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ABSTRACT

In some rare-event settings, exponentially twisted distributions perform very badly. One solution to this
problem is to use mixture distributions. However, it is difficult to select a good mixture distribution for
importance sampling. We here introduce a simple adaptive method for choosing good mixture importance
sampling distributions.

1 INTRODUCTION

The estimation of rare-event probabilities is an area of Monte Carlo simulation that is of both practical
and theoretical interest. It has practical applications in areas as diverse as finance, systems biology and
high-energy physics — see for example Rubino and Tuffin (2009) and Kroese, Taimre, and Botev (2011).
Rare-event estimation is also of considerable theoretical interest, and has contributed to the development of
many novel Monte Carlo methods. One of the central techniques that is employed to improve the speed and
accuracy with which rare-event probabilities are estimated is importance sampling. The idea is to effect
a change of probability measure so that the rare event of interest is no longer rare. A popular choice of
change of measure is to employ exponential twisting. The problem of efficient importance sampling then
reduces to one of finding good twisting parameters. However, as was first demonstrated in Glasserman and
Wang (1997), exponential twisting can result in estimators that perform very badly. There are a number of
approaches to address this problem, including Dupuis and Wang (2005), Owen and Zhou (2000) and Boots
and Mandjes (2002). In this paper, we concentrate on using importance sampling distributions that are
mixtures of distributions, an approach first suggested by Sadowsky and Bucklew (1990). A major limitation
to the use of mixture distributions in importance sampling is the difficulty in quickly and effectively finding
good parameters for these distributions. As a result, mixture distributions do not appear to be widely used
as importance sampling distributions. In this paper, we demonstrate how the improved Cross-Entropy (CE)
idea of Chan (2010) provides a particularly straightforward approach to finding good mixture importance
sampling distributions. We give numerical results for several problems where exponential twisting fails.
These show that the improved CE estimator performs as well as the asymptotically efficient estimator when
it is known, and outperforms a single exponentially twisted distribution.
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2 IMPORTANCE SAMPLING AND EXPONENTIAL TWISTING

The primary aim of rare-event simulation is to estimate quantities of the form

`= P f (A) = E f I(A), (1)

where A is a rare event pertaining to some random object X (formally, A is in the σ -algebra generated by
X, that is A ∈ σ(X)), I is the indicator function and E f indicates that the expectation is calculated with
respect to some probability density f (more precisely, X has the probability density function f ). Let

I = I(A).

Then, ` can be estimated directly by the Crude Monte Carlo estimator

ˆ̀=
1
N

N

∑
i=1

Ii,

where each Ii is an independent and identically distributed replicate of I. Because the event A is rare,
this estimator is highly inefficient. The idea of importance sampling is that (1) can be rewritten to get an
estimator under which A is much more likely. The expectation under f is replaced by an expectation under
g as follows

`= E f I(A) = Eg
f (X)

g(X)
I(A),

provided that g(x) = 0 whenever I(A) f (x) = 0. This probability can now be estimated using the importance
sampling estimator

ˆ̀=
1
N

N

∑
i=1

f (Xi)

g(Xi)
Ii, (2)

where the Xi (and Ii) are simulated under g. The aim is to choose an importance sampling density g so that
the error of the estimator (2) is in some sense minimized. Theoretically, the best case scenario is where
the estimator has zero variance. We can achieve this by choosing g to be equal to the conditional density

g∗(x) =
I(A) f (x)
P(A)

= f (x |A).

Practically, this choice is not feasible, because the normalizing constant P(A) is the very quantity we are
trying to estimate. It does, however, give insight into what a good importance sampling distribution should
look like. In particular, the importance sampling distribution should not change the ways in which a rare
event occurs. More precisely, if a rare event can happen in several different ways, the relative proportions
with which these different ways occur ought not to be changed under the importance sampling distribution.
An often used choice of importance sampling distribution is an exponentially twisted version of the original
distribution. That is, the importance sampling distribution is taken as

fθ (x) =
exp{θᵀx} f (x)
Eexp{θᵀX}

,

where θ is a vector of parameters that allows us to control the shape of the distribution. This is a particularly
common choice in a light-tailed setting (where E f exp{θiXi} < ∞ for all θi in a neighborhood of zero
and all Xi that are elements of X). Exponential twisting is an attractive approach because the twisted
distributions are straightforward to draw from and the likelihood ratio is straightforward to compute. In
simple settings, one can either solve directly for the θ that minimizes the variance of the estimator or find
a θ such that the asymptotic rate at which the variance of the estimator goes to zero is maximized. In
more complicated settings, adaptive methods such as the CE method or the Variance Minimization method
can be employed to find good importance sampling distributions — see Asmussen and Glynn (2007) or
Kroese, Taimre, and Botev (2011). However, as described below, exponential twisting may lead to poorly
performing estimators.
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3 TWO PROBLEMS

The following two problems give examples of settings where exponentially twisting a distribution gives a
poorly performing estimator. The common feature is that the rare event can happen in more than one way.
In these settings, exponential twisting will put too much emphasis on certain occurrences of the rare event
and not enough on others.

3.1 Problem 1: An n-Step Random Walk Hitting a Non-Convex Set

Given n standard normal random variables X1, . . . ,Xn, we define Sn = X1 + · · ·+Xn. We wish to estimate

P(A) = P({Sn > na}∪{Sn <−n(a+ ε}) ,

where ε > 0. This event naturally decomposes into two events A1 and A2, where A1 = {Sn > na} and
A2 = {Sn <−n(a+ ε)}. Here, twisting the distribution of the Xi corresponds to changing the means of the
variables. In doing so, we make one event more probable and the other event less probable. In this case,
it makes sense to twist towards the more likely, and thus asymptotically important, event A1. However,
doing this results in a highly skewed distribution for the estimator (2). As A2 becomes rarer, the likelihood
ratio f (x)/ fθ (x) can take on increasingly large values. This is because P f (A2)� Pg(A2). If a and ε are
such that a+ε +θ 2/2 > 1 then it is easy to see that when A2 occurs, the likelihood ratio is bounded from
below by en. In the worst case, this can result in an estimator with asymptotically infinite variance.

3.2 Problem 2: A Weighted Sum of Indicator Functions

Let X1, . . . ,X5 be Exp(1) random variables. We wish to estimate the following probability

P(A) = P
(

1I(X1 > γ)+2I(X2 > γ)+3I(X3 > γ)+4I(X4 > γ)+5I(X5 > γ)≥ 6
)
,

where γ > 0. This rare-event can be represented as the union of different events in a variety of
ways. For example, we will adopt the decomposition A1 = {1I(X1 > γ)+5I(X5 > γ)≥ 6}, . . ., A6 =
{3I(X3 > γ)+4I(X4 > γ)≥ 6}, where these six events represent the different ways that the event can happen
with two indicators being on (equal to 1). Unlike the preceding example, these events have a non-zero inter-
section. For example, it is possible that both 1I(X1 > γ)+2I(X6 > γ)> 6 and 3I(X3 > γ)+4I(X4 > γ)≥ 6.
If we use a single twisted distribution in this problem, we will effectively increase the probability of
each indicator being on. However, we do so in a way the makes some of the events A1, . . . ,A6 more
likely than others, even though they should clearly happen with equal probabilitity. For example,if
γ = 10 and we use the multi-level CE approach, we get the following probabilities Pg(X1 > 10) ≈ 0.06,
Pg(X2 > 10) ≈ 0.09, Pg(X3 > 10) ≈ 0.04, Pg(X4 > 10) ≈ 0.17 and Pg(X5 > 10) ≈ 0.28. This means
that under our CE importance sampling distribution, Pg(A1) = Pg(X1 > γ)Pg(X5 > γ) ≈ .02, whereas
Pg(A4) = Pg(X4 > γ)Pg(X5 > γ) = .05. In addition, none of the events happen sufficiently often. The
numerical results given below show that, as a result, the CE estimator has a high relative error compared
to an estimator using a mixture distribution.

4 Solutions

When faced with problems where exponential twisting does not work, there are at least three solutions, as
described in Blanchet and Mandjes (2009). We can

1. Decompose the rare-event into disjoint events and estimate the probability of each one of these
separately. This is the approach in Boots and Mandjes (2002).

2. Use a state dependent estimator, as in Dupuis and Wang (2005).
3. Use a mixture of exponentially twisted distributions.

The first option is attractive if the event naturally decomposes into a finite number of disjoint events, as
in the first problem given above. However, if the event does not have a natural disjoint decomposition,



Brereton, Chan, and Kroese

as in Problem 2, this method becomes difficult to implement. The second option requires considerable
knowledge of the problem at hand and tends to be difficult to implement. We focus here on the third option.
It is our belief that this approach is straightforward and generally applicable with minimum knowledge
of the structure of the problem. The idea is that, instead of using a single twisted distribution, we use a
mixture of L exponentially twisted distributions, with pdf

fθ (x) =
L

∑
i=1

πi fθi(x),

where the πi are positive and sum to 1. In settings where the twisting parameters of the mixture distribution can
be found using Large Deviations type arguments, the resulting estimator can be shown to be asymptotically
efficient, see Bucklew (2004). Practically, however, it may not be obvious what a good choice of twisting
parameters should be. We show in the following, that we are able to use adaptive methods to fit mixture
distributions with strong evidence that this approach outperforms existing adaptive methods.

5 THE IMPROVED CROSS-ENTROPY METHOD

The idea of the CE method is to reduce the Cross-Entropy ‘distance’ between the zero-variance pdf g∗(x)
and a proposed importance sampling pdf g(x;θ). We choose the distribution parameters θ to solve the
following stochastic program

vCE = argmax
v

Eg∗ logg(X;θ).

This is usually estimated via a levels approach as in Rubinstein and Kroese (2004). However, with the
improved CE method, detailed in Chan, Glynn, and Kroese (2011), we adopt a direct approach. We draw
a sample (Y1, . . .YM) of size M approximately from g∗, and then use the estimator

v̂CE = argmax
v

1
M

M

∑
j=1

logg(Y j;v). (3)

If the distribution we are trying to fit is a mixture distribution, then this problem does not have a closed-form
solution. However, we resolve this problem as follows. We split the rare event of interest A into a series of
not necessarily disjoint events A1, . . . ,AL. We associate a distinct twisted distribution to each one of these
events and estimate its twisting parameters via (3), using only those elements of the sample Y1, . . . ,YM
that correspond to that event occurring. We then use the normalized proportions with which each event
occurs as estimates for the weights π1, . . . ,πl of the distribution.
Algorithm 5.1 (Improved CE) Let A be a rare event decomposed into rare-events A1, . . . ,AL.

1. Draw a sample Y1, . . . ,YM that is approximately from g∗.
2. Set i = 1.
3. Identify the set YAi = {All elements of Y1, . . . ,YM such that Ai occurs}.
4. Set πi = |YAi |. Find θi = argmaxθ ∑YAi

log fθ (Y j;θ).
5. If i < L, set i = i+1 and repeat from Step 3.
6. Normalize the πi so that ∑

L
i=1 πi = 1.

7. Draw X1, . . . ,XN from ∑
L
i πi fθ (x;θi).

8. Estimate ` via

ˆ̀=
1
N

N

∑
i=1

f (Xi)

∑
L
j=1 π j fθ (Xi;θ j)

Ii.

6 DRAWING FROM THE ZERO-VARIANCE DISTRIBUTION

The improved CE method assumes that we are able to draw from g∗. In general, this necessitates the use
of Markov Chain Monte Carlo (MCMC) methods. However, the structure of g∗ means that it is often
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particularly difficult to sample from. In particular, the zero-variance distributions of the situations that we
are looking at are characterized by multiple modes separated by regions of very low probability. In these
settings, most MCMC algorithms fail to mix properly. As such, care must be taken that an appropriate
MCMC sampler is used. We use a Generalized Splitting algorithm as in Botev and Kroese (2011) to draw
from g∗. This algorithm is specially designed to ensure that the chain mixes well in a multi-modal setting.

7 NUMERICAL RESULTS

In the following, we give numerical results comparing the performance of our estimators to a number
of other estimators. In Tables 1, 2 and 3, the improved CE estimator is applied to Problem 1. We use
a mixture of two distributions, one twisted to make {Sn > na} more likely, the other twisted to make
{Sn <−n(a+ ε)} more likely. We contrast the performance of our estimator with the asymptotically
efficient estimator suggested in Glasserman and Wang (1997), which is also a mixture distribution. We
also include, as a reference point, the flawed naı̈ve Large Deviations estimator. This estimator significantly
underestimates the probability. Note that it also severely underestimates the relative error. This is due to
the highly skewed distribtion of the estimator - see Bucklew (2004) for a discussion. The simulation was
carried out with a sample size of N = 105. The numerical results show that the improved CE estimator
has a similar level of performance to the asymptotically efficient estimator.

For the second problem, we contrast the performance of the improved CE estimator against the
performance of the standard CE estimator (with a single exponentially twisted distribution). We also
compare this with a distribution twisted so that for i = 1, . . . ,5, EXi = γ . For the improved CE estimator,
we use a mixture of six distributions - each one corresponding to one of the events A1, . . . ,A6 described
above. The simulation was carried out with a sample size of N = 105. The numerical results, given in
Tables 4, 5 and 6, show that the improved CE estimator outperforms the standard CE estimator (which uses
a single exponentially twisted distribution) and the other importance sampling estimator in this setting, and
does much better as the event gets rarer.

Table 1: Performance of different estimators for Problem 1, with n = 10, a = 1 and ε = .01.

Estimator ˆ̀ Estimated relative error
Actual value .00148 . . . n/a

Asymptotically efficient (mixture) .00149 .006
Improved CE (mixture) .00148 .006

LD (naı̈ve) 7.89×10−4 .006

Table 2: Performance of different estimators for Problem 1, with n = 10, a = 1.5 and ε = .01.

Estimator ˆ̀ Estimated relative error
Actual value 1.949 . . .×10−6 n/a

Asymptotically efficient (mixture) 1.97×10−6 .007
Improved CE (mixture) 1.9×10−6 .007

LD (naı̈ve) 1.053×10−6 .007

Table 3: Performance of different estimators for Problem 1, with n = 20, a = 1 and ε = .01.

Estimator ˆ̀ Estimated relative error
Actual value 7.01 . . .×10−6 n/a

Asymptotically efficient (mixture) 6.96×10−6 .007
Improved CE (mixture) 7.04×10−6 .007

LD (naı̈ve) 3.9×10−6 .007
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Table 4: Performance of different estimators for Problem 2, with γ = 6.

Estimator ˆ̀ Estimated relative error
Actual value 3.67 . . .×10−5 n/a

CE 3.46×10−5 .038
Improved CE (mixture) 3.79×10−5 .027

IS (EXi = γ) 3.67×10−5 .066

Table 5: Performance of different estimators for Problem 2, with γ = 8.

Estimator ˆ̀ Estimated relative error
Actual value 6.749 . . .×10−7 n/a

CE 6.27×10−7 .062
Improved CE (mixture) 6.78×10−7 .037

IS (EXi = γ) 6.85×10−7 .161

Table 6: Performance of different estimators for Problem 2, with γ = 10.

Estimator ˆ̀ Estimated relative error
Actual value 1.24 . . .×10−8 n/a

CE 1.59×10−8 .224
Improved CE (mixture) 1.17×10−8 .045

IS (EXi = γ) 1.128×10−8 .215

8 FURTHER RESEARCH

We believe that the adaptive approach to finding mixture importance sampling distributions has yet to be
fully explored. There are several areas where further research is warranted. One is finding an optimal way
to select the weights in the mixture distribution. The algorithm given above uses a fairly naı̈ve approach,
using the normalized empirical proportions with which each event occurs. A better algorithm might take
account of higher moments in choosing proportions. Another issue is deciding an optimal approach to
splitting a rare event A into sub-events A1, . . . ,AL. For example, in Problem 2, it might be sufficient to use
a mixture of two different distributions. It could be possible to adaptively decide on an optimal partition
of A.
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