel TVP-MIDAS framework, wherein both the weighting

function and regression coefficients are permitted to evolve over time. This facilitates the

direct assessment of the evolving impact of high-frequency variable x
(m)
t on yt. Schumacher

(2014) proposes a MIDAS regression with time-varying exponential Almon lag weights.
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A limitation of this setup is that the exponential Almon lag polynomial is nonlinear in

the parameters, and extending it to a time-varying setting involves the estimation of

a nonlinear state space model. Schumacher (2014) considers an example with only one

high-frequency predictor, and estimates the model using the particle filter. The estimation

entails significant computational burden, rendering real-time forecasting using multiple

high-frequency predictors infeasible.3

In contrast, the proposed framework uses linear parameterizations for the weighting func-

tions and can be written as a linear Gaussian state space model. Therefore, estimation

can be done easily using either conventional Kalman-filter based sampling methods or

the more efficient precision-based methods developed in Chan and Jeliazkov (2009). The

proposed approach thus scales well to high-dimensional settings and allows the researcher

to consider multiple high-frequency predictors in real-time forecasting applications.

Another crucial aspect for modeling and forecasting macroeconomic time-series is the in-

corporation of stochastic volatility. A large body of empirical research, such as those con-

ducted by Clark (2011), Clark and Ravazzolo (2015), Cross and Poon (2016) and Chan and

Eisenstat (2018), has underscored the significance of accommodating time-varying volatil-

ity for both in-sample and out-of-sample applications. Furthermore, Carriero, Clark, and

Marcellino (2015) and Pettenuzzo, Timmermann, and Valkanov (2016) have emphasized

the importance of incorporating stochastic volatility in the context of MIDAS regressions

for forecasting key macroeconomic variables. Finally, given the extreme movements in

many macroeconomic variables during the COVID-19 pandemic, the proposed framework

also explicitly includes an outlier component to address any potential outliers.

Specifically, we consider the following TVP-MIDAS model with stochastic volatility

yt+h = αt + ρ′tyt + γ ′tzt + βtB
(
L1/m;θt

)
x

(m)
t + εt+h, εt+h ∼ N (0, λte

gt), (8)

where the log-volatility gt follows a standard random walk process

gt = gt−1 + ηt, ηt ∼ N (0, σ2
g)

with the initial condition g1 ∼ N (0, Vg). The latent variable λt is introduced to model po-

tential outliers. Different distributional assumptions on λt imply different types of outlier-

augmented specifications. An example is the mixture distribution considered in Stock and

3In addition, recent research by Cross, Hou, Koop, and Poon (2023) has highlighted potential short-
comings of particle filtering methods, such as poor mixing properties and path degeneracy issues.
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Watson (2016) and Carriero, Clark, Marcellino, and Mertens (2022). In particular, let

λt = o2
t , where ot follows a 2-part distribution: with probability 1− q, ot = 1; otherwise,

ot follows a uniform distribution on the interval (2, 10). The point mass at 1 represents

regular observations whose scale is normalized to 1; the second part captures outliers that

can have 2-10 times larger standard deviations relative to regular observations. Another

example is to assume a continuous distribution for λt, say, an inverse-gamma distribution

(λt | δ) ∼ IG(δ/2, δ/2).

This choice is motivated by the fact that a t distribution with degree of freedom δ can be

represented as a scale mixture of normals in which the mixing distribution is IG(δ/2, δ/2).

In the empirical application, we include this t specification for comparison, as it is found

to work well in forecasting applications involving post COVID-19 pandemic data (see,

e.g., Bobeica and Hartwig, 2023). We emphasize that the setup in (8) can accommodate

many other types of outlier-augmented specifications.

In addition to the stochastic volatility and the outlier component, another important fea-

ture of the MIDAS model in (8) is that the weighting function is time-varying: B
(
L1/m;θt

)
=∑K

k=0 B(k;θt)L
k/m, where the component function takes the form B(k;θt) = θ′tvk for

some (p+ 1)-vector vk (that depends of the chosen basis functions). Since

B
(
L1/m;θt

)
x

(m)
t =

K∑
k=0

θ′tvkL
k/mx

(m)
t = θ′t

K∑
k=0

vkx
(m)
t−k/m = θ′tVx

(m)
t ,

where V = [v0,v1, . . . ,vK ] is a (p+1)×(K+1) matrix and x
(m)
t = [x

(m)
t , x

(m)
t−1/m, . . . , x

(m)
t−K/m]′

is a (K + 1)-vector, we can rewrite (8) as

yt+h = αt + ρ′tyt + γ ′tzt + βtθ
′
tVx

(m)
t + εt+h, εt+h ∼ N (0, λte

gt). (9)

Let bt denote the pb-vector of time-varying parameters bt = [αt,ρ
′
t,γ
′
t, βt]

′. Then, we

assume that the time-varying parameters bt and θt evolve according to the random walks:

bt = bt−1 + u1,t, u1,t ∼ N (0,Ω), (10)

θt = θt−1 + u2,t, u2,t ∼ N (0,Ξ), (11)

where Ω = diag(ω2
1, . . . , ω

2
pb

) and Ξ = diag(ξ2
1 , . . . , ξ

2
p+1), with the initial conditions b1 ∼

N (0,Vb) and θ1 ∼ N (0,Vθ). Similar to the time-invariant case, to separately identify
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βt and θt, for t = 1, . . . , T, we impose the conditions

θ′tV1K+1 = 1,

where 1K+1 is a (K + 1)-column of ones.

Finally, we assume the following priors on the time-invariant parameters

ω2
i ∼ IG(νω, Sω), i = 1, . . . , pb,

ξ2
i ∼ IG(νξ, Sξ), i = 1, . . . , p+ 1,

σ2
g ∼ IG(νg, Sg),

with hyperparameters νω = 5, Sω = 0.004, νξ = 10, Sξ = 0.001, νg = 5 and Sg = 0.04.

The hyperparameters for the initial conditions are set to be Vb = 10Ipb , Vθ = 10Ip+1

and Vg = 10.

2.3 Irregularly Spaced Mixed-Frequency Data

In many MIDAS applications, such as those by Marcellino and Schumacher (2010), Kuzin,

Marcellino, and Schumacher (2011), Foroni and Marcellino (2014) and Mogliani and Si-

moni (2021), researchers use monthly predictors to forecast quarterly variables. Since ev-

ery quarter has exactly 3 months, these are examples of regularly spaced mixed-frequency

applications. However, for more complex applications, such as forecasting quarterly vari-

ables using weekly or daily predictors, we face two related but distinct challenges. Firstly,

the numbers of observations of the high-frequency variables can vary across time periods

(e.g., there are between 61 to 64 business days within a quarter). Secondly, the observa-

tions of the high-frequency variables might be irregularly spaced relative to the low fre-

quency one (e.g., two weekly observations are available 3 and 10 days before the release of

the monthly variable). These data issues become problematic when one attempts to align

the low-frequency dependent variable with the high-frequency predictors. In our applica-

tion, we nowcast quarterly GDP using both weekly and daily predictors. Consequently,

we need to adapt the proposed framework to allow for time-varying numbers of high-

frequency observations between discrete periods and irregularly spaced high-frequency

observations.

To tackle the first challenge, let mt denote the number of observations of the high-
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frequency variable x
(m)
t between periods t − 1 and t. Suppose for now that these obser-

vations are regularly spaced. That is, between the two periods, we observe x
(m)
t−k/mt

, k =

0, . . . ,mt − 1. The weighting function then becomes

B
(
L1/mt ;θt

)
x

(m)
t =

K∑
k=0

θ′tvkL
k/mtx

(m)
t = θ′t

K∑
k=0

vkx
(m)
t−k/mt

, (12)

where vk = [φ0(k), . . . , φp(k)]′ is the vector of functional values of the basis functions

φ0(s), . . . , φp(s) evaluated at s = k. Note that as long as we fix the number of basis

functions that determines the dimension of vk, the number of coefficients that need to be

estimated remains constant, even though the number of observations of x
(m)
t may vary

across t.

Now, suppose the number of observations between periods t − 1 and t remains to be

mt, but these observations are irregularly spaced. Even so, we maintain the notation

x
(m)
t−k/mt

, k = 0, . . . ,mt − 1 to denote the mt observations, but they are available at

times 0 ≤ st,0 < st,1 · · · < st,mt−1 < 1 from period t. That is, x
(m)
t−k/mt

is available

at time t − st,k. This formulation provides a very flexible framework to handle irregu-

larly spaced observations. Naturally, we can recover the regularly spaced case by setting

st,k = k/mt, k = 0, . . . ,mt − 1. Finally, the weighting function has exactly the same form

as in (12); one only needs to evaluate the basis functions at different points. Specifically,

we replace vk = [φ0(k), . . . , φp(k)]′ by vt,k = [φ0(st,k), . . . , φp(st,k)]
′.

2.4 Data in Multiple High Frequencies

The proposed framework can be generalized to the case of multiple high-frequency vari-

ables with different numbers of observations between discrete periods. More specifically,

suppose we have n high-frequency variables x
(m1)
t , . . . , x

(mn)
t , where x

(mj)
t is observed mj

times between time periods t−1 and t. Let Bj
(
L1/mj ;θj,t

)
denote the weighting function

for x
(mj)
t , which takes the form

Bj
(
L1/mj ;θj,t

)
=

Kj∑
k=0

θ′j,tvj,kL
k/mj ,

where θj,t is a (pj + 1)-vector of parameters and vj,k is the corresponding vector of basis

function values. If we define Vj = [vj,0,vj,1, . . . ,vj,Kj
] and x

(mj)
t = [x

(mj)
t , x

(mj)

t−1/mj
, . . . , x

(mj)

t−Kj/mj
]′,
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the TVP-MIDAS model in (9) can be extended to include multiple high-frequency pre-

dictors:

yt+h = αt + ρ′tyt + γ ′tzt +
n∑
j=1

βj,tθ
′
j,tVjx

(mj)
t + εt+h, εt+h ∼ N (0, λte

gt),

where βj,t captures the overall impact of x
(mj)
t on yt+h at time t. This formulation again

defines a linear Gaussian state space model in the time-varying parameters, and it can be

efficiently estimated.

3 Posterior Simulation

In this section, we outline the posterior sampler for estimating the proposed TVP-MIDAS

model. In particular, we derive the conditional posterior distributions of the time-varying

parameters b = (b′1, . . . ,b
′
T )′ and θ = (θ′1, . . . ,θ

′
T )′ and discuss efficient sampling from

these posterior distributions.

We start with the conditional posterior distribution of b. To that end, stack y =

(y1+h, . . . , yT+h)
′ and ε = (ε1+h, . . . , εT+h)

′, and rewrite (9) as

y = X1b + ε, ε ∼ N (0,Σ), (13)

where Σ = diag(λ1eg1 , . . . , λT egT ) and X1 = diag(x′b,1, . . . ,x
′
b,T ) is a T ×pb matrix whose

t-th row is xb,t = [1,y′t, z
′
t,θ
′
tVx

(m)
t ]′.

Next, stacking the state equation (10) over t = 1, . . . , T yields

H1b = u1, u1 ∼ N (0,S1), (14)

where u1 = (u′1,1, . . . ,u
′
1,T )′, S1 = diag(Vb,Ω, . . . ,Ω), and H1 is a first-difference matrix

H1 =



Ipb Opb . . . . . . Opb

−Ipb Ipb
...

Opb

. . . . . .
...

. . . Ipb Opb

Opb · · · · · · −Ipb Ipb


.

13



Since the determinant of H1 is one, it is invertible. By a change of variable, we have

b ∼ N (0, (H
′
1S
−1
1 H1)−1). Combining (13) and (14) and using standard linear regression

results, the conditional posterior for b is then obtained as

(b |y,θ,Σ,Ω) ∼ N (µb,K
−1
b ),

where

Kb = H′1S
−1
1 H1 + X′1Σ

−1X1, µb = K−1
b (X′1Σ

−1y).

Since the precision matrix Kb is a band matrix, sampling from (b |y,θ,Σ,Ω) can be

efficiently accomplished using the algorithm in Chan and Jeliazkov (2009).

The conditional posterior distribution of θ can be derived similarly. More specifically, let

ỹt = yt+h − αt − ρ′tyt − γ ′tzt and stack ỹt over t = 1, . . . , T to obtain ỹ = (ỹt, . . . , ỹT )′.

Then, (9) can be rewritten as

ỹ = X2θ + ε, ε ∼ N (0,Σ), (15)

where X2 = diag(β1x
(m)′
1 V′, . . . , βTx

(m)′
T V′). Furthermore, stacking the state equation

(11) over t = 1, . . . , T , we have

H2θ = u2, u2 ∼ N (0,S2), (16)

where u2 = (u′2,1, . . . ,u
′
2,T )′ and S2 = diag(Vθ,Ξ, . . . ,Ξ) and

H2 =



Ip+1 Op+1 . . . . . . Op+1

−Ip+1 Ip+1
...

Op+1
. . . . . .

...
. . . Ip+1 Op+1

Op+1 · · · · · · −Ip+1 Ip+1


.

Here H2 is a first-difference matrix with unit determinant. It follows that θ ∼ N (0, (H′2S
−1
2 H2)−1).

Without imposing any restrictions on θ, its conditional posterior distribution is again

Gaussian. A slight complication is the imposition of the identification restrictions θ′tV1K+1 =

1 for t = 1, . . . , T . Specifically, let S denote the hyperplane defined by the T linear equal-

ity restrictions

S def
=
{
θ ∈ RT (p+1) : (IT ⊗ (1′K+1V

′))θ = 1T
}
.
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Then, the conditional posterior of θ is a Gaussian distribution truncated to the hyperplane

S:

(θ |y,b,Σ,Ξ) ∼ NS(µθ,K
−1
θ ),

where

Kθ = H′2S
−1
2 H2 + X′2Σ

−1X2, µθ = K−1
θ (X′2Σ

−1ỹ).

There are efficient algorithms that can be used to sample from NS(µθ,K
−1
θ ), such as

Algorithm 2.6 in Rue and Held (2005) and Algorithm 2 in Cong, Chen, and Zhou (2017).

In particular, we can first sample θ̃ ∼ N (µθ,K
−1
θ ) using the algorithm in Chan and

Jeliazkov (2009). Then, we impose the identification restrictions Mθ = 1T , where M =

IT ⊗ (1′K+1V
′) by computing

θ = θ̃ + K−1
θ M′(MK−1

θ M′)−1(1T −Mθ̃).

Other steps of the posterior sampler are standard. For example, the log-volatility can be

sampled using the auxiliary mixture sampler of Kim, Shephard, and Chib (1998), with the

adjustment (for the latent variables λ1, . . . , λT ) outlined in Chan and Hsiao (2014). The

degree of freedom parameter δ can be sampled using a Metropolis-Hastings step described

in Chan and Hsiao (2014).

4 Assessing the Accuracy of the Linear Parameteri-

zations

The proposed linear parameterization may be motivated as a finite-dimensional approx-

imation of certain classes of weighting functions. As a specific example, consider the

Hilbert space of L2 or square-integrable functions on (0,∞), i.e., B ∈ L2 if ‖B‖2 =(∫∞
0
|B(x)|2dx

)1/2
< ∞, and fix a basis {φj}∞j=0. This family of functions is flexible

and contains many commonly-used weighting functions, such as those that are bounded

with finite support. For a weighting function B ∈ L2, the proposed linear parameteri-

zation with basis functions φ0, . . . , φp, B(s;θ) =
∑p

j=0 θjφj(s), can therefore be viewed

as a finite-dimensional approximation of B(s), where the approximation error vanishes in

‖ · ‖2 norm as p→∞.

Of course, for any finite p, B(s;θ) =
∑p

j=0 θjφj(s) is an approximation. In addition
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to the approximation error, in practice one needs to estimate the coefficients θ0, . . . , θp,

which entails estimation errors. Below we assess the accuracy of the proposal linear

parameterizations in finite samples through a series of Monte Carlo experiments.

4.1 The Time-Invariant Case

We first consider MIDAS models where the coefficients of the weighting functions are

constant. Specifically, we generate data from an autoregressive distributed lag MIDAS

model with a nonlinear, constant-coefficient weighting function. Then, we estimate a

MIDAS model with the proposed linear parameterizations using the simulated data. To

assess its accuracy, we compare its forecast performance relative to the parametric MIDAS

model from which the data are generated.

We follow the simulation design in Babii, Ghysels, and Striaukas (2022), particularly the

data generating process (DGP):

yt = ρ1yt−1 + ρ2yt−2 +
n∑
j=1

1

m

m∑
i=1

B̃

(
i− 1

m
;θj

)
xt−(i−1)/m,j + ut, ut ∼ N (0, σ2

u),

where yt is the low-frequency variable of interest and xt,j, j = 1, . . . , n, are the predictors

with the same high-frequency. Following Babii, Ghysels, and Striaukas (2022), we set

σ2
u = 1, ρ1 = 0.3, ρ2 = 0.01, n = 3 and m = 12. For the weighting functions B̃ (s;θj), we

consider two types. The first is based on the beta density f(x; a, b) = Γ(a+b)
Γ(a)Γ(b)

xa−1(1−x)b−1:

B (s;θ1) = f(s; 1, 3), B (s;θ2) = f(s; 2, 3), B (s;θ3) = f(s; 2, 2),

and we normalize the weighting functions via B̃(s;θj) = B(s;θj)/
∑m

i=1B((i− 1)/m;θj).

The second is based on the exponential Almon polynomials:

B (s;θ1) = exp
(
7s× 10−4 − s2 × 10−4

)
,

B (s;θ2) = exp
(
6s× 10−3 − 5s2 × 10−4

)
,

B (s;θ3) = exp
(
3s× 10−2 − 7s2 × 10−4

)
,

which are similarly normalized to obtain B̃(s;θj), j = 1, 2, 3. We generate the high-
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frequency predictors xt,j according to the AR(1) process:

xh = 0.7xh−1 + εh, εh ∼ N (0, 1). (17)

Finally, the initial conditions are set as x0 ∼ N (0, 1/(1 − 0.72)) and y0 ∼ N (0, σ2
u(1 −

ρ2)/((1 + ρ2)((1− ρ2)2 − ρ2
1)).

We estimate the proposed MIDAS models (restricting the coefficients to be constant

in this case) with two types of basis functions: the Fourier series and the Almon lag

polynomials. The accuracy of the out-of-sample forecasts is assessed against the true

parametric MIDAS model from which the data are generated (here the functional form

of the weighting function is assumed to be known but the coefficients are estimated from

the data). We consider a range of sample sizes from T = 50 to T = 500. In each case,

the final 25% of the sample is designated as the evaluation period, and we recursively

compute the one-step-ahead forecasts from the models using an expanding window. We

repeat this forecasting process R = 20 times, i.e., 20 time-series are generated for each

simulation design. For each dataset, the models are estimated using Markov chain Monte

Carlo methods with 10,000 posterior draws after a burn-in period of 5,000.

Table 1 presents the average mean squared forecast error (MSFE) and average continuous

ranked probability score (CRPS) across the replications for the true parametric MIDAS

models (beta or exponential Almon) and the proposed MIDAS models with two types

of basis functions (Fourier and Almon). As expected, in all cases the true parametric

models forecast the best, due to the efficiency gain in assuming that the DGP is known.

Interestingly, the forecast performance of the proposed MIDAS models with Fourier series

and Almon lag polynomial basis functions is similar to the true model, especially when

the sample size is large. These results show that the proposed linear parameterizations

can effectively approximate nonlinear MIDAS weight functions.

In terms of computational costs, the proposed approach based on the linear parameter-

izations is much faster than fitting the parametric MIDAS models. This is because the

weighting functions in the former are linear in the parameters whereas they are highly

nonlinear in the latter. Consequently, the former can be estimated using a standard Gibbs

sampler, whereas the latter requires the Metropolis-Hastings algorithm. For example, for

the parametric MIDAS model based on the beta density with sample size T = 500, ob-

taining 10,000 posterior draws using a tailored Metropolis-Hastings algorithm takes about

4 minutes on a standard desktop with an Intel Xeon W-2223 @ 3.6GHz processor and 16
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GB of RAM; for the proposed approach, obtaining 10,000 posterior draws takes about 10

seconds instead.

Table 1: Average MSFE and CRPS across R = 20 replications. The numerical standard
errors are in the parentheses.

T = 50 T = 100 T = 200 T = 500

Beta Fourier Almon Beta Fourier Almon Beta Fourier Almon Beta Fourier Almon

MSFE 1.17 1.32 1.26 1.04 1.14 1.10 1.11 1.14 1.15 1.04 1.05 1.05
(0.10) (0.09) (0.09) (0.05) (0.07) (0.07) (0.06) (0.07) (0.07) (0.03) (0.03) (0.03)

CRPS 0.61 0.66 0.64 0.58 0.60 0.59 0.59 0.60 0.60 0.58 0.58 0.58
(0.03) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.01) (0.01) (0.01)

Exp. Almon Fourier Almon Exp. Almon Fourier Almon Exp. Almon Fourier Almon Exp. Almon Fourier Almon

MSFE 1.08 1.25 1.19 0.93 1.00 0.98 1.08 1.10 1.10 1.04 1.05 1.05
(0.08) (0.10) (0.09) (0.07) (0.07) (0.07) (0.04) (0.04) (0.04) (0.03) (0.03) (0.03)

CRPS 0.58 0.63 0.62 0.54 0.56 0.55 0.59 0.59 0.59 0.58 0.58 0.58
(0.02) (0.03) (0.03) (0.02) (0.02) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

4.2 The Time-Varying Case

We now examine whether the proposed TVP-MIDAS models can accurately recover the

coefficients on the weighting functions when these nonlinear weighting functions are ap-

proximated using the linear parameterizations. Specifically, we consider the following

DGP with nonlinear weighting functions:

yt = β1,t + β2,tB̃1(k;θ1,t)x
(m1)
1,t + β3,tB̃2(k;θ2,t)x

(m2)
2,t + ut, ut ∼ N (0, σ2

u),

where yt is the low-frequency variable (e.g., quarterly), the high-frequency predictors

x
(m1)
1,t and x

(m2)
2,t are generated according to the AR process in (17), and the time-varying

coefficients follow the independent random walks

βi,t = βi,t−1 + uβi,t, uβi,t ∼ N (0, σ2
β)

for i = 1, 2, 3. We set σ2
u = 1, σ2

β = 0.05, T = 300, m1 = 60 (60 days per quarter) and

m2 = 12 (12 weeks per quarter). Similar to the constant-coefficient case, we consider two

types of weighting functions: the first type is based on the beta density f(x; a, b)

B̃1(k;θ1,t) =
f( k

m1
, θ1,t, θ2,t)∑m1

i=1 f( i
m1
, θ1,t, θ2,t)

, B̃2(k;θ2,t) =
f( k

m2
, θ3,t, θ4,t)∑m2

i=1 f( i
m2
, θ3,t, θ4,t)

,
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and the second on the exponential Almon polynomials

B̃1(k;θ1,t) =
exp

(
θ1,t

k
m1

+ θ2,t(
k
m1

)2
)

∑m1

i=1 exp
(
θ1,t

i
m1

+ θ2,t(
i
m1

)2
) , B̃2(k;θ2,t) =

exp
(
θ3,t

k
m2

+ θ4,t(
k
m2

)2
)

∑m2

i=1 exp
(
θ3,t

i
m2

+ θ4,t(
i
m2

)2
) .

The parameters in the weighting function are assumed to follow the following autoregres-

sive process:

θi,t = θi,t−1 + uθi,t, uθi,t ∼ T N (c1,c2)(0, σ
2
θ)

for i = 1, . . . , 4, where T N (c1,c2)(0, σ
2
θ) denotes the normal distribution with mean 0 and

variance σ2
θ truncated to the interval (c1, c2). We set σ2

θ = 0.001. For the first type

based on the beta density, we specify c1 = 1 and c2 = 20; for the exponential Almon lag

polynomials, we set c1 = 0 and c2 = 0.001.

Figure 1: Posterior estimates of βi,t, i = 1, 2, 3, from the proposed TVP-MIDAS models
with the Fourier series and Almon lag polynomial basis functions (solid blue line) against
the true values (dashed black line) and estimates from the TVP-MIDAS model with
known beta weighting functions (solid red line).
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Figure 1 presents the posterior estimates of β1,t, β2,t and β3,t from the proposed TVP-

MIDAS models using two types of basis functions (Fourier series and Almon lag polyno-

mials), where the DGP is based on the time-varying beta weighting functions specified

above. To provide a benchmark of these estimates, we also fit a TVP-MIDAS model in

which the beta weighting functions are assumed to be known and only the coefficients

β1,t, β2,t and β3,t are estimated. All the posterior estimates are based on 10,000 MCMC

draws after a burn-in period of 5,000. It is clear from the figure that the posterior esti-

mates from the proposed TVP-MIDAS models closely track the true values and are very

similar to those from the infeasible TVP-MIDAS model with known weighting functions.

Figure 2: Posterior distributions of the Bayesian R2 from the proposed TVP-MIDAS
models with Fourier series and Almon lag polynomial basis functions and TVP-MIDAS
model with known beta weighting functions.

To further evaluate the in-sample fit of the proposed models, we compute the Bayesian

R2 measure proposed by Gelman, Goodrich, Gabry, and Vehtari (2019). Similar to the

conventional R2, this measure is always between 0 and 1 by construction. The posterior

distributions of this measure from the proposed TVP-MIDAS models are reported in

Figure 2. For comparison we also report the Bayesian R2 from the TVP-MIDAS model

with known weighting functions. The results show the two TVP-MIDAS models using

the linear parameterizations achieve very similar Bayesian R2 values compared to the

oracle, suggesting that the loss in in-sample fit using the linear parameterizations is not

substantial.
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A similar set of results are observed for the DGP using weighting functions based on the

exponential Almon lag polynomial; see Appendix B for details. All in all, these findings

suggest that the proposed TVP-MIDAS models using the linear parameterizations can

effectively approximate commonly-used non-linear weighting functions in a dynamic TVP-

MIDAS setting.

5 Empirical Application: Nowcasting US GDP

5.1 Design of the Real-time Nowcasting Application

We assess the performance of the proposed TVP-MIDAS framework via a real-time now-

casting application: we use monthly, weekly and daily variables to nowcast the quarterly

US real GDP (see Cascaldi-Garcia, Luciani, and Modugno, 2024, for a recent survey on

nowcasting GDP). In particular, we consider two sets of predictors: a small-scale case

and a large-scale case. For the small-scale case, the predictors include the monthly in-

dustrial production, the weekly National Financial Conditions Index (NFCI), and a daily

interest rate spread (defined as the difference between the 10-year and 3-month treasury

yields) that captures the slope of the yield curve. The industrial production is a standard

monthly measure of real economic activity.4 The NFCI is widely used in nowcasting GDP,

following the influential work of Adrian, Boyarchenko, and Giannone (2019), which shows

that tightening financial conditions are associated with a notable increase in downside risk

for US real GDP. Finally, the yield curve slope has been consistently shown to improve

forecasts of US real GDP (Estrella and Hardouvelis, 1991; Estrella, Rodrigues, and Schich,

2003; Rudebusch and Williams, 2009). Moreover, a recent study by Poon and Zhu (2024)

underscores the importance of financial conditions as crucial predictors for forecasting

recessions across various countries. For the large-scale case, we include all the predictors

in the small-scale case, as well as 12 additional monthly predictors that are often used in

nowcasting GDP. More details on these predictors are provided in Appendix C.

We construct our real-time datasets from a few data sources. The quarterly vintages

of US real GDP and monthly vintages of industrial production are sourced from the

4In an earlier version of this paper, we also implemented models with the monthly employment growth
instead of the industrial production. On average, we find that models utilizing the industrial production
provide slightly better nowcasts than those using the employment growth. These results are available
upon request.
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Philadelphia Federal Reserve Real-Time Datasets for Macroeconomists, spanning from

1990Q1 to 2021Q2. The weekly NFCI vintages, starting from 2011, are obtained from

the Archival Federal Reserve Economic Data (ALFRED) database. For the earlier sam-

ple, we utilize the weekly NFCI dataset compiled by Amburgey and McCracken (2023),

which includes weekly data vintages from 1988 onwards. Finally, we acquire the daily

interest rate spread data from the St. Louis FRED database. We transform the GDP

and industrial production to annualized growth rates—i.e., we multiply the quarterly and

monthly changes in the natural logarithms of GDP and industrial production by factors

of 400 and 100, respectively. The additional 12 monthly predictors are also sourced from

the ALFRED database and are transformed similarly; details of the transformation are

provided in Appendix C.

Our nowcasting design aligns with that of Guérin and Marcellino (2013), who nowcast

quarterly US real GDP using a Markov-switching MIDAS framework. Our approach

involves generating nowcasts of US real GDP at the conclusion of each month of the

quarter. Table 2 gives an example of the data vintages used to construct nowcasts of US

real GDP in 2000Q1. US GDP data are released about one month after the end of the

quarter. Consequently, when constructing a nowcast of 2000Q1 GDP at the conclusion of

January 2000, our information set encompasses the GDP data up to 1999Q4 and the daily,

weekly and monthly predictors released up to the end of January 2000. Progressing to the

end of February 2000, our information set expands to include information on daily, weekly

and monthly predictors up to the conclusion of the second month of the quarter. By the

conclusion of March 2000, our information set encompasses daily, weekly and monthly

predictors for the entire quarter. Formally, we denote the nowcasts at the conclusion

of the first, second, and third months of the quarter as h = 2/3, h = 1/3 and h = 0,

respectively.

Table 2: Nowcasting scheme for 2000Q1.

Forecast origin

January 2000 February 2000 March 2000

Forecast horizon h = 2/3 h = 1/3 h = 0

GDP data up to quarter 1999Q4 1999Q4 1999Q4

Industrial production data up to month December 1999 January 2000 February 2000

NFCI data up to month January 2000 February 2000 March 2000

Interest rate spread data up to month January 2000 February 2000 March 2000
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Our initial sample spans from 1982Q1 to 1989Q4, with recursive expansion continuing

until the end of sample. This temporal progression is mirrored in the timeframe for our

daily, weekly, and monthly predictors. We focus on the evaluation period that starts from

1990Q1 and ends in 2019Q4, given the extreme, unexpected movements of US GDP at the

onset of the COVID-19 pandemic. But we also assess the performance of the TVP-MIDAS

models using a sample that ends in 2021Q1.

5.2 Out-of-Sample Nowcast Performance

We evaluate the nowcast performance of the proposed TVP-MIDAS framework against a

wide variety of MIDAS specifications with two goals in mind. First, since the proposed

TVP-MIDAS framework can accommodate many different types of nonlinearities and

time-variations, it is useful to see what type of model flexibility matters most in nowcasting

US GDP. To that end, we evaluate a range of MIDAS configurations nested within the

proposed framework by switching on and off different features. In particular, we include

MIDAS specifications in which we fix either the coefficients on the high-frequency variables

or the parameters in the weighting functions to be constant, i.e., βt = β and θt = θ for t =

1, . . . , T , respectively, to assess which type of time-variation is the most useful. We also

consider different combinations of volatility assumptions (constant variance or stochastic

volatility) and error distributions (normal or t distributions). All in all, we consider 11

variants that are nested within the proposed framework, as well as an AR(2) model as a

benchmark. These competing models are summarized in Table 3. This evaluation is done

using the first set of monthly, weekly and daily predictors to nowcast GDP.
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Table 3: Competing MIDAS models nested within the proposed framework.

Model Description

MIDAS MIDAS with constant parameters and constant volatility

MIDAS-SV MIDAS with constant parameters and stochastic volatility (SV)

MIDAS-SVt MIDAS with constant parameters, SV and t errors

TVP-MIDAS MIDAS with time-varying parameters (TVP) and constant volatility

TVP-MIDAS-SV MIDAS with TVP and SV

TVP-MIDAS-SVt MIDAS with TVP, SV and t errors

TVP-MIDAS-R1 MIDAS with time-varying βt, θt = θ and constant volatility

TVP-MIDAS-SV-R1 MIDAS with time-varying βt, θt = θ and SV

TVP-MIDAS-SVt-R1 MIDAS with time-varying βt, θt = θ, SV and t errors

TVP-MIDAS-R2 MIDAS with time-varying θt, βt = β and constant volatility

TVP-MIDAS-SV-R2 MIDAS with time-varying θt, βt = β and SV

TVP-MIDAS-SVt-R2 MIDAS with time-varying θt, βt = β, SV and t errors

The second goal of this subsection is to demonstrate that the proposed TVP-MIDAS

models are competitive against state-of-the-art machine learning-based MIDAS specifi-

cations in a data-rich environment. To that end, we nowcast US GDP using a larger

dataset that includes the monthly, weekly and daily variables in the small-scale case, as

well as 12 additional monthly variables. Naturally, incorporating this extensive set of

variables introduces the risk of overfitting given the very flexible TVP-MIDAS frame-

work. To address this challenge, we adopt the noncentered parameterization developed in

Frühwirth-Schnatter and Wagner (2010) and Bitto and Frühwirth-Schnatter (2019), which

facilitates the implementation of global-local shrinkage priors. Following the methodology

in Huber, Koop, and Onorante (2021), we employ these priors to induce shrinkage on the

time-varying parameters. Specifically, we consider three widely-used global-local shrink-

age priors from the macroeconometrics literature: the Dirichlet-Laplace, normal-gamma,

and horseshoe priors (see Appendix D for technical details).

To benchmark these TVP-MIDAS models, we compare their nowcast performance to the

sparse group LASSO-based MIDAS approach developed by Babii, Ghysels, and Striaukas

(2022).5 Furthermore, we also include Bayesian versions of these penalized MIDAS mod-

els introduced by Mogliani and Simoni (2021), particularly the adaptive group LASSO

5They focus mainly on point prediction; therefore, in what follows we compute only the point nowcasts
from this framework.
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and the adaptive group LASSO with a spike-and-slab prior. For consistency, the MIDAS

models of Babii, Ghysels, and Striaukas (2022) and Mogliani and Simoni (2021) are im-

plemented in an unrestricted (U)-MIDAS setting, where the temporal aggregation is fixed

at 12 weeks and 60 days per quarter.6 Table 4 provides a list of all MIDAS specifications

considered in the large-scale case.

Table 4: Competing large-scale MIDAS models.
Model Description

BMIDAS-AGL Bayesian MIDAS with adaptive group Lasso in Mogliani and Simoni (2021)

BMIDAS-AGL-SS Bayesian MIDAS with adaptive group Lasso and spike and slab prior in Mogliani and Simoni (2021)

MIDAS-SG-LASSO Sparse group Lasso MIDAS in Babii, Ghysels, and Striaukas (2022)

U-MIDAS-SG-LASSO Sparse group Lasso unrestricted MIDAS in Babii, Ghysels, and Striaukas (2022)

U-MIDAS-AGL Unrestricted MIDAS with adaptive group Lasso in Mogliani and Simoni (2021)

U-MIDAS-AGL-SS Unrestricted MIDAS with adaptive group Lasso and spike and slab prior in Mogliani and Simoni (2021)

TVP-MIDAS-DL TVP-MIDAS with Dirichlet-Laplace prior and constant volatility

TVP-MIDAS-SV-DL TVP-MIDAS with Dirichlet-Laplace prior and SV

TVP-MIDAS-SVt-DL TVP-MIDAS with Dirichlet-Laplace prior, SV and t errors

TVP-MIDAS-NG TVP-MIDAS with normal-gamma prior and constant volatility

TVP-MIDAS-SV-NG TVP-MIDAS with normal-gamma prior and SV

TVP-MIDAS-SVt-NG TVP-MIDAS with normal-gamma prior, SV and t errors

TVP-MIDAS-HS TVP-MIDAS with horseshoe prior and constant volatility

TVP-MIDAS-SV-HS TVP-MIDAS with horseshoe prior and SV

TVP-MIDAS-SVt-HS TVP-MIDAS with horseshoe prior, stochastic volatility and t errors

Thanks to the linear parameterizations, estimating the proposed TVP-MIDAS models is

about as fast as fitting univariate time-varying coefficients regressions. Take the TVP-

MIDAS model with the horseshoe prior and stochastic volatility as an example. With 10

monthly predictors, it takes about half a minute to sample 1,000 posterior draws on a

standard desktop with an Intel Xeon W-2223 @ 3.6GHz processor and 16 GB of RAM;

with 40 monthly predictors, the computation time is about 2 minutes.

5.2.1 Out-of-Sample Nowcast Performance before the COVID-19 Period

We first assess the point nowcast performance of the MIDAS specifications using the root

mean squared forecast error (RMSFE) for the subsample that ends in 2019Q4. Tables 5

6In our nowcasting application, we adopt the two-group structure of Bayesian MIDAS penalized models
proposed by Mogliani and Simoni (2021) for simplicity. Using our real-time datasets, the unrestricted
and restricted (weighting functions) models incorporate over 50 and 100 predictors, respectively.
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and 6 present the RMSFEs of MIDAS models relative to a simple AR(2) benchmark.

Values less than one indicate better nowcast performance relative to the benchmark.

Additionally, we report the associated model confidence set (MCS) p-values proposed in

Hansen, Lunde, and Nason (2011), calculated based on the full set of all MIDAS models

considered in the nowcasting application.

First, Table 5 reports the relative RMSFEs of the MIDAS variants nested within the

proposed framework. All values are less than one, underscoring the superior point now-

cast performance of the MIDAS models compared to the AR(2) benchmark. Among the

TVP-MIDAS specifications, the versions that allow only time-varying coefficients on the

high-frequency predictors (i.e., βt is time-varying) have the best point nowcast perfor-

mance, although other TVP-MIDAS specifications perform similarly. For MIDAS models

with constant coefficients, adding stochastic volatility or t errors slightly improves point

nowcasts. But for TVP-MIDAS models, allowing more flexible errors does not seem to

substantially improve (nor degrade) their nowcast accuracy. In fact, the only specification

that is consistently excluded from M̂∗
90%, the model confidence set with 90% coverage,

is the conventional MIDAS model with constant coefficients and homoskedastic Gaussian

errors. Overall, these findings demonstrate the importance of allowing some form of time-

variation in MIDAS models. In particular, incorporating time-varying parameters into

MIDAS models can often enhance nowcast accuracy.

Next, Table 6 presents nowcast results for a range of large-scale MIDAS models, includ-

ing various machine learning-based MIDAS models developed by Mogliani and Simoni

(2021) and Babii, Ghysels, and Striaukas (2022). Since these machine learning-based MI-

DAS models all assume constant parameters, comparing the TVP-MIDAS models with

these benchmarks helps illustrate the value of allowing time-valuation in the presence of

a large number of predictors. The results show that the proposed TVP-MIDAS models

with stochastic volatility generally perform well compared to these state-of-the-art bench-

marks. In particular, the best performing specifications are the TVP-MIDAS models with

the horseshoe prior and stochastic volatility, although TVP-MIDAS models with other

shrinkage priors also perform similarly well. The results based on the model confidence

set confirm these findings: among the 9 models included in M̂∗
75% for forecast horizon

h = 0, 8 feature time-varying parameters. These findings again highlight the empirical

relevance of accommodating time-variation in MIDAS models.
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Table 5: The RMSFEs of the variants nested within the proposed TVP-MIDAS framework
benchmarked against the AR(2).

Forecast Horizon h = 2/3 h = 1/3 h = 0

Models RMSFE pMCS RMSFE pMCS RMSFE pMCS

Fourier

MIDAS 0.95 0.00 0.95 0.03 0.96 0.05

MIDAS-SV 0.93 0.11+ 0.94 0.03 0.94 0.05

MIDAS-SVt 0.93 0.11+ 0.94 0.03 0.94 0.05

TVP-MIDAS 0.93* 0.11+ 0.93* 0.11+ 0.92* 0.05

TVP-MIDAS-SV 0.93* 0.11+ 0.92* 0.11+ 0.92* 0.05

TVP-MIDAS-SVt 0.93* 0.11+ 0.92* 0.11+ 0.92* 0.05

TVP-MIDAS-R1 0.90** 0.84++ 0.89** 0.14+ 0.88** 0.26++

TVP-MIDAS-SV-R1 0.90** 0.99++ 0.89** 0.14+ 0.89** 0.26++

TVP-MIDAS-SVt-R1 0.90** 0.99++ 0.89** 0.14+ 0.89** 0.26++

TVP-MIDAS-R2 0.92* 0.84++ 0.93 0.11+ 0.92* 0.05

TVP-MIDAS-SV-R2 0.94 0.11+ 0.93 0.11+ 0.92* 0.05

TVP-MIDAS-SVt-R2 0.94 0.11+ 0.92* 0.11+ 0.93* 0.05

Almon

MIDAS 0.97 0.08 0.95 0.03 0.95 0.05

MIDAS-SV 0.95 0.08 0.93 0.11+ 0.94 0.05

MIDAS-SVt 0.95 0.08 0.93 0.11+ 0.94 0.05

TVP-MIDAS 0.93* 0.11+ 0.93* 0.11+ 0.92* 0.05

TVP-MIDAS-SV 0.92* 0.11+ 0.92* 0.11+ 0.92* 0.05

TVP-MIDAS-SVt 0.92* 0.11+ 0.92* 0.11+ 0.92* 0.05

TVP-MIDAS-R1 0.92* 0.30++ 0.90** 0.14+ 0.90** 0.26++

TVP-MIDAS-SV-R1 0.92* 0.14+ 0.91* 0.11+ 0.92* 0.05

TVP-MIDAS-SVt-R1 0.92* 0.15+ 0.91* 0.13+ 0.91* 0.05

TVP-MIDAS-R2 0.93* 0.10+ 0.92* 0.11+ 0.91* 0.05

TVP-MIDAS-SV-R2 0.93 0.10+ 0.93* 0.11+ 0.92* 0.05

TVP-MIDAS-SVt-R2 0.93 0.10+ 0.93 0.11+ 0.92 0.05

Notes: *, **, *** denote the 10, 5, and 1 percent significant level of the Diebold-Mariano predictability
test. + and ++ denote the forecasts in model confidence sets M̂∗

90% and M̂∗
75% of Hansen, Lunde, and

Nason (2011). The evaluation period starts from 1990Q1 and ends in 2019Q4.
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Table 6: The RMSFEs of large-scale MIDAS models benchmarked against the AR(2)
model.

Forecast Horizon h = 2/3 h = 1/3 h = 0

Models RMSFE pMCS RMSFE pMCS RMSFE pMCS

U-MIDAS-AGL 1.09 0.08 1.14 0.03 1.13 0.05

U-MIDAS-AGL-SS 1.13 0.08 1.15 0.03 1.12 0.05

U-MIDAS-SG-LASSO 0.93 0.74++ 0.93 0.14+ 0.93 0.26++

Fourier

BMIDAS-AGL 1.00 0.08 0.99 0.03 0.99 0.05

BMIDAS-AGL-SS 1.01 0.08 0.99 0.03 0.99 0.05

MIDAS-SG-LASSO 0.95 0.11+ 0.95 0.11+ 0.95 0.05

TVP-MIDAS-DL 0.94 0.09 0.93 0.03 0.92 0.05

TVP-MIDAS-SV-DL 0.92 0.11+ 0.91 0.11+ 0.90* 0.05

TVP-MIDAS-SVt-DL 0.92 0.11+ 0.92 0.11+ 0.90* 0.05

TVP-MIDAS-NG 1.09 0.01 1.06 0.03 1.03 0.05

TVP-MIDAS-SV-NG 0.94 0.10+ 0.93 0.11+ 0.92 0.05

TVP-MIDAS-SVt-NG 0.94 0.10+ 0.94 0.11+ 0.93 0.05

TVP-MIDAS-HS 1.00 0.08 0.96 0.03 0.99 0.02

TVP-MIDAS-SV-HS 0.88** 0.74++ 0.87** 0.14+ 0.86** 0.26++

TVP-MIDAS-SVt-HS 0.87** 1.00++ 0.86** 0.14+ 0.85** 0.28++

Almon

BMIDAS-AGL 1.00 0.08 0.99 0.03 0.98 0.05

BMIDAS-AGL-SS 1.00 0.08 0.99 0.03 0.98 0.05

MIDAS-SG-LASSO 0.97 0.10 0.94 0.11+ 0.94 0.05

TVP-MIDAS-DL 0.97 0.08 0.96 0.03 0.95 0.05

TVP-MIDAS-SV-DL 0.93 0.10+ 0.92 0.11+ 0.91 0.05

TVP-MIDAS-SVt-DL 0.94 0.08 0.92 0.11+ 0.91 0.05

TVP-MIDAS-NG 1.17 0.01 1.20 0.00 1.32 0.00

TVP-MIDAS-SV-NG 0.95 0.09 0.95 0.11+ 0.94 0.05

TVP-MIDAS-SVt-NG 0.96 0.08 0.97 0.03 0.96 0.05

TVP-MIDAS-HS 1.07 0.01 1.05 0.00 1.14 0.01

TVP-MIDAS-SV-HS 0.88** 0.74++ 0.87** 0.14+ 0.85** 0.26++

TVP-MIDAS-SVt-HS 0.87** 0.74++ 0.86** 1.00++ 0.85** 1.00++

Notes: *, **, *** denote the 10, 5, and 1 percent significant level of the Diebold-Mariano predictability
test. + and ++ denote the forecasts in model confidence sets M̂∗

90% and M̂∗
75% of Hansen, Lunde, and

Nason (2011). The evaluation period starts from 1990Q1 and ends in 2019Q4.
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We evaluate the density nowcasts of all MIDAS specifications using the Continuous

Ranked Probability Score (CRPS). Tables 7 and 8 present the average CRPS values

relative to the AR(2) benchmark for each specification. These results are consistent

with the findings from the point nowcasts. For example, the TVP-MIDAS models with

only time-varying βt deliver the most accurate density forecasts among all the variants

nested within the proposed TVP-MIDAS framework; the TVP-MIDAS models with the

horseshoe prior and stochastic volatility consistently outperform other global-local priors

and machine learning-based MIDAS models; the model confidence sets include mostly

MIDAS models with time-varying parameters. Overall, these results show that extend-

ing constant-coefficients MIDAS models to incorporate time-variation can significantly

enhance both point and density nowcast accuracy.
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Table 7: The average CRPSs of the variants nested within the proposed TVP-MIDAS
framework benchmarked against the AR(2).

Forecast Horizon h = 2/3 h = 1/3 h = 0

Models CRPS pMCS CRPS pMCS CRPS pMCS

Fourier

MIDAS 0.95 0.00 0.96 0.00 0.97 0.00

MIDAS-SV 0.93* 0.11+ 0.94 0.03 0.95 0.00

MIDAS-SVt 0.93* 0.11+ 0.94 0.03 0.95 0.00

TVP-MIDAS 0.92** 0.11+ 0.92** 0.03 0.92** 0.01

TVP-MIDAS-SV 0.93* 0.11+ 0.93** 0.03 0.93** 0.01

TVP-MIDAS-SVt 0.93* 0.11+ 0.93* 0.03 0.93** 0.01

TVP-MIDAS-R1 0.91** 0.84++ 0.90*** 0.42++ 0.90*** 0.28++

TVP-MIDAS-SV-R1 0.90*** 0.99++ 0.89*** 0.46++ 0.89*** 0.28++

TVP-MIDAS-SVt-R1 0.90*** 0.99++ 0.89*** 0.88++ 0.89*** 0.57++

TVP-MIDAS-R2 0.92** 0.84++ 0.93* 0.03 0.92* 0.28++

TVP-MIDAS-SV-R2 0.94* 0.11+ 0.93* 0.03 0.93* 0.01

TVP-MIDAS-SVt-R2 0.94* 0.11+ 0.93* 0.03 0.93* 0.01

Almon

MIDAS 0.96 0.00 0.95 0.00 0.96 0.00

MIDAS-SV 0.95 0.11+ 0.94 0.03 0.94 0.01

MIDAS-SVt 0.94 0.11+ 0.94* 0.03 0.94 0.01

TVP-MIDAS 0.92** 0.11+ 0.92** 0.03 0.92** 0.01

TVP-MIDAS-SV 0.93* 0.11+ 0.93** 0.03 0.92** 0.01

TVP-MIDAS-SVt 0.93* 0.11+ 0.93* 0.03 0.93** 0.01

TVP-MIDAS-R1 0.92** 0.11+ 0.92** 0.03 0.91** 0.01

TVP-MIDAS-SV-R1 0.92** 0.11+ 0.92** 0.03 0.91** 0.01

TVP-MIDAS-SVt-R1 0.92** 0.11+ 0.91** 0.04 0.91** 0.01

TVP-MIDAS-R2 0.92** 0.11+ 0.92** 0.03 0.91** 0.01

TVP-MIDAS-SV-R2 0.94* 0.11+ 0.93* 0.03 0.93* 0.01

TVP-MIDAS-SVt-R2 0.94* 0.11+ 0.93* 0.03 0.93* 0.01

Notes: *, **, *** denote the 10, 5, and 1 percent significant level of the Diebold-Mariano predictability
test. + and ++ denote the forecasts in model confidence sets M̂∗

90% and M̂∗
75% of Hansen, Lunde, and

Nason (2011). The evaluation period starts from 1990Q1 and ends in 2019Q4.
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Table 8: The average CRPSs of large-scale MIDAS models benchmarked against the
AR(2) model.

Forecast Horizon h = 2/3 h = 1/3 h = 0

Models CRPS pMCS CRPS pMCS CRPS pMCS

U-MIDAS-AGL 1.08 0.00 1.12 0.00 1.11 0.00

U-MIDAS-AGL-SS 1.12 0.00 1.13 0.00 1.10 0.00

Fourier

BMIDAS-AGL 1.00 0.00 0.99 0.01 0.99 0.00

BMIDAS-AGL-SS 1.00 0.00 0.99 0.00 0.99 0.00

TVP-MIDAS-DL 0.96 0.00 0.96 0.00 0.96 0.00

TVP-MIDAS-SV-DL 0.96 0.00 0.95 0.00 0.95 0.00

TVP-MIDAS-SVt-DL 0.95 0.00 0.96 0.00 0.95 0.00

TVP-MIDAS-NG 1.09 0.00 1.07 0.00 1.04 0.00

TVP-MIDAS-SV-NG 0.96 0.00 0.96 0.01 0.96 0.00

TVP-MIDAS-SVt-NG 0.96 0.00 0.97 0.00 0.96 0.00

TVP-MIDAS-HS 0.99 0.00 0.98 0.00 1.01 0.00

TVP-MIDAS-SV-HS 0.90** 0.84++ 0.89** 0.42++ 0.89** 0.28++

TVP-MIDAS-SVt-HS 0.90** 1.00++ 0.89** 0.46++ 0.88** 0.57++

Almon

BMIDAS-AGL 1.00 0.11 0.99 0.03 0.98 0.01

BMIDAS-AGL-SS 1.00 0.11 0.99 0.01 0.98 0.01

TVP-MIDAS-DL 0.98 0.00 0.98 0.00 0.96 0.00

TVP-MIDAS-SV-DL 0.96 0.00 0.95 0.00 0.95 0.00

TVP-MIDAS-SVt-DL 0.96 0.00 0.95 0.00 0.94 0.00

TVP-MIDAS-NG 1.17 0.00 1.22 0.00 1.30 0.00

TVP-MIDAS-SV-NG 0.97 0.00 0.97 0.00 0.97 0.00

TVP-MIDAS-SVt-NG 0.98 0.00 0.99 0.00 0.97 0.00

TVP-MIDAS-HS 1.08 0.00 1.06 0.00 1.13 0.00

TVP-MIDAS-SV-HS 0.90** 0.96++ 0.89** 0.42++ 0.88** 0.57++

TVP-MIDAS-SVt-HS 0.90** 0.99++ 0.89** 1.00++ 0.88** 1.00++

Notes: *, **, *** denote the 10, 5, and 1 percent significant level of the Diebold-Mariano predictability
test. + and ++ denote the forecasts in model confidence sets M̂∗

90% and M̂∗
75% of Hansen, Lunde, and

Nason (2011). The evaluation period starts from 1990Q1 and ends in 2019Q4.
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In nowcasting GDP, the focus is often in quantifying the left tail risk—the risk of a

downturn or recession. We therefore delve deeper into the performance of the MIDAS

specifications concerning the left tail of the density nowcasts. Drawing from the method-

ology outlined by Gneiting and Ranjan (2011), we calculate the predictive quantile score

at time t for a given quantile τ , expressed as:

QSτ,t = (yt −Qτ,t)− (τ − 1{yt ≤ Qτ,t}),

where 1{yt ≤ Qτ,t} takes the value 1 if the realized value of the GDP is at or below the

predictive quantile and 0 otherwise. We assess the performance of the quantile score in

the left tail by setting τ = 0.1.

We present the average quantile scores for each model relative to the AR(2) benchmark

in Tables 9 and 10. Among the MIDAS variants nested within the proposed framework,

results in Table 9 show that TVP-MIDAS models consistently outperform their time-

invariant counterparts in nowcasting the left tail of the distribution. In particular, in

line with the results based on the whole nowcast density, the versions that allow only

time-varying βt perform best in terms of quantifying the left tail risk.

Among the large-scale MIDAS models, results reported in Table 10 show that the TVP-

MIDAS models with global-local shrinkage priors, particularly the Horseshoe prior, achieve

comparable performance in nowcasting the left tail of the GDP distribution relative to

machine learning-based MIDAS models. But these large-scale models tend to be domi-

nated by small-scale MIDAS models that use only the industrial production, NFCI and

an interest rate spread as predictors. In fact, the only model included in the model

confidence sets M̂∗
90% and M̂∗

75% of Hansen, Lunde, and Nason (2011) is the small-scale

TVP-MIDAS model with stochastic volatility, time-varying βt but constant-coefficients

weighting functions based on the Almon lag polynomials. These findings are visually

represented in Figure 3, which illustrates the rolling average of CRPS and quantile scores

for h = 0 over time for selected TVP-MIDAS specifications.
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Table 9: The average quantile scores at τ = 0.1 for the MIDAS models nested within the
proposed TVP-MIDAS framework relative to the AR(2) benchmark.

Forecast Horizon h = 2/3 h = 1/3 h = 0

Models QS pMCS QS pMCS QS pMCS

Fourier

MIDAS 0.97 0.00 0.98 0.00 0.98 0.00

MIDAS-SV 0.95 0.00 0.97 0.00 0.97 0.00

MIDAS-SVt 0.95 0.00 0.97 0.00 0.97 0.00

TVP-MIDAS 0.89*** 0.00 0.90*** 0.00 0.90*** 0.00

TVP-MIDAS-SV 0.79*** 0.05 0.79*** 0.04 0.79*** 0.04

TVP-MIDAS-SVt 0.80*** 0.00 0.80*** 0.00 0.80*** 0.00

TVP-MIDAS-R1 0.78*** 0.02 0.79*** 0.01 0.79*** 0.01

TVP-MIDAS-SV-R1 0.74*** 0.05 0.74*** 0.04 0.74*** 0.04

TVP-MIDAS-SVt-R1 0.74*** 0.05 0.74*** 0.04 0.74*** 0.04

TVP-MIDAS-R2 0.85*** 0.00 0.86*** 0.00 0.86*** 0.00

TVP-MIDAS-SV-R2 0.80*** 0.02 0.80*** 0.01 0.80*** 0.01

TVP-MIDAS-SVt-R2 0.81*** 0.00 0.80*** 0.00 0.81*** 0.00

Almon

MIDAS 0.95 0.00 0.95 0.00 0.95 0.00

MIDAS-SV 0.95* 0.00 0.95* 0.00 0.95 0.00

MIDAS-SVt 0.95* 0.00 0.95* 0.00 0.95 0.00

TVP-MIDAS 0.89*** 0.00 0.90*** 0.00 0.90*** 0.00

TVP-MIDAS-SV 0.79*** 0.02 0.79*** 0.01 0.79*** 0.01

TVP-MIDAS-SVt 0.80*** 0.00 0.80*** 0.00 0.80*** 0.00

TVP-MIDAS-R1 0.77*** 0.05 0.77*** 0.04 0.77*** 0.04

TVP-MIDAS-SV-R1 0.72*** 1.00++ 0.73*** 1.00++ 0.73*** 1.00+

TVP-MIDAS-SVt-R1 0.73*** 0.05 0.73*** 0.04 0.73*** 0.04

TVP-MIDAS-R2 0.87*** 0.00 0.88*** 0.00 0.87*** 0.00

TVP-MIDAS-SV-R2 0.79*** 0.05 0.79*** 0.04 0.79*** 0.04

TVP-MIDAS-SVt-R2 0.80*** 0.00 0.80*** 0.01 0.79*** 0.01

Notes: *, **, *** denote the 10, 5, and 1 percent significant level of the Diebold-Mariano predictability
test. + and ++ denote the forecasts in model confidence sets M̂∗

90% and M̂∗
75% of Hansen, Lunde, and

Nason (2011). The evaluation period starts from 1990Q1 and ends in 2019Q4.
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Table 10: The average quantile scores at τ = 0.1 for large-scale MIDAS models relative
to the AR(2) benchmark.

Forecast Horizon h = 2/3 h = 1/3 h = 0

Models QS pMCS QS pMCS QS pMCS

U-MIDAS-AGL 0.85** 0.00 0.90 0.00 0.89* 0.00

U-MIDAS-AGL-SS 0.88** 0.00 0.90* 0.00 0.87** 0.00

Fourier

BMIDAS-AGL 0.84 0.00 0.85*** 0.00 0.86** 0.00

BMIDAS-AGL-SS 0.84 0.00 0.85*** 0.00 0.86** 0.00

TVP-MIDAS-DL 0.96 0.00 0.97 0.00 0.98 0.00

TVP-MIDAS-SV-DL 0.97 0.00 0.98 0.00 0.99 0.00

TVP-MIDAS-SVt-DL 0.97* 0.00 0.99* 0.00 0.99 0.00

TVP-MIDAS-NG 0.97** 0.00 1.00 0.00 0.95 0.00

TVP-MIDAS-SV-NG 0.94*** 0.00 0.94*** 0.00 0.94* 0.00

TVP-MIDAS-SVt-NG 0.94*** 0.00 0.95*** 0.00 0.94* 0.00

TVP-MIDAS-HS 0.87*** 0.00 0.86*** 0.00 0.91** 0.00

TVP-MIDAS-SV-HS 0.86** 0.00 0.86 0.00 0.87*** 0.00

TVP-MIDAS-SVt-HS 0.86** 0.00 0.87* 0.00 0.87*** 0.00

Almon

BMIDAS-AGL 0.83*** 0.05 0.84*** 0.04 0.84*** 0.01

BMIDAS-AGL-SS 0.83*** 0.02 0.84*** 0.01 0.84*** 0.00

TVP-MIDAS-DL 0.92** 0.00 0.92** 0.00 0.91** 0.00

TVP-MIDAS-SV-DL 0.96 0.00 0.97 0.00 0.97 0.00

TVP-MIDAS-SVt-DL 0.96 0.00 0.97 0.00 0.97 0.00

TVP-MIDAS-NG 1.00 0.00 1.00 0.00 1.08 0.00

TVP-MIDAS-SV-NG 0.93** 0.00 0.95** 0.00 0.95 0.00

TVP-MIDAS-SVt-NG 0.94* 0.00 0.96*** 0.00 0.95 0.00

TVP-MIDAS-HS 0.93 0.00 0.91*** 0.00 0.91* 0.00

TVP-MIDAS-SV-HS 0.86*** 0.00 0.86 0.00 0.86*** 0.00

TVP-MIDAS-SVt-HS 0.86*** 0.00 0.86* 0.00 0.86*** 0.00

Notes: *, **, *** denote the 10, 5, and 1 percent significant level of the Diebold-Mariano predictability
test. + and ++ denote the forecasts in model confidence sets M̂∗

90% and M̂∗
75% of Hansen, Lunde, and

Nason (2011). The evaluation period starts from 1990Q1 and ends in 2019Q4.
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Our results indicate that during periods of heightened volatility, using a parsimonious set

of predictors, alongside the inclusion of time-varying parameters and stochastic volatility,

is essential for accurately nowcasting the left tail of GDP or economic downturns. This

conclusion is consistent with the findings of Adrian, Boyarchenko, and Giannone (2019)

and Estrella and Hardouvelis (1991), who highlight the predictive importance of financial

conditions and the slope of the yield curve for future recessions.

Figure 3: Plot of the rolling average CRPS and quantile scores for h = 0 across the
selected six MIDAS models relative to the AR(2) model, over the pre-COVID-19 period.
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5.2.2 Out-of-Sample Nowcast Performance through the COVID-19 Period

Next, we assess the performance of the MIDAS models using a sample that includes the

COVID-19 pandemic, with the evaluation period ending in 2021Q2. Specifically, we pro-

duce the same sets of nowcast results—RMSFEs, CRPSs and quantile scores—for all the

MIDAS models described in Tables 3 and 4. Due to space constraints, the detailed re-

sults are reported in Appendix A. Given the extreme movements of US GDP and other

macroeconomic variables during the COVID-19 lockdown and the subsequent reopening,

all models incur significant nowcast errors during this period, and this naturally makes in-

ference more difficult. Despite this, the main conclusion remains consistent: TVP-MIDAS

models with stochastic volatility generally outperform their time-invariant counterparts,

especially for density nowcasting. For instance, among the 16 models included in the

model confidence set M̂∗
75% for density nowcasts (CRPSs) with horizon h = 0, 11 feature

time-varying parameters.

In addition, for nowcasting left-tail risks, small-scale MIDAS models dominate. For

example, the only models included in the model confidence set M̂∗
75% are small-scale

TVP-MIDAS models. Overall, our findings underscore the importance of incorporating

time-varying parameters and stochastic volatility for nowcasting US GDP. The proposed

framework is robust, flexible, and well-suited to capture unpredictable volatility arising

from extreme events, such as the COVID-19 pandemic.

6 Concluding Remarks and Future Research

This paper introduces a novel TVP-MIDAS framework that is flexible and easy to esti-

mate. We evaluate the effectiveness of the proposed framework using a real-time appli-

cation of nowcasting US real GDP. Leveraging on three high-frequency predictors—the

monthly industrial production, the weekly NFCI and a daily interest rate spread—our

results demonstrate that TVP-MIDAS specifications incorporating stochastic volatility

consistently outperform their time-invariant counterparts. Specifically, our findings re-

veal that the proposed TVP-MIDAS framework yields superior nowcasts, particularly in

capturing the left tail risk of the GDP.

For future work, it would be interesting to extend the proposed TVP-MIDAS framework

to the VAR setting, building upon the MIDAS-VAR approach suggested in Ghysels (2016).
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This multivariate extension is especially useful for jointly nowcasting multiple variables

using higher frequency predictors or computing conditional forecasts based on the future

paths of certain variables.
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Appendix A: Additional Nowcast Results

In this appendix we present nowcast results with an evaluation period that starts from

1990Q1 and ends in 2021Q2. More specifically, Tables 11 and 12 present the RMSFEs of

all the MIDAS models described in Tables 3 and 4 in the main text; Tables 13 and 14

report the CRPSs; and Tables 15 and 16 report the quantile scores.

Overall, the findings here are similar to those with an evaluation period that ends in

2019Q4. In particular, TVP-MIDAS models with stochastic volatility generally outper-

form their time-invariant counterparts, particularly for nowcasting left-tail risks. The

main difference here is that the strength of inference is weaker given the extreme nowcast

errors concentrated over a few periods during the COVID-19 pandemic.7 For example,

the model confidence set M̂∗
75% for point nowcasts with h = 0 includes the majority of

the competing models. Nevertheless, for density and quantile nowcasts, it remains clear

that TVP-MIDAS models with stochastic volatility tend to perform well.

7The poor point nowcast performance of the homoskedastic TVP-MIDAS model is mainly due to
the extreme nowcast errors at the onset of the COVID-19 pandemic (2020Q2-2020Q3), when the weekly
interest rate spread spikes suddenly, and this generates some explosive nowcasts. However, this problem
can be avoided by allowing stochastic volatility.
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Table 11: The RMSFEs of the variants nested within the proposed TVP-MIDAS frame-
work benchmarked against the AR(2). The evaluation period starts from 1990Q1 and
ends in 2021Q2.

Forecast Horizon h = 2/3 h = 1/3 h = 0

Models RMSFE pMCS RMSFE pMCS RMSFE pMCS

Fourier

MIDAS 0.62 0.41++ 0.63 0.08 0.62 0.60++

MIDAS-SV 0.69* 0.41++ 0.70* 0.08 0.70* 0.60++

MIDAS-SVt 0.70* 0.41++ 0.71* 0.08 0.71* 0.60++

TVP-MIDAS 307.66 0.03 703.03 0.08 332.13 0.06++

TVP-MIDAS-SV 0.68* 0.41++ 0.68* 0.08 0.66 0.60++

TVP-MIDAS-SVt 0.70* 0.41++ 0.71 0.08 0.71* 0.60++

TVP-MIDAS-R1 0.65 0.41++ 0.65 0.08 0.64 0.60++

TVP-MIDAS-SV-R1 0.68* 0.41++ 0.69 0.08 0.68 0.60++

TVP-MIDAS-SVt-R1 0.68 0.41++ 0.69 0.08 0.69 0.60++

TVP-MIDAS-R2 0.65 0.41++ 0.65 0.08 0.65 0.60++

TVP-MIDAS-SV-R2 0.69 0.41++ 0.70 0.08 0.70 0.60++

TVP-MIDAS-SVt-R2 0.71 0.41++ 0.71 0.08 0.70 0.60++

Almon

MIDAS 0.63 0.41++ 0.63 0.08 0.62 0.60++

MIDAS-SV 0.68* 0.41++ 0.69* 0.08 0.68** 0.60++

MIDAS-SVt 0.69* 0.41++ 0.69* 0.08 0.69** 0.38++

TVP-MIDAS 48.43 0.03 58.25 0.08 58.83 0.06

TVP-MIDAS-SV 0.68* 0.41++ 0.67 0.08 0.68 0.60++

TVP-MIDAS-SVt 0.71* 0.41++ 0.71 0.08 0.73 0.60++

TVP-MIDAS-R1 0.65 0.41++ 0.66 0.08 0.64 0.60++

TVP-MIDAS-SV-R1 0.68* 0.41++ 0.68 0.08 0.68 0.60++

TVP-MIDAS-SVt-R1 0.68 0.41++ 0.69 0.08 0.69 0.60++

TVP-MIDAS-R2 0.62 0.41++ 0.61 0.08 0.61 0.60++

TVP-MIDAS-SV-R2 0.68 0.41++ 0.69 0.08 0.69 0.60++

TVP-MIDAS-SVt-R2 0.70 0.41++ 0.71 0.08 0.70 0.60++

Notes: *, **, *** denote the 10, 5, and 1 percent significant level of the Diebold-Mariano predictability
test. + and ++ denote the forecasts in model confidence sets M̂∗

90% and M̂∗
75% of Hansen, Lunde, and

Nason (2011).
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Table 12: The RMSFEs of large-scale MIDAS models benchmarked against the AR(2)
model. The evaluation period starts from 1990Q1 and ends in 2021Q2.

Forecast Horizon h = 2/3 h = 1/3 h = 0

Models RMSFE pMCS RMSFE pMCS RMSFE pMCS

U-MIDAS-AGL 0.59 0.41++ 0.60 0.08 0.59 0.60++

U-MIDAS-AGL-SS 0.59 0.41++ 0.60 0.08 0.59 0.60++

U-MIDAS-SG-LASSO 0.65 0.41++ 0.65 0.08 0.64 0.60++

Fourier

BMIDAS-AGL 0.56 0.41++ 0.56 0.33++ 0.56 0.60++

BMIDAS-AGL-SS 0.56 0.41++ 0.56 0.33++ 0.56 0.60++

MIDAS-SG-LASSO 0.65 0.41++ 0.65 0.08 0.65 0.60++

TVP-MIDAS-DL 0.56 0.59++ 0.58 0.33++ 0.56 0.60++

TVP-MIDAS-SV-DL 0.55 0.77++ 0.61 0.08 0.68* 0.60++

TVP-MIDAS-SVt-DL 0.58 0.41++ 0.56 0.66 0.60 0.60++

TVP-MIDAS-NG 0.66 0.03 0.57 0.08 0.64 0.60++

TVP-MIDAS-SV-NG 0.66 0.41++ 0.64 0.08 0.65 0.60++

TVP-MIDAS-SVt-NG 0.63 0.41++ 0.65 0.08 0.72* 0.60++

TVP-MIDAS-HS 0.65* 0.41++ 0.55 1.00++ 0.57* 0.60++

TVP-MIDAS-SV-HS 0.57 0.61++ 0.57 0.33++ 0.68 0.60++

TVP-MIDAS-SVt-HS 0.64 0.41++ 0.55 0.66++ 0.71 0.60++

Almon

BMIDAS-AGL 0.56 0.61++ 0.56 0.38++ 0.56 1.00++

BMIDAS-AGL-SS 0.56 0.41++ 0.56 0.33++ 0.56 0.60++

MIDAS-SG-LASSO 0.63 0.41++ 0.63 0.08 0.62 0.60++

TVP-MIDAS-DL 0.61 0.41++ 0.69 0.08 0.68* 0.60++

TVP-MIDAS-SV-DL 0.65* 0.41++ 0.66 0.08 0.68* 0.60++

TVP-MIDAS-SVt-DL 0.66* 0.41++ 0.70 0.08 0.73* 0.60++

TVP-MIDAS-NG 0.74 0.03 0.61 0.08 0.70 0.23+

TVP-MIDAS-SV-NG 0.60 0.41++ 0.66 0.08 0.66 0.60++

TVP-MIDAS-SVt-NG 0.68 0.41++ 0.66 0.08 0.75 0.06

TVP-MIDAS-HS 0.54 1.00++ 0.77 0.08 0.67* 0.06

TVP-MIDAS-SV-HS 0.59 0.41++ 0.64 0.08 0.63 0.60++

TVP-MIDAS-SVt-HS 0.63 0.41++ 0.66 0.08 0.73 0.60++

Notes: *, **, *** denote the 10, 5, and 1 percent significant level of the Diebold-Mariano predictability
test. + and ++ denote the forecasts in model confidence sets M̂∗

90% and M̂∗
75% of Hansen, Lunde, and

Nason (2011).
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Table 13: The average CRPSs of the variants nested within the proposed TVP-MIDAS
framework benchmarked against the AR(2). The evaluation period starts from 1990Q1
and ends in 2021Q2.

Forecast Horizon h = 2/3 h = 1/3 h = 0

Models CRPS pMCS CRPS pMCS CRPS pMCS

Fourier

MIDAS 0.75* 0.05 0.76* 0.01 0.75* 0.27++

MIDAS-SV 0.80* 0.01 0.81* 0.01 0.81* 0.00

MIDAS-SVt 0.80* 0.01 0.80* 0.01 0.81* 0.00

TVP-MIDAS 109.28 0.00 248.38 0.00 114.83 0.00

TVP-MIDAS-SV 0.77* 0.01 0.77* 0.01 0.76* 0.00

TVP-MIDAS-SVt 0.78** 0.01 0.79** 0.01 0.78* 0.00

TVP-MIDAS-R1 0.74** 0.79++ 0.74** 0.14+ 0.73** 0.77++

TVP-MIDAS-SV-R1 0.77** 0.11+ 0.77** 0.01 0.77** 0.27++

TVP-MIDAS-SVt-R1 0.77** 0.05 0.78** 0.01 0.77** 0.27++

TVP-MIDAS-R2 0.76* 0.79++ 0.76* 0.01 0.76* 0.27++

TVP-MIDAS-SV-R2 0.79* 0.01 0.78* 0.01 0.78* 0.00

TVP-MIDAS-SVt-R2 0.79* 0.01 0.79* 0.01 0.79* 0.00

Almon

MIDAS 0.76* 0.01 0.75* 0.01 0.75* 0.27+

MIDAS-SV 0.80* 0.01 0.80* 0.01 0.80* 0.00

MIDAS-SVt 0.80* 0.01 0.80* 0.01 0.80* 0.00

TVP-MIDAS 15.74 0.00 18.60 0.00 18.73 0.00

TVP-MIDAS-SV 0.77* 0.01 0.76* 0.01 0.77* 0.00

TVP-MIDAS-SVt 0.79* 0.01 0.79* 0.01 0.80* 0.00

TVP-MIDAS-R1 0.75** 0.11+ 0.75** 0.14+ 0.74** 0.27+

TVP-MIDAS-SV-R1 0.78* 0.01 0.78* 0.01 0.78* 0.00

TVP-MIDAS-SVt-R1 0.78** 0.01 0.78** 0.01 0.78** 0.00

TVP-MIDAS-R2 0.74* 0.79++ 0.74* 0.14+ 0.74* 0.27+

TVP-MIDAS-SV-R2 0.77* 0.01 0.78* 0.01 0.77* 0.00

TVP-MIDAS-SVt-R2 0.78* 0.01 0.79* 0.01 0.78* 0.00

Notes: *, **, *** denote the 10, 5, and 1 percent significant level of the Diebold-Mariano predictability
test. + and ++ denote the forecasts in model confidence sets M̂∗

90% and M̂∗
75% of Hansen, Lunde, and

Nason (2011). 41



Table 14: The average CRPSs of large-scale MIDAS models benchmarked against the
AR(2) model. The evaluation period starts from 1990Q1 and ends in 2021Q2.

Forecast Horizon h = 2/3 h = 1/3 h = 0

Models CRPS pMCS CRPS pMCS CRPS pMCS

U-MIDAS-AGL 0.77 0.05 0.79 0.01 0.78 0.27

U-MIDAS-AGL-SS 0.79 0.01 0.79 0.01 0.77 0.27

Fourier

BMIDAS-AGL 0.72* 0.79++ 0.71* 0.84++ 0.71* 0.77++

BMIDAS-AGL-SS 0.72* 0.79++ 0.71* 0.57++ 0.71* 0.77++

TVP-MIDAS-DL 0.73* 0.11+ 0.74* 0.01 0.73* 0.27++

TVP-MIDAS-SV-DL 0.72* 0.79+ 0.75* 0.01 0.77* 0.00

TVP-MIDAS-SVt-DL 0.74* 0.05 0.73* 0.14+ 0.74* 0.27++

TVP-MIDAS-NG 0.82 0.00 0.78 0.01 0.78 0.00

TVP-MIDAS-SV-NG 0.77* 0.01 0.76* 0.01 0.75* 0.00

TVP-MIDAS-SVt-NG 0.75* 0.01 0.77* 0.01 0.79* 0.00

TVP-MIDAS-HS 0.77* 0.01 0.74* 0.09 0.76 0.27++

TVP-MIDAS-SV-HS 0.70** 1.00++ 0.72* 0.57++ 0.74** 0.77++

TVP-MIDAS-SVt-HS 0.73** 0.79++ 0.70* 1.00++ 0.76** 0.27++

Almon

BMIDAS-AGL 0.72* 0.79++ 0.71* 0.84++ 0.71* 1.00++

BMIDAS-AGL-SS 0.72* 0.79++ 0.71* 0.60++ 0.71* 0.77++

TVP-MIDAS-DL 0.76* 0.01 0.80* 0.01 0.78* 0.00

TVP-MIDAS-SV-DL 0.76* 0.01 0.77* 0.01 0.76* 0.00

TVP-MIDAS-SVt-DL 0.77* 0.01 0.78* 0.01 0.78* 0.00

TVP-MIDAS-NG 0.90 0.00 0.89 0.00 0.95 0.00

TVP-MIDAS-SV-NG 0.75* 0.01 0.78* 0.01 0.78* 0.00

TVP-MIDAS-SVt-NG 0.79* 0.01 0.79 0.01 0.81* 0.00

TVP-MIDAS-HS 0.74 0.79++ 0.93 0.01 0.84 0.00

TVP-MIDAS-SV-HS 0.71** 0.79++ 0.72** 0.60++ 0.71** 0.77++

TVP-MIDAS-SVt-HS 0.72** 0.79++ 0.73** 0.57++ 0.76** 0.27++

Notes: *, **, *** denote the 10, 5, and 1 percent significant level of the Diebold-Mariano predictability
test. + and ++ denote the forecasts in model confidence sets M̂∗

90% and M̂∗
75% of Hansen, Lunde, and

Nason (2011).
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Table 15: The average quantile scores at τ = 0.1 for the MIDAS models nested within
the proposed TVP-MIDAS framework relative to the AR(2) benchmark. The evaluation
period starts from 1990Q1 and ends in 2021Q2.

Forecast Horizon h = 2/3 h = 1/3 h = 0

Models QS pMCS QS pMCS QS pMCS

Fourier

MIDAS 0.93** 0.00 0.94* 0.01 0.95* 0.01

MIDAS-SV 1.00 0.00 1.01 0.00 1.01 0.00

MIDAS-SVt 0.99 0.00 1.01 0.00 1.01 0.00

TVP-MIDAS 16.62 0.00 36.88 0.00 17.42 0.00

TVP-MIDAS-SV 0.85*** 0.03 0.86*** 0.03 0.86*** 0.02

TVP-MIDAS-SVt 0.84*** 0.03 0.85*** 0.03 0.85*** 0.02

TVP-MIDAS-R1 0.80*** 0.03 0.81*** 0.03 0.81*** 0.02

TVP-MIDAS-SV-R1 0.83*** 0.03 0.83*** 0.03 0.83*** 0.02

TVP-MIDAS-SVt-R1 0.82*** 0.03 0.83*** 0.03 0.82*** 0.02

TVP-MIDAS-R2 0.87*** 0.03 0.89*** 0.01 0.88*** 0.01

TVP-MIDAS-SV-R2 0.85*** 0.03 0.85*** 0.03 0.85*** 0.02

TVP-MIDAS-SVt-R2 0.85*** 0.03 0.85*** 0.03 0.85*** 0.02

Almon

MIDAS 0.92** 0.01 0.92** 0.02 0.93** 0.01

MIDAS-SV 0.98 0.00 0.99 0.00 0.99 0.00

MIDAS-SVt 0.98 0.00 0.98 0.00 0.98 0.00

TVP-MIDAS 2.71 0.00 3.04 0.00 3.08 0.00

TVP-MIDAS-SV 0.85*** 0.03 0.87*** 0.03 0.86*** 0.02

TVP-MIDAS-SVt 0.85*** 0.03 0.86*** 0.03 0.86*** 0.02

TVP-MIDAS-R1 0.79*** 1.00++ 0.80*** 1.00++ 0.80*** 1.00++

TVP-MIDAS-SV-R1 0.81*** 0.03 0.82*** 0.03 0.82*** 0.02

TVP-MIDAS-SVt-R1 0.81*** 0.03 0.81*** 0.73++ 0.81*** 0.02

TVP-MIDAS-R2 0.99 0.00 0.93* 0.01 0.93 0.01

TVP-MIDAS-SV-R2 0.84*** 0.03 0.85*** 0.03 0.85*** 0.02

TVP-MIDAS-SVt-R2 0.84*** 0.03 0.84*** 0.03 0.84*** 0.02

Notes: *, **, *** denote the 10, 5, and 1 percent significant level of the Diebold-Mariano predictability
test. + and ++ denote the forecasts in model confidence sets M̂∗

90% and M̂∗
75% of Hansen, Lunde, and

Nason (2011).
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Table 16: The average quantile scores at τ = 0.1 for large-scale MIDAS models relative
to the AR(2) benchmark. The evaluation period starts from 1990Q1 and ends in 2021Q2.

Forecast Horizon h = 2/3 h = 1/3 h = 0

Models QS pMCS QS pMCS QS pMCS

U-MIDAS-AGL 0.85*** 0.03 0.89** 0.03 0.88** 0.02

U-MIDAS-AGL-SS 0.86** 0.03 0.89** 0.03 0.87** 0.02

Fourier

BMIDAS-AGL 0.84*** 0.03 0.85*** 0.03 0.86*** 0.02

BMIDAS-AGL-SS 0.84*** 0.03 0.85*** 0.03 0.86*** 0.02

TVP-MIDAS-DL 1.05 0.00 1.08 0.00 1.09 0.00

TVP-MIDAS-SV-DL 1.04 0.00 1.10 0.00 1.13 0.00

TVP-MIDAS-SVt-DL 1.07 0.00 1.07 0.00 1.10 0.00

TVP-MIDAS-NG 1.08 0.00 1.03 0.00 1.08 0.00

TVP-MIDAS-SV-NG 1.07 0.00 1.08 0.00 1.07 0.00

TVP-MIDAS-SVt-NG 1.03 0.00 1.09 0.00 1.10 0.00

TVP-MIDAS-HS 0.87*** 0.03 0.94 0.01 0.95 0.00

TVP-MIDAS-SV-HS 0.96 0.03 0.93 0.01 1.02 0.01

TVP-MIDAS-SVt-HS 0.99 0.00 0.96 0.01 1.03 0.01

Almon

BMIDAS-AGL 0.83*** 0.03 0.84*** 0.03 0.85*** 0.02

BMIDAS-AGL-SS 0.83*** 0.03 0.84*** 0.03 0.85*** 0.02

TVP-MIDAS-DL 1.02 0.00 1.08 0.00 1.07 0.00

TVP-MIDAS-SV-DL 1.08 0.00 1.10 0.00 1.11 0.00

TVP-MIDAS-SVt-DL 1.08 0.00 1.12 0.00 1.14 0.00

TVP-MIDAS-NG 1.09 0.00 0.98 0.01 1.10 0.00

TVP-MIDAS-SV-NG 1.03 0.00 1.08 0.00 1.10 0.00

TVP-MIDAS-SVt-NG 1.07 0.00 1.10 0.00 1.13 0.00

TVP-MIDAS-HS 0.90** 0.03 1.05 0.00 1.03 0.00

TVP-MIDAS-SV-HS 0.97 0.03 0.98 0.02 1.00 0.01

TVP-MIDAS-SVt-HS 0.97 0.00 1.00 0.03 1.04 0.01

Notes: *, **, *** denote the 10, 5, and 1 percent significant level of the Diebold-Mariano predictability
test. + and ++ denote the forecasts in model confidence sets M̂∗

90% and M̂∗
75% of Hansen, Lunde, and

Nason (2011).
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Appendix B: Additional Simulation Results

In this appendix we present additional results based on simulated data generated from

a TVP-MIDAS model with time-varying weighting functions based on the exponential

Almon polynomials. Overall, these results confirm that the proposed TVP-MIDAS models

with the linear parameterizations can recover the time-varying coefficients on the nonlinear

weighting functions and provide similar in-sample fit relative to an oracle.

Figure 4: Posterior estimates of βi,t, i = 1, 2, 3, from the proposed TVP-MIDAS models
with the Fourier series and Almon lag polynomial basis functions (solid blue line) against
the true values (dashed black line) and estimates from the TVP-MIDAS model with
known exponential Almon lag polynomial weighting functions (solid red line).

More specifically, Figure 4 plots the posterior estimates of β1,t, β2,t and β3,t from the

proposed TVP-MIDAS models with two types of basis functions (Fourier series and Almon

lag polynomials), as well as estimates from a TVP-MIDAS model in which the nonlinear

weighting functions are assumed to be known. The posterior estimates from the proposed
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TVP-MIDAS models are very similar to those from the benchmark, and both closely track

the true values.

Next, Figure 5 reports the posterior distributions of Bayesian R2 for the proposed TVP-

MIDAS models and the benchmark. The results again show the proposed TVP-MIDAS

models achieve similar Bayesian R2 values compared to the benchmark, suggesting similar

in-sample fit.

Figure 5: Posterior distributions of the Bayesian R2 from the proposed TVP-MIDAS
models with Fourier series and Almon lag polynomial basis functions and the TVP-MIDAS
model with known exponential Almon lag polynominal weighting functions.
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Appendix C: Data

This appendix provides details of the time-series used in the nowcasting application. In

particular, Table 17 lists the variables used in the small-scale and the large-scale cases,

their sampling frequencies and the transformations applied.

Table 17: Description the variables used in the nowcasting application.

Variable Small Large Frequency Transformation

Real GDP x x Quarterly 400∆lnxt

NFCI x x Weekly Level

Interest Rate Spread x x Daily Level

Industrial Production x x Monthly 100∆lnxt

Housing Starts x Monthly 100∆lnxt

Average Weekly Hours of Production x Monthly lnxt

Civilian Labor Force Level x Monthly 100∆lnxt

All Employees, Total Nonfarm x Monthly 100∆lnxt

Capacity Utilization x Monthly 100∆lnxt

Unemployment Rate x Monthly Level

CPI Inflation x Monthly 100∆lnxt

S&P 500 x Monthly 100∆lnxt

Fed Funds Rate x Monthly Level

BAA Corporate Bond Yield x Monthly Level

US/UK Exchange Rate x Monthly 100∆lnxt

VIX x Monthly lnxt
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Appendix D: Noncentered Parameterization of TVP-

MIDAS

This appendix outlines the noncentered parameterization (Frühwirth-Schnatter and Wag-

ner, 2010; Bitto and Frühwirth-Schnatter, 2019) of the proposed TVP-MIDAS framework

and how we impose the global-local shrinkage priors on the time-varying parameters.

Specifically, rewrite the TVP-MIDAS model as

yt+h = x′b,tbt + εt+h, εt+h ∼ N (0, λte
gt), (18)

where xb,t = [1,y′t, z
′
t,θ
′
tVtx

(m)
t ]′ and bt = [αt,ρ

′
t,γ
′
t, βt]

′. The time-varying coeffi-

cients bt and θt are parameterized as bt = b0 + Ωb̃t and θt = θ0 + Ξθ̃t, where

Ω = diag(ω2
1, . . . , ω

2
pb

), Ξ = diag(ξ2
1 , . . . , ξ

2
p+1), and b̃t and θ̃t follow the random walk

processes:

b̃t = b̃t−1 + ub
t , ub

t ∼ N (0, Ipb),

θ̃t = θ̃t−1 + uθ
t , uθ

t ∼ N (0, Ip+1)

with b̃0 = 0 and θ̃0 = 0.

Following Huber, Koop, and Onorante (2021), we impose global-local shrinkage priors on

bNC = (b′0, ω
2
1, . . . , ω

2
pb

)′ and θNC = (θ′0, ξ
2
1 , . . . , ξ

2
p+1)′ as follows:

bNCi ∼ N (0, φb
i τ

b), φb
i ∼ f, τb ∼ g, i = 1, . . . , pb,

θNCj ∼ N (0, φθ
j τ

θ), φθ
j ∼ f, τθ ∼ g, j = 1, . . . , p+ 1.

Here τb and τθ control global shrinkage, while φb
i and φθ

j govern the shrinkage of individual

coefficients. The choice of the distributions f and g determines the type of global-local

shrinkage prior specified. In this study, we consider three prominent global-local shrinkage

priors: the Horseshoe prior (Carvalho, Polson, and Scott, 2010), the normal-gamma prior

(Brown and Griffin, 2010), and the Dirichlet-Laplace prior (Bhattacharya, Pati, Pillai,

and Dunson, 2015). For implementation, we adopt the MCMC algorithm proposed by

Cross, Hou, and Poon (2020), and we refer the readers to their paper for further details

regarding the algorithmic procedures.
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Frühwirth-Schnatter, S., and H. Wagner (2010): “Stochastic model specification
search for Gaussian and partial non-Gaussian state space models,” Journal of Econo-
metrics, 154, 85–100.

Gelman, A., B. Goodrich, J. Gabry, and A. Vehtari (2019): “R-squared for
Bayesian regression models,” The American Statistician.

Ghysels, E. (2016): “Macroeconomics and the reality of mixed frequency data,” Journal
of Econometrics, 193(2), 294–314.

Ghysels, E., P. Santa-Clara, and R. Valkanov (2005): “There is a risk-return
trade-off after all,” Journal of financial economics, 76(3), 509–548.

Ghysels, E., A. Sinko, and R. Valkanov (2007): “MIDAS regressions: Further
results and new directions,” Econometric reviews, 26(1), 53–90.

Gneiting, T., and R. Ranjan (2011): “Comparing density forecasts using threshold-
and quantile-weighted scoring rules,” Journal of Business & Economic Statistics, 29(3),
411–422.
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