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1 Introduction

As is evident in public commentary (see, e.g., Bernanke 2007 and Mishkin 2007), central
bankers and other policymakers pay considerable attention to measures of long-run infla-
tion expectations. These expectations are viewed as shedding light on the credibility of
monetary policy. Monetary policy tools work differently if long-run inflation expectations
are firmly anchored than if they are not. In general, monetary policy is thought to be
most effective when long-run inflation expectations are stable.

These considerations have contributed to the development of a large literature on the
measurement of long-run inflation expectations. One simple approach is to rely on direct
estimates of inflation expectations from surveys of professionals or consumers.1 For exam-
ple, Federal Reserve commentary such as Mishkin (2007) includes long-run expectations
based on the Survey of Professional Forecasters’ (SPF) projection of average inflation 1
to 10 years ahead.

Other approaches focus on econometric estimates of trend inflation. A large literature
uses econometric methods to estimate inflation trends and forecast inflation (see, among
many others, Stock and Watson 2007, Chan, Koop and Potter 2013, and Clark and
Doh 2014).2 One portion of this literature combines econometric models of trend with
the information in surveys (see, among others, Kozicki and Tinsley 2012, Wright 2013,
Nason and Smith 2014, Mertens 2016, and Del Negro, et al. 2017).3

In recent years, some countries have experienced extended periods of inflation running
below survey-based estimates of long-run inflation expectations. For example, Fuhrer,
Olivei, and Tootell (2012) show that actual inflation in Japan consistently ran below
(survey-based) long-run inflation expectations in their sample, from the early 1990s to
2010. More recently, in the United States, for each year between 2008 and 2016, inflation
in the core PCE price index ran below the SPF long-run forecast of roughly 2 percent
(which coincides with the Federal Reserve’s official goal for inflation).4 Even though
survey-based inflation expectations have been stable, actual inflation has been low enough
for long enough to pull some common econometric estimates of trend inflation well below
2 percent (see, e.g., Bednar and Clark 2014). These experiences raise the question of
whether it is possible for survey-based inflation expectations to become disconnected
from actual inflation. Such a disconnect (if irrational) would make such expectations less
useful for gauging the credibility of monetary policy and for forecasting inflation.

1Direct estimates of inflation expectations can also be obtained based on the relationship between
real and nominal bonds. However, estimates of break-even inflation calculated using these are usually
available only for a short time span. And there are reasons to expect that break-even inflation might
reflect factors other than just long-run inflation expectations (e.g., if the risk premium is time-varying).
Faust and Wright (2013) find it too volatile to be a sensible forecast for long-run expected inflation. For
these reasons, we do not use break-even inflation data in this paper.

2The reader is referred to Faust and Wright (2013) for a recent survey on inflation forecasting,
including a discussion of inflation surveys and methods for estimating trend inflation.

3Some DSGE models — developed in Del Negro and Schorfheide (2013) and references therein —
treat the inflation target of the central bank as a random walk process and include survey measures of
long-run inflation expectations as indicators of the target in model estimation. In a different vein, Aruoba
(2016) develops an econometric, three-factor model of the term structure of inflation expectations.

4This statement is based on Q4/Q4 inflation rates for each year. The statement also applies to
headline inflation, except that headline inflation rose above two percent for one year, 2011.

2



In this paper we develop a new model to examine the relationship between inflation,
long-run inflation expectations, and trend inflation. We build on papers such as Kozicki
and Tinsley (2012) by using models which are more flexible in empirically important
directions, extending recent work with unobserved components models with stochastic
volatility (UCSV) such as Stock and Watson (2007, 2015), Chan, Koop and Potter (2013),
Clark and Doh (2014), Garnier, Mertens, and Nelson (2015), and Mertens (2016). Papers
such as Kozicki and Tinsley (2012) equate long-run forecasts with trend inflation. Sim-
ilarly, econometric estimates of trend inflation are sometimes calibrated to be the same
as surveys. We also build on work by Nason and Smith (2014, 2016) that considers the
possible disconnect between inflation and short-run inflation expectations in the context
of a simple unobserved components model.

Our model permits us to assess the evidence for the links between trend inflation and
long-run inflation expectations that have been assumed in some of the aforementioned
literature. For example, the model of Mertens (2016) assumes that trend inflation moves
one-for-one with long-run inflation expectations but allows a constant difference in the
levels of trend inflation and long-run inflation expectations. Our approach allows us to
assess the evidence in favor of such restrictions. We are able to estimate the relationship to
investigate whether equating trend inflation with inflation expectations based on surveys
improves the model of inflation. Our model permits the relationship to vary over time,
such that trend inflation can be equal to the forecasts provided in the surveys at some
points in time, but at other points in time forecasts can provide biased or inefficient
estimates of trend inflation. We include comparisons to other, restricted versions of
the model to assess the importance of such time variation to the trend estimate, model
fit, and forecasting. Another point of departure from the existing literature is that, in
our baseline model (although not all our models), we only use survey data on long-run
inflation forecasts, allowing us to avoid the use of a subsidiary (possibly mis-specified)
model linking short-run forecasts to long-run inflation expectations.

In our empirical work, we compare the fit and forecasting performance of our model
to more restricted alternatives and some other models from the literature, using data for
both the U.S. and a few other countries. We focus on results for CPI inflation and inflation
expectations from Blue Chip and show our key results to be robust to two other data
choices for the U.S. We present evidence that extensions over simpler approaches such as
the addition of stochastic volatility and time-varying coefficients are important in practice.
Survey-based measures of inflation expectations are found to be useful for estimating
trend inflation, producing smoother and more precise estimates than a UCSV model.
However, we also present evidence that the survey-based measures should not simply be
equated with trend inflation; the relationship between the two is more complicated and,
in some cases, time-varying. We include results from a pseudo-out-of-sample forecasting
exercise, which shows point and density forecasts from our model to be at least as good
as those from other models that have been found successful in the inflation forecasting
literature. After establishing these results in U.S. data, we consider model estimates
based on inflation and long-run survey expectations for Italy, Japan, and the UK. For
these countries, it continues to be the case that the evidence indicates long-run survey
expectations to be helpful to trend estimation, model fit, and forecasting. Although for
Italy the data indicate the survey and trend inflation move one-for-one with no bias, for
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Japan and the UK the data support a more flexible relationship.
Although our main empirical work does not directly address the question of why

long-run surveys may differ from trend inflation, the final section of this paper includes
some discussion of this issue in light of recent work on various topics, including work
on informational rigidities in the professionals’ forecasts by Coibion and Gorodnichenko
(2015) and Mertens and Nason (2015).

2 Econometric Modeling of Trend Inflation

As discussed in sources such as Mertens (2016), an unobserved components framework
is commonly used to model inflation, πt, as being composed of trend (or underlying)
inflation, π∗t , and a deviation from trend, the inflation gap, ct:

πt = π∗t + ct. (1)

The trend in inflation is defined (consistent with the Beveridge-Nelson decomposition)
as the infinite-horizon forecast of inflation conditional on the information set available in
period t, denoted Ωt:

lim
j→∞

E [πt+j|Ωt] = π∗t , (2)

which implies a random walk process for the trend π∗t and a stationary, mean-zero inflation
gap, ct.

There are many possible econometric models consistent with this simple decomposi-
tion, and we will argue for a particular modeling framework soon. But the basic justifica-
tion for using surveys of long-run forecasts can be clearly seen from (2). If those surveyed
at time t about what inflation will be in period t+ j are rational forecasters, they can be
expected to be reporting E [πt+j|Ωt]. Thus, using (2), forecasts of long-run inflation will
correspond to trend inflation, π∗t . There are several ways that this relationship plus data
on long-run forecasts made at time t (zt) can be used to produce estimates of current
trend inflation, with Kozicki and Tinsley (2012) being an influential recent approach.

However, there are reasons to be cautious about simply equating long-run forecasts
from surveys with inflation trends, partly in light of the simple observations on the recent
experiences in the U.S. and Japan noted in the introduction. For instance, surveys may
produce forecasts that are biased, at least at some points in time. Survey forecasts
at long horizons might also not move one-for-one with trend inflation. Surveys might
also contain some noise, due to factors such as changes in participants from one survey
date to another. In addition, papers such as Coibion and Gorodnichenko (2015) and
Mertens and Nason (2015) find evidence of informational rigidities such that professional
forecasters are slow to adjust their expectations. Accordingly, we desire an econometric
specification that allows us to estimate the relationship between trend inflation and the
long-run expectation of forecasters rather than imposing a particular form. In our model,
a finding that long-run forecasts taken from surveys can be equated with trend inflation
is possible, but not assumed a priori.

Earlier work also suggests many other desirable features we want our econometric
model to have. First, Faust and Wright (2013) find improvements in forecast performance
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by using the inflation gap (as opposed to inflation itself) as a dependent variable and
modeling the inflation gap as the deviation of actual inflation from a slowly evolving
trend. Many of the other studies mentioned above with time-varying inflation trends
focus on an inflation gap. Our econometric specification follows this practice.

Second, the inflation gap, ct, should be stationary but may exhibit persistence. For
instance, a central bank may tolerate deviations of inflation from a trend or target for a
certain period of time, provided such deviations are temporary. Furthermore, the central
bank’s toleration for such deviations may change over time. For instance, Chan, Koop
and Potter (2013) discuss how the high inflation in the 1970s may have been partly due
to the combination of a large inflation gap (with only a small increase in trend inflation)
with a Federal Reserve tolerant of a high degree of inflation gap persistence. When
Paul Volcker subsequently became the Fed chair, this tolerance decreased and inflation
gap persistence dropped. We want our model to be able to accommodate such shifts in
persistence.

Third, a large number of papers, such as Stock and Watson (2007), have found the
importance of allowing for stochastic volatility, not only in the inflation equation but also
in the state equations which describe the evolution of trend inflation. We include this
feature in all of our models.

Finally, a general theme of many papers on inflation modeling, including Faust and
Wright (2013) and Stella and Stock (2013), is time-varying predictability. The time-
varying persistence and stochastic volatility features mentioned above are two such sources
of time-varying predictability, accommodated by the model features mentioned above.
The work of D’Agostino, Gambetti, and Giannone (2013) also indicates time-varying pa-
rameters to be helpful to forecast accuracy. Accordingly, we want a model with not only
stochastic volatility but also time-varying parameters (TVP).

2.1 Baseline Model

All of these features are built into the following extremely flexible model, which should
be able to accommodate any relevant empirical properties of the data on inflation (πt)
and the survey-based inflation expectation (zt). (Note that all of the errors defined
in the model below are independent over time and with each other.) We refer to this
specification as model M1:

πt − π∗t = bt(πt−1 − π∗t−1) + vt, (3)

zt = d0t + d1tπ
∗
t + εz,t + ψεz,t−1, εz,t ∼ N(0, σ2

z) (4)

π∗t = π∗t−1 + nt, (5)

bt = bt−1 + εb,t, εb,t ∼ TN(0, σ2
b), (6)

dit − µdi = ρdi (di,t−1 − µdi) + εdi,t, εdi,t ∼ N(0, σ2
di), i = 0, 1, (7)

vt = λ0.5
v,tεv,t, εv,t ∼ N(0, 1), (8)

nt = λ0.5
n,tεn,t, εn,t ∼ N(0, 1), (9)

log(λi,t) = log(λi,t−1) + νi,t, νi,t ∼ N(0, φi), i = v, n. (10)
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In this model, the inflation gap πt− π∗t follows an AR(1) process with a time-varying
coefficient and stochastic volatility. Allowing bt to be time-varying accommodates poten-
tial changes in the degree of persistence in the inflation gap. Note that we truncate the
innovations to the AR(1) coefficient in (6) so as to ensure the inflation gap is stationary
at every point in time (TN(µ, σ2) denotes the normal distribution with mean µ and vari-
ance σ2 truncated to ensure 0 < bt < 1). Trend inflation π∗t follows a random walk with
stochastic volatility in its innovations.

The long-run inflation expectation zt is dependent on trend inflation, with a time-
varying intercept d0t and slope coefficient d1t and an MA(1) error term. Accordingly, our
model captures three dimensions along with the survey expectation can provide what we
call a “biased” — a deliberate simplification of terms — measure of trend, through: (1)
a non-zero intercept, d0t; (2) a non-unity slope, d1t; and (3) an MA component in the
error term, reflected in ψ. We focus on the first two forms of “bias,” in either a constant
differential between trend inflation and the survey forecast or a failure of the survey to
move one-for-one with trend.5 Since d0t and d1t are time varying, we have the potential to
estimate changes in the relationship between long-run forecasts and trend inflation. For
instance, it is possible that long-run forecasts are unbiased estimates of trend inflation at
some points in time, but not others. Our model allows for this possibility, but a constant
coefficient model would not. Thus, investigating restrictions relating to d0t and d1t is of
economic interest. To allow for persistence in a long-term inflation forecast that may not
be adequately picked up by persistence in trend inflation, we add an MA(1) error term
to (4). Although the empirical evidence for the need for this MA error term is weak in
one of our U.S. data combinations (PCE inflation with PTR), in our baseline results for
the U.S. and in the results for other countries, the MA term is empirically important to
model fit and we include it in our general specification.

Variants of the model described above, excluding zt, involving only (possibly restricted
versions of) (3), (5), (6), (8), (9) and (10) have been used to estimate trend inflation by
several authors. For instance, the popular UCSV model of Stock and Watson (2007)
is this model with bt = 0, and Chan, et al. (2013) use this model with bounded trend
inflation but without stochastic volatility in εn,t. We stress that stochastic volatility is
often found to be important in models of trend inflation such as these.6 This feature
allows for the possibility that the volatility of trend inflation or deviations of inflation
from trend vary over time.

By adding the additional equations (4) and (7) to a conventional unobserved compo-
nents model such as the one defined by (3), (5), (6), (8), (9) and (10), we can potentially
improve the model’s ability to fit historical inflation data and its estimates of trend infla-

5Conceptually, the distinction between the infinite-horizon forecast that constitutes trend inflation
and the 10-year horizon of the survey expectation could cause d0,t to differ from 0 and d1,t to differ
from 1. In practice, though, for professional forecasters, it seems likely that the 10-year ahead survey
forecast is equivalent to an infinite-horizon forecast. For example, since the Federal Reserve established
its longer-run inflation objective of 2 percent, the 10 year-ahead forecast of PCE inflation from the Survey
of Professional Forecasters has stayed close to 2 percent. Moreover, in a cross-country analysis, Mehrotra
and Yetman (2014) find that survey forecasts at just a 24-month ahead horizon tend to cluster around
central bank inflation targets.

6For the errors in other equations, preliminary estimates suggest that an assumption of homoskedas-
ticity is reasonable.

6



tion. That is, adding the relationship between zt and π∗t should provide extra information
for estimating trend inflation beyond that provided in a univariate model involving in-
flation only. This information could improve precision of trend estimates, the model’s
ability to fit inflation, and forecast accuracy. Our model is less restrictive than those
used in some other studies that relate inflation and survey measures of inflation expecta-
tions, and our specification can be seen as consistent with the cointegration restrictions
imposed in these other studies (e.g., Mertens 2016, Mertens and Nason 2015, and Nason
and Smith 2014). These other studies impose stationarity of the difference between ac-
tual inflation and survey expectations. Our model is consistent with cointegration of the
survey expectation zt with trend inflation π∗t : the innovation term of the zt equation is
a stationary MA(1) process. Although the posterior of d0,t and d1,t need not be close to
0 or 1, respectively, our prior centers the initial values of these coefficients at 0 and 1,
respectively. So our prior implies cointegration of zt with trend inflation π∗t with a slope
coefficient of 1. With π∗t the source of integration in πt, it follows that we can think of
πt and zt as cointegrated as well.

In sum, our model is a structural time series model (e.g., the wish to directly construct
a direct measure of trend inflation implies a particular structure in our state space model)
with additional features added by empirical necessity (e.g., the necessity of allowing for
stochastic volatility, the possibility of persistence in the inflation process through addition
of MA errors, but also that short lag lengths suffice with inflation data). It builds on,
and shares, many similarities with other models in this literature. In our empirical work,
we will investigate some reduced form time series approaches. These will include, in our
forecast comparisons, a vector autoregression and vector error correction model, both
with time-varying parameters (TVP-VAR and TVP-VECM, respectively).

We use Bayesian methods to estimate all the unknown parameters of our models, in-
cluding latent variables such as trend inflation. The Markov Chain Monte Carlo (MCMC)
algorithm used for estimation is similar to that used in previous work (e.g., Chan et al.
2016) and, hence, we say no more of it here. The priors used in this paper are informa-
tive, but not dogmatically so. In models such as ours, involving many unobserved latent
variables, use of informative priors is typically necessary.7 An earlier version of this pa-
per, Federal Reserve Bank of Cleveland Working Paper 15-20, presented results from a
prior sensitivity analysis of our baseline model, showing our results are fairly robust to
changes in our prior. Complete details of the MCMC algorithm and prior are given in
the Technical Appendix.

2.2 Extensions of the Baseline Model

Our baseline model excludes an economic activity indicator from the inflation gap equa-
tion (4). We do so in the interest of parsimony, motivated in part by evidence in the
forecasting literature (see Faust and Wright 2013 and references therein) of the difficulty
of using economic activity variables to improve predictions of inflation. However, in our

7Indeed, in the UC-SV model of Stock and Watson (2007), the stochastic volatility equations equiv-
alent to our (10) are assumed to have a common error variance and this common variance is fixed at a
specific value. Our prior is much less restrictive than this.

7



analysis for the U.S., we also consider a specification (denoted M7) augmented to in-
clude in the inflation equation an unemployment rate gap with a time-varying coefficient.
Our specification with the unemployment gap has precedents in other recent studies, in-
cluding: Stella and Stock (2013), which generalizes the UCSV formulation of Stock and
Watson to relate the inflation gap to an unemployment gap; Jarocinski and Lenza (2015),
which considers a specification involving a factor model of economic activity, for the pur-
pose of estimating the output gap, with a structure for inflation, trend inflation, and
inflation expectations that corresponds to a restricted, constant parameter version of our
formulation; and Morley, Piger, and Rasche (2015), which considers a bivariate, constant
parameter model relating inflation less a random walk trend to an unemployment gap.

Our baseline model includes only long-run inflation expectations since they should
most directly reflect trend inflation. From Blue Chip, we have data on short-run expec-
tations. To assess the potential value of short-horizon expectations, we also consider a
version of our model (denoted M6) augmented to include these expectations, using an
additional state equation which is the same as (4) except that a measure of short-run
inflation expectations is the dependent variable.

In our results below, we also include for comparison a model (denoted M8) which
adds one lag of the inflation gap in the equation for zt and drops the MA component:

zt = d0t + d1tπ
∗
t + d2t(πt−1 − π∗t−1) + εz,t εz,t ∼ N(0, σ2

z). (11)

The motivation for this specification can be found in papers such as Erceg and Levin
(2003), which argue that, in the absence of a credible monetary regime, long-run inflation
forecasts may respond to short-run movements in inflation as well as changes in trend
inflation.

2.3 Restrictions on the Baseline Model

To help assess the ability of our model to improve the precision of trend estimates, the fit
of inflation, and forecasts of inflation, we will also consider some more restricted models.
The first of these additional models, M2, restricts d0t and d1t to be constants, d0 and d1.
Model M3 imposes d0 = 0 and d1 = 1, which is the restriction that long-run inflation
forecasts are unbiased estimates of trend inflation. These two models will shed light on
the value of time variation in the coefficients and the value of allowing some bias in
the relationship between the survey expectation and trend inflation (using the broad
definition of bias indicated above).

Model M4 restricts our baseline model M1 by making no use of inflation expectations
— which will shed light on the value of those expectations to inflation modeling. As
such, it is a UCSV model like that of Stock and Watson (2007) but extended to allow an
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autoregressive component:8

πt − π∗t = bt(πt−1 − π∗t−1) + vt, (12)

π∗t = π∗t−1 + nt, (13)

bt = bt−1 + εb,t, εb,t ∼ TN(0, σ2
b), (14)

vt = λ0.5
v,tεv,t, εv,t ∼ N(0, 1), (15)

nt = λ0.5
n,tεn,t, εn,t ∼ N(0, 1), (16)

log(λi,t) = log(λi,t−1) + νi,t, νi,t ∼ N(0, φi), i = v, n. (17)

Model M5 is an AR(1) model in “gap form” similar to that used in Faust and Wright
(2013), which they describe as “amazingly hard to beat by much.” We call this the
Faust and Wright model below.9 We add stochastic volatility to this model to aid in
comparability with our own. Specifically, we define the gap as gt = πt − zt and use the
model:

gt = βgt−1 + εg,t, εg,t ∼ N(0, λg,t), (18)

log(λg,t) = log(λg,t−1) + νg,t, νg,t ∼ N(0, φg), (19)

where we assume |β| < 1. The forecast for πt+k given data until time t is computed by
adding zt to a forecast for gt+k.

Finally, in the out-of-sample forecast comparison we consider bivariate TVP-VAR and
TVP-VECM specifications, featuring stochastic volatility. Both models use a data vector
containing inflation and long-run inflation expectations, such that yt = (πt, zt)

′. The
TVP-VAR is given by

B0tyt = b0t +B1tyt−1 +B2tyt−2 + εyt , εyt ∼ N(0,Σt), (20)

where b0t is a 2 × 1 vector of time-varying intercepts, B1t, B2t are 2 × 2 VAR coefficient
matrices, B0t is a 2 × 2 lower triangular matrix with ones on the diagonal and Σt =
diag(exp(h1t), exp(h2t)). The log-volatilities and the VAR coefficients evolve according to
independent random walks. The TVP-VECM takes the following form:

C0t∆yt = c0t + c1t(πt−1 − zt−1) + C1t∆yt−1 + ε∆yt , ε∆yt ∼ N(0,Σt), (21)

where c0t and c1t are 2×1 vectors of time-varying intercepts and coefficients, C1t is a 2×2
coefficient matrix, and C0t is a 2× 2 lower triangular matrix with ones on the diagonal.
Again the VAR coefficients and log-volatilities evolve according to independent random
walks.

The models considered in this paper are summarized in the following table. Note,
however, that not every model is used with every dataset, partly due to data availability
and partly out of consideration for brevity. For example, for some datasets we have no
short-run inflations expectations data so that M6 is not estimated, and some models (the
TVP-VAR and TVP-VECM models) are only used in the forecast comparison.

8The supplemental appendix of Cogley, Primiceri and Sargent (2010) makes use of a similar model.
9Our specification generalizes their “fixed ρ” model by estimating coefficients. Accordingly, our model

takes the same form as their “AR-gap” model, except that, at all horizons, we use the 1-step ahead form
of the model and iterated forecasts, whereas they use a direct multi-step form of the model.
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Model Brief Description
M1 Our model as defined in equations (3) through (10)
M2 Restricts M1 such that d0t and d1t are constant
M3 Restricts M1 such that d0t = 0 and d1t = 1
M4 UCSV (M1 without inflation expectations data) of equations (12) through (17)
M5 Faust-Wright model (AR(1) in gap form) in equations (18) and (19)
M6 M1 augmented with short-run inflation expectations
M7 M1 augmented with unemployment rate gap in inflation equation
M8 M1 augmented with one lag of inflation gap in equation for zt
M9 TVP-VAR
M10 TVP-VECM

3 Data

Policymakers are interested in a range of different measures of inflation, and the research
literature considers a range of measures. Accordingly, for the U.S., we provide results for
several combinations of measures of inflation and inflation expectations. Subsequently,
we present an international comparison using data from Italy, Japan, and the UK. We
chose these countries in part because the forecast data go back as far as 1990 and in part
because the survey-based long-run forecasts show some noticeable time variation.

For the U.S., we use three different measures of quarterly inflation (πt in the model):
i) inflation based on the consumer price index (CPI inflation), ii) inflation based on the
consumer price index excluding food and energy (core CPI inflation), and iii) inflation
based on the price index for personal consumption expenditures (PCE inflation). Inflation
rates are computed as annualized log percent changes (πt = 400 ln (Pt/Pt−1), where Pt
is a price index). The CPI has the advantage of being widely familiar to the public, and
for much of our sample, the available inflation expectations data refer to it. However,
changes over time in the methodology used to construct the CPI — such as the 1983
change in the treatment of housing costs to use rental equivalence — may create structural
instabilities, because the historical data are not revised to reflect methodology changes.
One reason we also consider PCE inflation is that its historical data has been revised to
reflect methodology changes, reducing concerns with instabilities created by methodology
changes. Another reason is that the Federal Reserve’s preferred inflation measure is PCE
inflation; its longer-run inflation objective is stated in terms of PCE inflation.

Reflecting data availability, our results draw on a few different sources of long-run
inflation expectations. In most of our results for the U.S., we use the Blue Chip Consensus
(the mean of respondents’ forecasts, from Blue Chip Economic Indicators) to measure
long-run inflation expectations (zt in the model). Blue Chip has been publishing long-run
(6-10 year) forecasts of CPI inflation and GNP or GDP deflator inflation since 1979 in the
latter case and 1983 in the former case. To extend the CPI forecast survey back to 1979,
we fill in data for 1979 to 1983 using deflator forecasts from Blue Chip.10 The forecasts

10For the next several years following 1983, Blue Chip’s long-run forecasts of CPI and GDP inflation
are very similar.
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are only published twice a year; we construct quarterly values using interpolation.
Partly for the purpose of using a longer sample, in some of our results we instead

use the long-run inflation expectation series included (as the series denoted PTR) in
the Federal Reserve Board of Governor’s FRB/US econometric model. Defined in CPI
terms, the PTR series in the Board’s model splices (1) econometric estimates of inflation
expectations from Kozicki and Tinsley (2001) early in the sample to (2) 5- to 10-year-
ahead survey measures compiled by Richard Hoey to (3) 1- to 10-year ahead expectations
from the Survey of Professional Forecasters.11 Defined in the PCE terms actually used
in the FRB/US model, the series uses the same sources, but from 1960 through 2006, the
source data are adjusted (by Board staff, for use in the FRB/US model) to a PCE basis
by subtracting 50 basis points from the inflation expectations measured in CPI terms.
Although some readers may be concerned by the econometric component to the PTR
time series and the approximations used to translate from CPI to PCE terms, we only
use the series in a relatively small set of results.

We present results for three combinations of inflation with corresponding inflation
expectations: i) CPI inflation plus Blue Chip forecasts, ii) core CPI inflation plus Blue
Chip forecasts and iii) PCE inflation plus PTR long-run forecasts. This set addresses
robustness to different inflation measures and to different measures of inflation expec-
tations.12 In results based on Blue Chip expectations, the estimation sample period is
1980:Q1 to 2016:Q1. In results based on the PTR measure of inflation expectations, we
estimate the model using data from 1960:Q2 to 2016:Q1.

As detailed above, one model we consider as a robustness check includes a short-run
inflation expectation (in addition to the long-run expectation). We measure the short-run
expectation with the three-quarter ahead forecast of CPI inflation from the Blue Chip
Consensus. Out of concern for data consistency, we only estimate this model with CPI
inflation and the long-run expectation from Blue Chip.

A second model we consider as a robustness check includes economic activity as a
predictor of inflation with a time-varying coefficient. In this model, we follow common
practice (e.g., Morley, Piger, and Rasche 2015, Stella and Stock 2013) and define the rele-
vant activity variable as an unemployment gap, defined as the actual unemployment rate
less the Congressional Budget Office’s estimate of the natural rate of unemployment.13

For our international analysis, we use CPI inflation rates and long-run forecasts of
CPI inflation from Consensus Economics (hereafter, CE). The exception is the UK, for
which we use the retail price index excluding indirect taxes (RPI) and the CE forecasts
of RPI inflation. We obtained CPI data from Haver Analytics and the UK’s RPI from
the website of the Office of National Statistics. The long-run forecasts obtained from

11Surveys of professional forecasters have long included projections of CPI inflation or the GNP/GDP
price deflator/price index, but only recently has any survey included PCE inflation. The Blue Chip con-
sensus tracks expectations of inflation in both the CPI and GDP price index. The Survey of Professional
Forecasters tracks expectations of CPI inflation and, since 2007, PCE inflation.

12An earlier version of this paper, released as Federal Reserve Bank of Cleveland Working Paper 15-20,
contains results for a wider range of combinations, including for GDP deflator inflation.

13Following studies such as Rudd and Peneva (2015), we use the measure the CBO refers to as its
short-term estimate of the natural rate, which incorporates a temporary, substantial rise in the natural
rate in the period following the start of the Great Recession, attributable to structural factors such as
extended unemployment insurance benefits.
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CE are conceptually comparable to the U.S. forecasts published by Blue Chip; they are
projections of average inflation 6 to 10 years ahead, reported as the average across private
forecasters who participate in the survey. Since mid-2014, the CE forecasts have been
published on a quarterly basis (in the first month of each quarter). Prior to that, the
forecasts were only published twice a year (April and October), and we construct quarterly
values using interpolation. For Italy, Japan, and the UK, data runs from 1990:Q2 through
2016:Q2. In light of the shorter samples of expectations data available for these other
countries, in the international assessment we only report full-sample estimates and omit
out-of-sample forecast comparisons.

4 Empirical Results using U.S. Data

In this section, we present results for three different combinations of inflation and ex-
pectations measures for the U.S. In addition to our baseline model, we present selected
results from six to seven other models, detailed above. The primary purpose of this paper
is to develop an appropriate model for investigating the relationship between inflation,
trend inflation and inflation expectations. However, it is also of interest to see whether
it forecasts better than plausible alternatives. To this end, we carry out a pseudo-out-
of-sample forecasting exercise. In our results based on long-run expectations from Blue
Chip, the evaluation sample begins with 1995Q1. In results based on the PTR measure
of inflation expectations, for which a longer history is available, the forecast evaluation
period begins in 1975Q1.14

Empirical results are mostly presented using figures. In each case, the first set of
figures focusses on M1. It plots posterior means (along with an interval estimate) of
all the latent variables in the model (i.e., π∗t , bt, λv,t, λn,t, d0t, d1t). The figure for π∗t also
plots actual inflation (πt) along with long-run forecasts taken from the surveys (zt).
The next set of figures presents comparisons of these latent variables across our models.
For the baseline case of CPI inflation with long-run inflation expectations measured by
6-10 year ahead forecasts of Blue Chip (for brevity, we omit the same for the other
data combinations), we include some additional charts to compare the precision of trend
estimates and pseudo-real time estimates of trend. Finally, tables of marginal likelihoods
and measures of forecast performance are provided. For the latter, we present root mean
squared forecast errors (RMSFEs) and sums of log predictive likelihoods, both taken
relative to the UCSV-AR model (M4). When computing forecasts for model M7, we
assume an AR(4) model for the unemployment gap.

4.1 Results Using CPI Inflation and Blue Chip Forecasts

4.1.1 Estimation results using the full sample

We begin by presenting evidence on how well our baseline model performs relative to
alternative models at estimating trend inflation and other features of interest using the

14We repeated the analysis with a shorter forecast evaluation period beginning in 1985Q1 (after the
Great Moderation) and found results to be qualitatively similar.
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full sample.
Figure 1 presents estimates of π∗t , bt, λv,t, λn,t, d0t and d1t for our baseline model. Trend

inflation estimates can be seen to be much smoother than actual inflation. In a general
sense, they track long-run survey-based forecasts fairly well. However, trend inflation
lies consistently below survey forecasts and this difference is large in a statistical sense.
That is, zt consistently lies above the upper bound of the credible interval for π∗t and the
professionals were forecasting long-run inflation to be somewhat higher than our estimate
of trend inflation. A finding that the professionals’ forecasts are often slightly above our
estimates of trend inflation can also be seen in the results for d0t and d1t. Remember
that d0t = 0 and d1t = 1 implies long-run forecasts are unbiased estimates of trend
inflation. In Figure 1, most of the posterior probability of d0t lies in the positive region
and (with high posterior probability) d1t is above one, particularly early in our sample.
These values jointly imply that our trend inflation estimates are slightly below those of
the professionals.

Estimates of bt tend to be consistent with a fair amount of inflation persistence (at
roughly 0.5), with slight evidence of some decrease over time. There is also strong evidence
of stochastic volatility, both in the inflation equation and in the one for trend inflation.
This is consistent with the findings of Stock and Watson (2007) in their univariate model
for inflation. It is interesting to note that, as in Stock and Watson (2007), both types
of stochastic volatility were high around 1980 and fell subsequently. The recent financial
crisis was associated with a large increase in the volatility of shocks to the inflation gap,
but no increase in the volatility of shocks to trend inflation. Insofar as low volatility in
trend inflation reflects a firm anchoring of inflation expectations, then our results suggest
the Fed has succeeded in anchoring inflation expectations since the 1980s and that these
expectations were not shaken by the financial crisis.

Figure 2 compares parameter and trend inflation estimates across models (except for
a trend estimate from the Faust-Wright model (M5), which does not produce such an
estimate). These results indicate that, relative to our baseline model, estimates are only
modestly changed (early in the sample) by the addition of short-run inflation expectations
(M6) or an unemployment gap (M7). Restricting the baseline model by making the
coefficients d0 and d1 of the inflation expectations equation constant or restricting them
to specific values (0 and 1, respectively) has somewhat more noticeable effects on the
time-varying volatility of innovations to trend inflation (λn,t), the coefficients d0 and d1,
and trend inflation. For example, restricting d0 and d1 to be constant in model M2 lowers
the estimate of the slope d1 from more than 1 in M1 to a little more than 0.8 in M2 and
raises the intercept d0 from 0.3 or less in model M1 to about 0.8 in model M2.

For both M2 and M3, the estimated trend is well above the estimate from model
M1 for about the first 10 years of the sample. Perhaps not surprisingly, with d0 and
d1 restricted to 0 and 1, respectively, the trend estimate from model M3 is essentially
the same as the survey expectation zt (so much so as to obscure the line for zt in the
top panel’s chart). Broadly, the estimates from the various models covered in Figure
2 increase the weight of evidence against d0t = 0 and d1t = 1. For example, M6 and
M7 roughly line up with model 1 in their estimates of these time-varying coefficients,
with d0 above 0 and d1 above 1. The estimates of model M2 shows that, even with a
constant coefficient model, estimates of these coefficients differ from the (0,1) case. The
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Figure 1: Posterior Means of π∗t , bt, λv,t, λn,t, d0t and d1t for M1 (CPI+Blue Chip). Shaded
bands are 16th-84th percentiles
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(CPI + Blue Chip)

estimates for model M8 indicate that adding a lagged inflation gap to the equation for
inflation expectations has little effect on the estimate of trend inflation or coefficients and
volatilities of the model. This finding reflects the result — not shown in the interest of
brevity — that the coefficient d2t is estimated to be small.

The estimate of trend inflation produced by M1 lies consistently below zt. To shed
some light on this, note that the sample means of zt, πt and our point estimates of π∗t
are 3.5, 3.1 and 2.9 percent, respectively. Thus, on average, the professionals’ forecasts
lie above average inflation whereas our estimates of trend inflation are, sensibly, pulled
to be much closer to it.

Dropping long-run inflation expectations out of the model, as does the UCSV-AR
specification of M4, creates larger differences in estimates compared to the baseline model.
The estimate of the time-varying volatility to trend inflation (λn,t) is noticeably higher
for M4 than the baseline specification. In addition, the estimate of trend inflation from
M4 differs from the baseline in some important respects. As evident from the top row
of Figure 2, M4’s trend inflation estimate tends to be more variable and substantially
lower around 1980 than any of the other approaches which include long-run inflation
expectations. In addition, as shown in Figure 3, the credible set around the estimate of
trend inflation is much narrower with M1 than M4. Using a survey-based measure of
inflation expectations to inform the estimate greatly increases the precision of the trend
estimate.

To assess the ability of our model to fit inflation data, Table 1 provides marginal
likelihoods for the eight models under consideration.15 We start by comparing our baseline
model to the UCSV-AR (M4) and Faust-Wright models (M5) and then consider the effects
on model fit of restrictions on the d coefficients and of model extensions. By the classic
recommendations of Jeffreys for interpreting Bayes factors (see, e.g., page 777 of Kass and
Raftery, 1995), the evidence in favor of our model against models M4 and M5 is strong
(decisive for M4 and substantial for M5). Restricting the d coefficients in models M2

15The Technical Appendix details the computation of the marginal likelihood. These are constructed
using the predictive likelihood associated solely with inflation so as to ensure comparability across models.
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Table 1: Log marginal likelihood estimates (CPI + Blue Chip)

M1 M2 M3 M4 M5 M6 M7 M8
-277.29 -278.60 -278.60 -284.41 -279.33 -275.33 -283.10 -277.45

and M3 modestly reduces model fit compared to the baseline M1. By the standards of
Jeffreys, the evidence in favor of our time-varying d coefficients over constant coefficients
is substantial, but not strong. Finally, extending our model to include short-horizon
forecasts yields a substantial improvement in model fit, whereas extending it to include
the unemployment gap makes model fit much worse. Extending our model to include the
lagged inflation gap in the process for long-run expectations with model M8 has little
effect on model fit relative to our baseline specification M1.

4.1.2 Using our model in real time

Up to this point, we have focused on full-sample estimates of the models and smoothed
estimates of trend. However, models like these are often used in real time for forecasting
or policy purposes. For instance, a central banker might use a model like this to regularly
assess inflation trends. Hence, in this sub-section we present: i) historical time series of
pseudo-real time estimates of trend inflation, ii) pseudo-real time forecasts and iii) a pure
out-of-sample forecasting exercise up to 2021.

Pseudo-real time estimates of trend inflation are given in Figure 4. Starting in
1990:Q1, in each quarter t, we use the historical data up to that point in time to estimate
the models and their inflation trends, saving the trend as of period t as the pseudo-real
time estimate, and repeating the estimation at each subsequent quarter. As expected,
these pseudo-real time trend estimates are noisier than their full-sample smoothed coun-
terparts. The estimate from model M8 is very similar to the baseline from M1. The
estimates from models M1, M2, M3, and M6 are broadly similar to one another, al-
though there certainly can be sizable differences across models. The estimate from M7
(which includes short-run expectations as well as long-run expectations) has a similar con-
tour to these other models, but tends to be higher. The estimate from M4 is much more
noticeably different from the other estimates, particularly in its much higher volatility.
In pseudo-real time estimates, including the survey-based measure of long-run inflation
expectations greatly reduces the variability of trend inflation estimates.

Overall, these findings support the view that including information from survey fore-
casts and adding time-variation in parameters is useful in helping refine estimates of trend
inflation, in dimensions including the capture of features that seem to exist in estimates of
our relatively flexible model, the precision of trend estimates ex post, and the variability
of pseudo-real time estimates of trend inflation. But simply assuming survey forecasts to
be unbiased measures of trend inflation appears unduly restrictive.

To assess the value of long-run inflation expectations for forecasting future inflation,
Table 2 reports the accuracy of point and density forecasts, as ratios of RMSFEs of each
model relative to the UCSV-AR specification (M4) and as differences in log predictive
likelihoods relative to the M4 model baseline (a RMSFE ratio less than 1 denotes im-
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Figure 4: Posterior Means of pseudo-real time estimates of π∗t for M1 (CPI+Blue Chip).

provement on the baseline, as does a positive relative log predictive likelihood). The
horizons range from 1 through 20 quarters ahead, as well as 6-10 years ahead. These 6-10
years ahead forecasts refer to the average rate of inflation 6-10 years ahead. Note that, at
this very long horizon, some caution is required in drawing strong conclusions from the
results in that the number of fully independent observations is limited in the available
data sample.

At most horizons, all of the models that include long-run inflation expectations (ab-
stracting for the moment from models M9 and M10) improve on the accuracy of the
UCSV-AR model. At short horizons, the gains are admittedly small to modest; practi-
cally speaking, there is little to distinguish the models in forecast accuracy. At longer
horizons, up to 20 quarters ahead, the gains increase to as much as about 16 percent for
point forecasts and more than 20 points in log predictive likelihood. The more restricted
models M3 (which sets d0 to 0 and d1 to 1 for all time) and M5 (the Faust-Wright model)
are slightly less accurate than the less restrictive models M1 and M6, but not meaning-
fully so. The picture is mostly similar at the very long horizon of 6-10 years ahead, with
the main difference being that the performances of models M3 and M5 modestly dete-
riorate at this horizon. The performance of the less restrictive models M9 (TVP-VAR)
and M10 (TVP-VECM) is more mixed. At short horizons, these models are comparable
in accuracy to our proposed models. However, at longer horizons, the performance of
models M9 and M10 can be driven by explosive forecasts. We have taken steps in the
results to essentially eliminate this behavior for model M9 forecasts and sharply reduce
it for model M10 forecasts.16 At longer horizons, the relatively less restricted model M9
performs comparably to our preferred models in both point and density forecasts. But
model M10 fares less well, such that it is dominated by other specifications, especially in
density forecasts.

Finally, to illustrate some of the practical differences with our preferred model com-

16For model M9, we followed Cogley and Sargent’s (2005) approach to imposing stationarity on the
VAR estimates, and in simulating the forecast distribution, we shut down time variation in the latent
states by holding them constant at end of sample values. For model M10, in simulating the forecast
distribution, we shut down time variation in the latent states by holding them constant at end of sample
values, and we use the posterior median rather than the mean as the point forecast.
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Table 2: RMSFEs and log predictive likelihood for forecasting CPI inflation relative to
UCSV-AR

Relative RMSFE
1Q 2Q 4Q 8Q 12Q 16Q 20Q 6-10Y

M1 0.97 0.94 0.88 0.90 0.90 0.89 0.90 0.90
M2 0.98 0.95 0.89 0.88 0.87 0.84 0.84 0.72
M3 0.98 0.95 0.90 0.92 0.94 0.93 0.94 1.02
M5 0.98 0.97 0.92 0.92 0.93 0.93 0.94 1.01
M6 0.97 0.94 0.88 0.90 0.89 0.88 0.88 0.84
M7 0.98 0.95 0.91 0.91 0.91 0.90 0.91 0.78
M8 0.97 0.94 0.88 0.90 0.90 0.89 0.90 0.89
M9 0.99 0.98 0.96 0.94 0.93 0.91 0.89 0.76
M10 0.98 0.95 0.90 0.90 0.91 0.95 0.99 1.60

Relative log predictive likelihood
1Q 2Q 4Q 8Q 12Q 16Q 20Q 6-10Y

M1 2.86 4.40 7.84 10.71 14.10 17.52 18.70 53.60
M2 2.34 4.61 8.67 12.64 17.56 20.47 20.68 64.37
M3 1.08 2.33 5.52 8.44 10.54 13.35 14.24 32.05
M5 1.43 2.82 6.96 10.54 11.67 15.35 14.78 13.79
M6 2.44 3.85 7.98 10.77 15.84 18.57 20.34 58.68
M7 0.78 1.10 3.83 10.10 14.60 16.80 17.95 55.16
M8 1.75 3.82 8.49 11.95 14.20 18.35 19.26 53.42
M9 -0.24 0.44 2.40 7.34 13.30 19.41 21.92 54.74
M10 0.47 3.04 9.41 12.08 7.60 -7.42 -26.49 < -100

19



2016Q2 2017Q1 2018Q1 2019Q1 2020Q1 2021Q1

0

0.5

1

1.5

2

2.5

3

3.5

M1

M3

M4

Figure 5: Point forecasts for CPI inflation (four-quarter average rates) from M1 with the
16th-84th percentiles as shaded bands.

pared to some basic alternatives, we present “true” out-of-sample forecasts using the
end of our estimation sample as the jumping-off point. These forecasts (aggregated to
represent four-quarter average rates of inflation, in keeping with common central bank
practice) cover a 20 quarter period, from 2016:Q2 through 2021:Q1. We include forecasts
for M1 along with two key comparison models, M3 and M4. Figure 5 shows that forecasts
from M3 lay slightly above forecasts from M1. This reflects the estimated trends of the
model, in which, at the end of the estimation sample shown in Figure 2, the trend estimate
of model M3 — which imposes the restriction that the long-run survey expectation is an
unbiased measure of trend inflation — slightly exceeds the trend estimate of the baseline
model M1. M4, the UCSV-AR model which does not contain information from inflation
surveys, produces forecasts which are lower still, reflecting the low level of recent inflation
and the absence of any influence from long-run inflation expectations. These differences
in forecasts highlight practical differences in the models that could, at a given moment in
time, have important policy implications. For example, a monetary policymaker relying
on the forecast of model M4 would likely prefer a much more accommodative monetary
policy than would a policymaker relying on the forecast of our preferred model M1.

4.2 Results Using Core CPI inflation and Blue Chip Forecasts

4.2.1 Estimation results using the full sample

Results using core CPI inflation, given in Figures 6 and 7 and Table 3, are broadly
similar to those using CPI inflation. In particular, we are still finding that our estimate
of trend inflation lies below zt and that d0t and d1t differ from the (0,1) values which
imply that professionals are producing unbiased forecasts of trend inflation. The UCSV-
AR model produces trend inflation estimates which are more erratic than those produced
using models which incorporate inflation expectations (although we omit the results in
the interest of brevity, this model also yields trends estimates that are less precise and

20



Table 3: Log marginal likelihood estimates (core CPI + Blue Chip)

M1 M2 M3 M4 M5 M7 M8
-148.70 -146.91 -151.14 -154.67 -152.26 -151.98 -147.99

much more variable in pseudo-real time). However, there are some interesting differences.
There is less evidence of time-variation in d0t and d1t than with CPI inflation. Another
point worth noting is that the volatilities, λv,t, λn,t, are large in 1980 but both continually
fall over the sample period. This contrasts with the CPI inflation results where λv,t shoots
up at the time of the financial crisis.

In terms of model fit as captured by the marginal likelihoods of Table 3, our baseline
model (M1) yields considerable gains relative to the UCSV-AR (M4) and Faust-Wright
(M5) models. In contrast to the results for headline CPI inflation, for core CPI inflation,
restricting the d0 and d1 coefficients to be constants improves model fit, yielding the best-
fitting model. However, restricting these coefficients to 0 and 1, respectively, significantly
harms model fit. These findings indicate that survey-based long-run inflation expectations
are closely related to the trend in core CPI inflation but not an unbiased measure. Once
again, extending the model to include the unemployment gap (M7) makes model fit much
worse.

4.2.2 Using our model in real time

Figure 8 presents filtered, real-time, estimates of trend inflation. Our previous finding,
that incorporation of survey-based forecasts can reduce the volatility in real-time esti-
mates relative to models such as UCSV-AR which do not incorporate them, is also found
for core CPI inflation.

The pseudo-out-of-sample forecasting results in Table 4 show that, with core CPI
inflation, not all of the models incorporating long-run inflation expectations improve on
the accuracy of the UCSV-AR model. Models M3 and M5 — the models that equate the
long-run expectation with trend inflation — are generally less accurate than the UCSV-
AR model, although in some cases only by small margins. Our proposed model yields
forecasts slightly more accurate than those of the UCSV-AR baseline. Restricting the
d0 and d1 coefficients to be constant as in model M2 yields more sizable improvements
in forecast accuracy, especially at longer horizons. For core CPI inflation, model M2
forecasts best.

Finally, the purely out-of-sample forecasts out to 2021 are given in Figure 9. Once
again the forecast from model M3 lies above — more sizably with core inflation than
headline inflation — that from our baseline model M1, reflecting the same pattern in
their estimates of trend inflation, in turn reflecting M3’s restriction that the long-run
survey expectation is an unbiased measure of trend inflation. In contrast to the findings
for CPI inflation, we are now finding that model M4 (which does not use any information
from the professional forecasts) produces a forecast which lies above that of the baseline
model M1.
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Figure 6: Posterior Means of π∗t , bt, λv,t, λn,t, d0t and d1t for M1 (core CPI+Blue Chip)
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Figure 7: Comparison of posterior means of π∗t , bt, λv,t, λn,t, d0t and d1t for different models
(core CPI+Blue Chip)
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Figure 8: Posterior means of pseudo-real time estimates of π∗t (core CPI+Blue Chip).

Table 4: RMSFEs and log predictive likelihood for forecasting core CPI inflation relative
to UCSV-AR

Relative RMSFE
1Q 2Q 4Q 8Q 12Q 16Q 20Q 6-10Y

M1 0.99 0.99 0.98 0.95 0.94 0.95 0.95 1.00
M2 0.97 0.94 0.88 0.79 0.76 0.78 0.79 0.87
M3 1.04 1.08 1.12 1.11 1.06 1.04 1.00 1.03
M5 1.04 1.10 1.16 1.14 1.06 1.04 1.00 1.02
M7 0.98 0.95 0.95 0.98 1.06 1.07 1.07 1.15
M8 0.99 0.99 0.97 0.94 0.92 0.94 0.94 1.00
M9 0.98 0.98 1.00 1.00 0.95 0.89 0.88 0.88
M10 0.98 0.97 1.00 1.09 1.12 1.08 1.10 1.24

Relative log predictive likelihood
1Q 2Q 4Q 8Q 12Q 16Q 20Q 6-10Y

M1 1.31 0.74 0.52 5.69 11.24 14.05 14.43 0.08
M2 2.95 4.24 8.52 22.13 31.52 33.70 33.07 25.57
M3 -3.04 -6.98 -12.70 -17.75 -15.87 -10.56 -8.09 -35.78
M5 -3.21 -9.28 -18.66 -28.61 -29.65 -27.88 -27.99 < -100
M7 1.49 2.63 5.50 6.37 0.59 3.46 3.17 -16.01
M8 1.42 0.84 0.86 5.75 12.26 15.70 16.11 3.28
M9 0.91 1.84 -2.29 -2.63 1.45 12.51 23.77 13.06
M10 1.69 2.93 0.61 -3.08 -5.53 -2.26 -7.45 -29.88
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Figure 9: Point forecasts for core CPI inflation (four-quarter average rates) from M1 with
the 16th-84th percentiles as shaded bands.

4.3 Results Using PCE Inflation and PTR Forecasts

4.3.1 Estimation results using the full sample

In this sub-section, the inflation measure is PCE inflation, and the long-run inflation
expectations measure is PTR. For this data combination, our sample goes back to 1960
and so we are able to examine the performance of our model over a longer time period.
Figures 10 and 11 and Table 5 provides the results.

For much of the sample, especially in the late 1970s and early 1980s, we are again
finding strong evidence that our estimate of trend inflation lies modestly below the pro-
fessionals’ long-run forecast. Our estimates of d0 and d1 are relatively high from the late
1970s through roughly 1995, with d1 trending up through 1980 and then down for some
years. Post-1980, results for λv,t and λn,t are similar to those for CPI inflation. Pre-1980,
λv,t (the volatility in the inflation gap equation) follows the expected pattern in the mid-
to late- 1970s before falling with the Great Moderation. But it is interesting to note that
this pattern is not replicated for λn,t (the volatility in trend inflation), which slowly rises
throughout the 1970s before reaching a peak in the early 1980s and falling thereafter.

Turning to our other models, we are again finding that the UCSV-AR model is pro-
ducing more erratic estimates of trend inflation (a pattern more evident in the 1960-2016
sample used in these results than in the 1980-2016 sample of our CPI results).

The marginal likelihoods of Table 5 yield some differences with respect to the baseline
results we obtained with CPI inflation measures. In model fit, our baseline model (M1)
continues to yield considerable gains relative to the Faust-Wright (M5) model, but not
relative to the UCSV-AR (M4) specification. With PCE inflation, restricting the d0

and d1 to be constants slightly improves model fit, such that M2 and M3 are not really
different from the UCSV-AR (M4) specification in model fit. Once again, extending the
model to include the unemployment gap makes model fit much worse.
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Figure 10: Posterior Means of π∗t , bt, λv,t, λn,t, d0t and d1t for M1 (PCE+PTR)

Table 5: Log marginal likelihood estimates (PCE+PTR)

M1 M2 M3 M4 M5 M7 M8
-367.28 -366.26 -366.80 -366.35 -372.61 -373.89 -368.34
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Figure 11: Comparison of posterior means of π∗t , bt, λv,t, λn,t, d0t and d1t for different
models (PCE+PTR)
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Figure 12: Posterior means of pseudo-real time estimates of π∗t (PCE + PTR).

4.3.2 Using our model in real time

The real-time estimates of trend inflation are given in Figure 12. M1 is again producing
more reasonable — in our assessment, less variable — estimates of trend inflation than
the more volatile ones produced by UCSV-AR.

In Table 6’s pseudo out-of-sample forecasting results for PCE inflation, the forecast
performance of models incorporating long-run inflation expectations is broadly similar to
the performance of the UCSV-AR model. Our proposed model M1 often improves on
the accuracy of the baseline model, but only slightly. Restricting the model’s d0 and d1

coefficients to be constant at 0 and 1, respectively, very slightly improves the accuracy of
the model, but not to a notable degree.

Finally, the out-of-sample forecasts to 2021 for PCE inflation in Figure 13 show a
pattern similar to those obtained for CPI inflation (reported in Figure 5). Again reflecting
differences in trend estimates, the forecast of PCE inflation from M1 is modestly higher
than the forecast from the restricted model M3 and notably above the forecast from the
UCSV-AR model, which has inflation below 1% for the next five years. That said, all of
the point forecasts are below the level of long-run inflation expectations (not shown in
the chart), which is about 2 percent.

5 An International Comparison

The CE data allow us to use methods developed in this paper with survey forecasts
constructed in an internationally comparable way. In this section, we present results
for Italy, Japan, and the UK using the CE long-run forecasts as measures of expected
inflation. In the interest of brevity, we focus on models M1 through M5 and M8 (i.e.,
the models which use only data on inflation and a long-run survey forecast). Note that
these datasets have a shorter sample span, so our estimates begin in 1990. Since the
period from 1990 to the Great Recession and financial crisis was a relatively stable time
in most advanced economies, in this section we are missing some of the variability which
was present in the U.S. datasets of the preceding section.
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Table 6: RMSFEs and log predictive likelihood for forecasting PCE inflation relative to
UCSV-AR

Relative RMSFE
1Q 2Q 4Q 8Q 12Q 16Q 20Q 6-10Y

M1 0.98 0.97 0.96 0.98 0.99 1.01 1.06 1.07
M2 0.98 0.98 0.96 0.98 0.99 1.02 1.15 1.24
M3 0.98 0.98 0.95 0.96 0.96 0.98 1.02 1.02
M5 1.02 1.04 1.05 1.02 1.03 1.05 1.09 1.02
M7 0.99 0.99 0.98 0.99 1.00 1.03 1.07 1.04
M8 0.98 0.97 0.95 0.97 0.97 0.99 1.04 1.06
M9 1.00 1.02 1.10 1.23 1.36 1.55 1.82 3.85
M10 1.03 1.06 1.15 1.18 1.26 1.35 1.45 > 100

Relative log predictive likelihood
1Q 2Q 4Q 8Q 12Q 16Q 20Q 6-10Y

M1 1.45 2.73 4.25 1.23 8.02 5.61 0.32 -73.73
M2 1.24 2.69 6.29 5.60 11.49 9.34 5.03 3.71
M3 0.80 1.88 3.88 4.35 11.07 10.57 8.25 -45.78
M5 -3.57 -4.55 -4.78 -12.28 -12.18 -16.04 -20.02 < -100
M7 -1.15 -1.85 -0.15 2.17 5.42 0.67 -4.44 -59.23
M8 0.31 1.15 4.31 5.51 9.45 5.22 2.84 -77.62
M9 -0.03 -1.94 -5.68 -19.99 -44.30 -66.03 < -100 < -100
M10 -3.90 -6.43 -12.35 -27.60 -57.13 -46.85 -57.68 < -100
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Figure 13: Point forecasts for PCE inflation (four-quarter average rates) from M1 with
the 16th-84th percentiles as shaded bands.
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Table 7: Log marginal likelihood estimates, other countries

country M1 M2 M3 M4 M5 M8
Italy -134.34 -134.96 -134.02 -137.92 –135.14 -134.70
Japan -196.79 -193.74 -202.53 -196.72 -203.10 -197.09
UK -164.79 -165.88 -165.41 -166.56 -167.37 -164.50

Figures 14, 15, and 16 provide estimates of our baseline model (M1) for Italy, Japan,
and the UK, respectively. Figures 17, 18, and 19 provide comparisons of estimates across
models M1 through M5 and M8, for Italy, Japan, and the UK, respectively.

Consider first the estimates of trend inflation. In the preceding section, we found our
model produced estimates which were consistently slightly less than the professionals’
forecasts. This finding also holds true for Japan (Figure 15). For the UK it holds much
of the time. But for Italy, our estimate of trend inflation is very close to the professionals’
survey (Figure 14). In the U.S. results, we also found the trend estimates from the UCSV-
AR to be more erratic than those from our baseline model. In the shorter sample for
other countries, this same finding applies to Italy (Figure 17) but not Japan (Figure 18)
or the UK (Figure 19).

With the U.S. data, we found considerable evidence against the d0t = 0 and d1t = 1
restrictions. This also holds true in our estimates for Japan and the UK but not Italy.17

However, the way each country departs from this restriction is a bit different. For Japan,
there is support for the restriction d1t = 1, but d0t is positive and quite large, indicating
that professionals’ forecasts are consistently above trend inflation. A similar pattern holds
in the UK, but only from the late 1990s until the financial crisis. There is substantial
time variation in the UK estimates of d0t and d1t. All in all, we are finding a range of
patterns but, apart from Italy, we are never finding strong support that the long-run
surveys provide unbiased estimates of trend inflation.

With regards to stochastic volatility, we are finding somewhat less evidence of its
presence in the shorter samples for Italy, Japan, and the UK than in the longer samples
of U.S. data. As noted above, with our sample for the CPI in the U.S., λv,t (inflation gap
volatility) and λn,t (trend inflation volatility) trended down in the 1980s and then were
little-changed, with the notable exception of a spike in λv,t around the Great Recession.
With the other countries, there is some decline in λn,t in the 1990s and some time variation
in λv,t for Japan, but otherwise, volatility is relatively stable. It is also interesting to note
that, especially for Italy and the UK, the estimates of λn,t are much higher for the UCSV-
AR model (M4) than our baseline model (M1), which explains why this model produces
more erratic estimates of trend inflation.

Table 7 presents marginal likelihood comparisons for the models applied to each coun-
try. In all cases, our proposed model fits inflation data as well as or better than the
UCSV-AR (M4) and Faust-Wright (M5) models. For Italy, M1 is significantly better
than M4 but only modestly better than M5. For Japan, M1 is significantly better than

17In addition, our international results corroborate our U.S. results that indicate estimates of model
M8, which allows zt to depend on a lagged inflation gap, are very similar to those of the baseline model
M1.
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Figure 14: Posterior Means of π∗t , bt, λv,t, λn,t, d0t and d1t for Italy. Shaded bands are
16th-84th percentiles
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Figure 15: Posterior Means of π∗t , bt, λv,t, λn,t, d0t and d1t for Japan. Shaded bands are
16th-84th percentiles
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Figure 16: Posterior Means of π∗t , bt, λv,t, λn,t, d0t and d1t for the UK. Shaded bands are
16th-84th percentiles
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Figure 17: Comparison of posterior means of π∗t , bt, λv,t, λn,t, d0t and d1t for different
models, for Italy
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Figure 18: Comparison of posterior means of π∗t , bt, λv,t, λn,t, d0t and d1t for different
models, for Japan
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Figure 19: Comparison of posterior means of π∗t , bt, λv,t, λn,t, d0t and d1t for different
models, for the UK
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M5 but about the same in fit as model M1. For the UK, M1 fits the data significantly
better than both models M4 and M5. Across countries, the evidence regarding restric-
tions on the d0 and d1 coefficients is mixed. For Italy, the restrictions of models M2 and
M3 neither harm nor help model fit. For Japan, imposing 0,1 restrictions significantly
reduces model fit, but making the coefficients constants to be estimated significantly im-
proves fit, making M2 the best-fitting specification. For the UK, imposing the restrictions
of models M2 and M3 slightly reduces model fit. Extending the baseline model to allow
the inflation expectation zt to depend on the lagged inflation gap — as does model M8
— does not appear to improve model fit.

On balance, we interpret these international results as indicating that our model,
which allows information about professionals’ forecasts to help estimate trend inflation
without imposing the restrictions that effectively equates such forecasts with trend infla-
tion, is working successfully in a variety of countries with different inflationary experi-
ences. Put another way, the evidence points to the value of using long-run expectations
to help estimate trend inflation without imposing restrictions (constant coefficients of 0
and 1 in our model) that effectively equate the two.

6 Discussion

We have proposed our new model for several reasons. First, as a way of improving
estimates of trend inflation by drawing strength from surveys of professional forecasters.
Second, as a way of investigating whether these surveys are unbiased in the sense used
in this paper (i.e., that they provide unbiased estimates of an econometric estimate of
trend inflation or, equivalently, that d0t = 0 and d1t = 1). Third, as a model that
might improve on existing specifications in fitting historical inflation data. Finally, as
a simple model that might improve inflation forecasts over other simple models such as
UCSV. Recently, there have been several influential papers which attempt to address the
question of why survey-based forecasts might be biased. This is not the main focus of
our paper, but some short discussion of this issue is warranted.

Our model allows for the possibility that survey expectations may become discon-
nected from the longer-run trend in inflation. That disconnection could take the relatively
modest form of a systematic bias, or it could take the form of a more dramatic departure
from rational expectations, with the survey expectation showing little connection to the
longer-run trend in inflation. Studies such as Coibion and Gorodnichenko (2015) have
presented evidence that survey forecasts depart from rationality in that they are subject
to sluggish adjustment consistent with information rigidities. Mertens and Nason (2015)
develop a joint model of inflation and inflation forecasts that permits time variation in the
strength of the information rigidities. In light of this evidence, we have used our sample of
Blue Chip forecasts of CPI inflation to produce estimates of the Coibion-Gorodnichenko
stickiness regression. In this data, these estimates do not point to strong evidence of
such information rigidities (however, this does not rule out bias or other manifestations
of irrationality in the forecasts).18 Although this evidence can be seen as supporting our

18We ran the Coibion-Gorodnichenko regression using both long-horizon and short-horizon Blue Chip
forecasts of CPI inflation over various samples.
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development of a model that does not impose parametric restrictions consistent with the
Coibion-Gorodnichenko framework, our model can be seen as incorporating features that
could capture the effects of information rigidities in a flexible way. In broad terms, our
model can be seen as similar to that of Mertens and Nason (2015); the differences reflect
a deliberate choice to impose fewer parametric restrictions and permit greater flexibility,
particularly in the representation of survey forecasts of inflation. More specifically, if we
abstract from time-varying parameters and volatilities for simplicity, our process for ac-
tual inflation is quite similar to that in Mertens and Nason. In the process for the survey
forecast (recall also that we differ in our specification of the forecast horizon), Mertens
and Nason incorporate a hierarchical structure with an additional latent state for the
inflation forecast on which the observed survey forecast depends, with the latent state
incorporating autoregressive dynamics and trend inflation, whereas we instead relate the
observed survey forecast to a time-varying intercept, trend inflation with a time-varying
coefficient, and an MA error term. To the extent the survey forecasts feature stickiness,
this stickiness can be subsumed in our time-varying intercept and MA error term.

More broadly, some recent research develops frameworks in which long-run inflation
expectations might depart from measures of trend inflation. Cecchetti, et al. (2017) argue
that inflation expectations need not be very closely tied to inflation. Based on their
empirical results, they characterize inflation as fluctuating around a time-varying local
mean (which they also capture with a random walk process like our trend). They suggest
that survey-based inflation expectations have value as indicators of the time-varying local
mean but otherwise have little information content for inflation. At a high level, their
interpretation of the data would seem to be one in which survey measures of long-run
inflation could be biased measures of trend inflation (their local mean). More formally,
some other recent work by Hills, Nakata, and Schmidt (2016) on complexities created
by monetary policy constrained by the zero lower bound on interest rates indicates that
average inflation can consistently fall short of central bank targets. Results in Kiley and
Roberts (2017) and other studies cited therein suggest the need for a risk adjustment to
policy interest rates, to make policy more accommodative than it might otherwise be,
in order for central banks to achieve inflation targets. Until the public comes to fully
appreciate such implications, it seems plausible that survey-based measures of inflation
expectations might exceed average (trend) inflation. Admittedly, such concerns with zero
lower bound constraints only apply to fairly recent data for most countries, except Japan,
for which the relevant history is longer. However, they point to the fact that much remains
to be done to fully understand the dynamics of inflation and inflation expectations, as
described in sources such as Bernanke (2007).

7 Summary and Conclusion

In this paper, we have developed a bivariate model of inflation and inflation expecta-
tions that incorporates empirically-important features such as time-varying parameters
and stochastic volatility. In a broad sense, we have used our model to investigate the
relationship between these two variables. In a narrower sense, we have investigated the
degree to which survey-based long-run inflation forecasts can be used to inform estimates
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of trend inflation (e.g., by increasing precision), improve the fit of historical inflation
data, and improve the accuracy of out-of-sample forecasts. In an extensive empirical
exercise involving three combinations of measures of U.S. inflation and long-run infla-
tion forecasts, we find a consistent story: Long-run inflation forecasts do provide useful
additional information in informing estimates of trend inflation and in improving the fit
of inflation models. However, the forecasts themselves cannot simply be equated with
trend inflation. In out-of-sample forecasting, our model yields point and density forecasts
that are at least as good as those from other models that have been found successful in
the inflation forecasting literature. In estimates for Italy, Japan, and the UK, we find a
similar story in most cases. However, for Italy we find simply equating trend inflation
with long-run forecasts by the professionals’ may be sufficient. However, it is reassuring
that we are uncovering this result in the context of a flexible econometric model instead
of simply imposing it a priori.

The history captured by our estimates indicates the distinction between trend infla-
tion and long-run inflation expectations captured by surveys in the U.S. is practically
important. For example, as noted in the introduction, for most of the period since 2008,
inflation in the PCE price index has run below the Federal Reserve’s longer-run inflation
objective of 2 percent. Over the past couple of years, inflation has declined to very low
levels. Yet, for several years before the recession that began in 2007, inflation ran steadily
above target. Some estimates of trend inflation based entirely on inflation — as in the
UCSV specification of Stock and Watson (2007) — have moved around with inflation,
rising in the early to mid-2000s and declining markedly from the mid-2000s through 2016.
At the other extreme, long-run inflation expectations measured from the Survey of Pro-
fessional Forecasters have remained steady around 2 percent (with occasional up-ticks
and down-ticks). Drawing on the information in both inflation and the survey’s long-run
expectation, our model’s estimate of trend is much smoother than the estimate from a
univariate UCSV specification, implying the trend to be stable in the face of both the
rise of inflation in the years before the recession and the fall since the recession. In
fact, our model estimates show trend inflation to be even more stable than the survey
expectation (containing a little less noise than the survey). However, in keeping with a
historical bias in the survey forecast, our estimate of trend inflation has for some time
been stable, slightly below the survey expectation. At times, the differences in models
could have important practical implications for policy. In particular, as we show in out of
sample forecasts through 2021, the forecast of headline inflation from our preferred model
is much more consistent with the Federal Reserve’s longer-run inflation objective than is
the forecast from a UCSV specification similar to that of Stock and Watson (2007).
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Technical Appendix
This appendix provides the prior and MCMC algorithm used in this paper for our

baseline model (model M1) and its variants, details the estimation algorithm, explains
the computation of marginal likelihoods, and provides the priors for the TVP-VAR and
TVP-VECM used in forecast comparison.

A Priors for Model M1

The model is given in equations (3) through (10). We initialize the state equations (5),
(6), (7), and (10) by π∗1 ∼ N(π∗0, λn,1Vπ∗), b1 ∼ N(b0, Vb), di1 ∼ N(µdi, σ

2
di/(1 − ρ2

di)),
i = 0, 1, and log(λi,1) ∼ N(log(λi,0), Vλi), i = v, n, with λi,0 = 1, b0 = π∗0 = 0 and
Vλi = Vb = Vπ∗ = 100.

Our prior choices are motivated by a desire to use relatively non-informative choices,
but to reflect the prior beliefs about the parameters in our structural time-series model.
We note that, for some parameters, sensible prior information can easily be elicited. For
instance, if the professionals are providing unbiased forecasts of trend inflation, then
d0t = 0 and d1t = 1 and we would expect relatively little deviation from these values.
Our prior reflects such information. In a prior sensitivity analysis (not reported here), we
found a fair degree of robustness to prior choices (e.g., doubling or halving prior standard
deviations had little effect). However, using an extremely non-informative prior in some
cases leads to extremely erratic estimates of some of the states in our state space model.
The avoidance of extremely non-informative priors is common with structural time series
models such as ours. Indeed papers with simpler models than ours, such as Stock and
Watson (2007), do not even attempt to estimate some parameters, instead setting them
to specific values. More recent applications of the UCSV model often still calibrate key
parameters as opposed to estimating them (see, e.g., Cecchetti, Feroli, Hooper, Kashyap
and Schoenholtz, 2017).

For later reference, let π = (π1, . . . , πT )′ and d = (d01, d11, . . . , d0T , d1T )′, and similarly
define z, π∗, b, λv and λn. In addition, let θ denote the model parameters, i.e., θ =
(ψ, µd0, µd1, ρd0, ρd1, σ

2
d0, σ

2
d1, σ

2
b , σ

2
z, φv, φn)′.

We assume independent priors for elements of the parameter vector θ which are proper
and weakly informative. The priors for µdi and ρdi are:

µd0 ∼ N(a0, Vµ), µd1 ∼ N(a1, Vµ), ρdi ∼ TN(c1,c2)(a2, Vρ),

where TN(c1,c2)(µ, σ) denotes the N(µ, σ) distribution truncated to the interval (c1, c2),
and we set a0 = 0, a1 = 1, a2 = 0.95, Vµ = 0.12 and Vρ = 0.12. These choices imply
relatively informative priors centered at the values which imply trend inflation is equal
to long-run inflation forecasts (apart from a mean zero error).

For the MA(1) coefficient, we consider the relatively non-informative prior which
restricts the MA process to be invertible: ψ ∼ TN(−1,1)(0, Vψ) with Vψ = 0.252.

Finally, we assume independent inverse gamma priors for the variance parameters. In
particular, the degree of freedom parameters are all set to the relatively non-informative
value of 5, and the scale parameters are set such that E(σ2

d0) = E(σ2
w) = E(φv) =

E(φn) = 0.01 and E(σ2
d1) = E(σ2

b) = 0.001. The prior hyperparameter choices reflect
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a desire to allow for appreciable parameter change in these models, but such change to
occur smoothly. The prior mean for σ2

d0 implies that with high probability the difference
between consecutive d0t lies within the values −0.2 and 0.2. This means that, in each
period, d0t is not expected to change by a large amount. However, if such changes were
to occur several periods in a row, appreciable change in d0t could be accommodated.

For those models that are variants of the baseline model M1, we use the same prior for
all parameters which they hold in common with M1. For the model M2 that restricts the
d0 and d1 coefficients to be constant over time, we use prior means of 0 and 1, respectively,
with prior variances of Vµ = 0.52 and Vρ = 0.52. For the additional coefficient d2t of model
M8, we use a prior on the initial value that takes the same form and values used for the
coefficient d1t, with a mean of 0 and standard deviation of 0.1.

B Estimation Algorithm for Model M1

To estimate the model in equations (3) through (10), we extend the MCMC sampler
developed in Chan, Koop and Potter (2013) which was used for a univariate bounded
inflation trend model. Moreover, we also incorporate the sampler in Chan (2013) for
handling the MA innovations with stochastic volatility. Specifically, we sequentially draw
from the following densities:

1. p(π∗ |Data, b, d, λv, λn, θ);

2. p(b |Data, π∗, d, λv, λn, θ);

3. p(d |Data, π∗, b, λv, λn, θ);

4. p(λv, λn |Data, π∗, b, d, θ);

5. p(µd0, µd1 |Data, π∗, b, d, λv, λn, θ−{µd0,µd1});

6. p(σ2
d0, σ

2
d1 |Data, π∗, b, d, λv, λn, θ−{σ2

d0,σ
2
d1});

7. p(ρd0, ρd1 |Data, π∗, b, d, λv, λn, θ−{ρd0,ρd1});

8. p(ψ |Data, π∗, b, d, λv, λn, θ−{ψ});

9. p(σ2
b , σ

2
z, φv, φn |Data, π∗, b, d, λv, λn, θ−{σ2

b ,σ
2
z ,φv ,φn}).

Step 1: To implement Step 1, note that information about π∗ comes from three
sources: the two measurement equations (3) and (4), and the state equation (5). We
derive an expression for each component in turn. First, write (3) as

Hbπ = Hbπ
∗ + α̃π∗ + v, v ∼ N(0,Λv),

44



where α̃π∗ = (b1(π0 − π∗0), 0, . . . , 0)′, Λv = diag(λv,1, . . . , λv,T ) and

Hb =


1 0 0 · · · 0
−b2 1 0 · · · 0

0 −b3 1 · · · 0
...

. . .
...

0 0 · · · −bT 1

 .

Since |Hb| = 1 for any b, Hb is invertible. Therefore, we have

(π | π∗, b, λv) ∼ N(π∗ + απ∗ , (H ′bΛ
−1
v Hb)

−1),

with log density

log p(π |π∗, b, λv) ∝ −
1

2
(π − π∗ − απ∗)′H ′bΛ

−1
v Hb(π − π∗ − απ∗), (22)

where απ∗ = H−1
b α̃π∗ . Note that Hb is a band matrix and απ∗ can be obtained quickly

by solving the band system Hbx = α̃π∗ for x without computing the inverse H−1
b .

The second component comes from (4) which can be written as:

z = d0 +Xπ∗π∗ +Hψεz, εz ∼ N(0, σ2
wIT ),

where d0 = (d01, . . . , d0T )′, Xπ∗ = diag(d11, . . . , d1T ) and

Hψ =


1 0 0 · · · 0
ψ 1 0 · · · 0
0 ψ 1 · · · 0
...

. . . . . .
...

0 0 · · · ψ 1

 .

Thus, ignoring any terms not involving π∗, we have

log p(z | π∗, d, σ2
w) ∝ − 1

2σ2
w

(z − d0 −Xπ∗π∗)′(HψHψ)′−1(z − d0 −Xπ∗π∗),

= − 1

2σ2
w

(z̃ − X̃π∗π∗)′(z̃ − X̃π∗π∗), (23)

where z̃ = H−1
ψ (z − d0) and X̃π∗ = H−1

ψ Xπ∗ . Since Hψ is a band matrix, z̃ can be
computed quickly by solving a linear system of equations without finding the inverse
H−1
ψ . The matrix X̃π∗ is lower triangular that is in general not banded. However, most of

the elements away from the main diagonal band are close to zero. In our implementation
we construct a band approximation by replacing all elements below 10−6 with 0. Since
the cut-off point is so small, it has no impact on the results, but it substantially speeds
up the computation.

The third component is contributed by the state equation (5):

log p(π∗ |λn) ∝ −1

2
(π∗ − δπ∗)′H ′Λ−1

n H(π∗ − δπ∗), (24)
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where H is the T ×T first difference matrix, Λn = diag(λn,1Vπ∗ , λn,2, . . . , λn,T ) and δπ∗ =
H−1(π∗0, 0, . . . , 0)′. Then, combining (22), (23) and (24), we finally obtain

logp(π∗ |Data, b, d, λv, λn, θ)

∝− 1

2
(π − π∗ − απ∗)′H ′−1

b vHb(π − π∗ − απ∗)− 1

2σ2
w

(z̃ − X̃π∗π∗)′(z̃ −Xπ∗π∗)

− 1

2
(π∗ − δπ∗)′H ′Λ−1

n H(π∗ − δπ∗),

∝− 1

2
(π∗ − π̂∗)′Kπ∗(π∗ − π̂∗),

which is the kernel of the N(π̂∗, K−1
π∗ ) distribution, where

Kπ∗ =

(
H ′−1
b vHb +

1

σ2
w

X̃ ′π∗X̃π∗ +H ′Λ−1
n H

)−1

,

π̂∗ = K−1
π∗

(
H ′−1
b Hb(π − απ∗) +

1

σ2
w

X̃ ′π∗ z̃ +H ′Λ−1
n Hδπ∗

)
.

If we use the band approximation of X̃π∗ as described above, the precision Kπ∗ is also a
band matrix. Then, we use the precision sampler in Chan and Jeliazkov (2009) to sample
π∗ from the conditional distribution (π∗ |Data, b, d, λv, λn, θ).

Step 2: Next, we derive the conditional density p(b |Data, π∗, d, λv, λn, θ). Due to
the inequality restriction 0 < bt < 1, this joint density is non-normal. We first rewrite
(3) as:

π̃ = Xbb+ v, v ∼ N(0,Λv),

where π̃ = (π1 − π∗1, . . . , πT − π∗T )′ and Xb = diag(π0 − π∗0, . . . , πT−1 − π∗T−1). It follows
that the log density of (π | π∗, b, λv) can also be written as follows:

log p(π | π∗, b, λv) ∝ −
1

2
(π̃ −Xbb)

′Λ−1
v (π̃ −Xbb). (25)

Next, write (6) as
Hb = δ̃b + εb,

where δ̃b = (b0, 0, . . . , 0)′ and the elements of εb are independent truncated normal vari-
ables. Note that Pr(0 < b1 < 1) = Φ((1− b0)/

√
Vb)− Φ(b0/

√
Vb) and

Pr(0 < bt < 1) = Φ

(
1− bt−1

σb

)
− Φ

(
−bt−1

σb

)
,

where Φ(·) is the cumulative distribution function of the standard normal distribution.
Hence, the prior density for b is given by

log p(b |σ2
b) ∝

1

2
(b− δb)′H ′Σ−1

b H(b− δb) + gb(b, σ
2
b), (26)

where Σb = diag(Vb, σ
2
b , . . . , σ

2
b), δb = H−1δ̃b and

gb(b, σ
2
b) = −

T∑
t=2

log

(
Φ

(
1− bt−1

σb

)
− Φ

(
−bt−1

σb

))
.

46



Combining (25) and (26), we obtain

log p(b |Data, π∗, d, λv, λn, θ) ∝ −
1

2
(b− b̂)′K−1

b (b− b̂) + gb(b, σ
2
b),

where
Kb =

(
H ′Σ−1

b H +X ′bΛ
−1
v Xb

)−1
, τ̂π = K−1

b (H ′−1
b δ̃b +X ′bΛ

−1
v π̃).

We follow Chan, Koop and Potter (2013) to sample b. Specifically, candidate draws
are first obtained from the N(b̂, K−1

b ) distribution using the precision sampler in Chan
and Jeliazkov (2009), and they are accepted or rejected via an acceptance-rejection
Metropolis-Hastings step.

Step 3: To sample from p(d |Data, π∗, b, λv, λn, θ), we first rewrite (4) and (7) as

z = Xdd+Hψεz, εz ∼ N(0, σ2
wIT ),

Hρdd = δ̃d + εd εd ∼ N(0,Σd),

where δ̃d = (µd0, µd1, (1 − ρd0)µd0, (1 − ρd1)µd1, . . . , (1 − ρd0)µd0, (1 − ρd1)µd1)′, Σd =
diag(σ2

d0/(1− ρ2
d0), σ2

d1/(1− ρ2
d1), σ2

d0, σ
2
d1, . . . , σ

2
d0, σ

2
d1),

Xd =


1 π∗1 0 0 0 · · · 0
0 0 1 π∗2 0 · · · 0
...

. . .
...

...
0 0 · · · 0 0 1 π∗T

 , Hρd =



1 0 0 0 0 · · · 0
0 1 0 0 0 · · · 0
−ρd0 0 1 0 0 · · · 0

0 −ρd1 0 1 0 · · · 0
...

. . . . . . . . .
...

0 0 · · · −ρd0 0 1 0
0 0 · · · 0 −ρd1 0 1


.

Using standard linear regression results (see, e.g., Koop, 2003, pp. 60-61), we have
(d |Data, π∗, b, λv, λn, θ) ∼ N(d̂, K−1

d ), where

Kd =

(
H ′ρdΣ

−1
d Hρd +

1

σ2
w

X̃ ′dX̃d

)−1

, d̂ = K−1
d

(
H ′ρdΣ

−1
d δ̃d +

1

σ2
w

X̃ ′d(H
−1
ψ z)

)
with X̃d = H−1

ψ Xd. As before, we construct a band approximation of X̃d by replacing all
elements less than 10−6 with 0. Then, the precision Kd is a band matrix and the precision
sampler in Chan and Jeliazkov (2009) is used to sample d.

Step 4: To implement Step 4, note that λv and λn are conditionally independent
given the parameters and other states. Hence, we can draw them sequentially using
the auxiliary mixture sampler of Kim, Shepherd and Chib (1998). See also Koop and
Korobilis (2010), p. 308–310, for a textbook treatment. Note that in conventional imple-
mentations, a forward-filtering-backward-smoothing algorithm is used; here it is replaced
by the more efficient precision sampler of Chan and Jeliazkov (2009).

Steps 5 and 6: Both the densities of (µd0, µd1) and (σ2
d0, σ

2
d1) are standard. In fact,

we have

(µdi |Data, π∗, b, d, λv, λn, θ−{µd0,µd1}) ∼ N(µ̂di, K
−1
di ),

(σ2
di |Data, π∗, b, d, λv, λn, θ−{σ2

d0,σ
2
d1}) ∼ IG(νdi + T/2, S̃di),
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where Kdi = 1/Vµ+(1−ρ2
di)/σ

2
di+(T−1)(1−ρdi)2/σ2

di, µ̂di = K−1
di (ai/Vµ+(1−ρ2

di)di1/σ
2
di+∑T

t=2(1−ρdi)(dit−ρdidi,t−1)/σ2
di) and S̃di = Sdi+((1−ρ2

di)(di1−µdi)2 +
∑T

t=2(dit−µdi(1−
ρdi)− ρdidi,t−1)2)/2.

Step 7: It follows from (7) that

p(ρdi |Data, π∗, b, d, λv, λn, θ−{ρd0,ρd1}) ∝ p(ρdi)gρdi(ρdi)e
− 1

2σ2
di

∑T
t=2(dit−µdi−ρdi(di,t−1−µdi))2

,

where p(ρdi) is the truncated normal prior for ρdi and g(ρdi) = (1− ρ2
di)

1/2 exp(− 1
2σ2
di

(1−
ρ2
di)(di1−µdi)2). This conditional density is non-standard, and we implement an independence-

chain Metropolis-Hastings step with proposal distribution N(ρ̂di, K
−1
ρdi

), where Kρdi =

1/Vρ+X
′
ρdi
Xρdi/σ

2
di and ρ̂di = K−1

ρdi
(a2/Vρ+X

′
ρdi
yρdi/σ

2
di), withXρdi = (di1−µdi, . . . , di,T−1−

µdi)
′ and yρdi = (di2−µdi, . . . , diT −µdi)′. Then, given the current draw ρdi, a proposal ρ∗di

is accepted with probability min(1, gρdi(ρ
∗
di)/gρdi(ρdi)); otherwise the Markov chain stays

at the current state ρdi.
Step 8: To sample ψ, note that

log p(ψ |Data, π∗, b, d, λv, λn, θ−{ψ}) ∝ log p(z |π∗, d, σ2
w) + log p(ψ)

∝ − 1

2σ2
w

(z − d0 −Xπ∗π∗)′(HψHψ)′−1(z − d0 −Xπ∗π∗) + log p(ψ),

where p(ψ) is the prior density of ψ. Following Chan (2013), we sample ψ via an
independence-chain Metropolis-Hastings step. Specifically, since this log density can be
quickly evaluated using band matrix routines, we maximize it numerically to obtain the
mode and negative Hessian, denoted as ψ̂ and Kψ, respectively. Then, we generate can-

didate draws from the N(ψ̂,K−1
ψ ) distribution.

Step 9: To sample σ2
b , σ

2
w, φv and φn, first note that these parameters are conditionally

independent given the data and the states. Hence, we can sample each element one by
one. The variance parameters σ2

w, φv and φn follow inverse-Gamma distributions:

(σ2
w |Data, π∗,b, d, λv, λn, θ−{σ2

b ,σ
2
w,φv ,φn}) ∼ IG

(
νσ2

w
+
T

2
, Sσ2

w
+

1

2

T∑
t=1

ε2z,t

)
,

(φi |Data, π∗,b, d, λv, λn, θ−{σ2
b ,σ

2
w,φv ,φn})

∼ IG

(
νφi +

T − 1

2
, Sφi +

1

2

T∑
t=2

(log(λit)− log(λi,t−1))2

)
, i = v, n,

where the elements of εz can be computed as εz = H−1
ψ (z−Xdd). Next, the log conditional

density for σ2
b is given by

log(σ2
b |Data, π∗, b, d, λv, λn, θ−{σ2

b ,σ
2
w,φv ,φn})

∝ −(νσ2
b

+ 1) log σ2
b −

Sσ2
b

σ2
b

− T − 1

2
log σ2

b −
1

2σ2
b

T∑
t=2

(bt − bt−1)2 + gb(b, σ
2
b),

which is a nonstandard density. To proceed, we implement an MH step with the proposal
density

IG

(
νσ2

b
+
T − 1

2
, Sσ2

b
+

1

2

T∑
t=2

(bt − bt−1)2

)
.
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C Computation of Marginal Likelihoods

Marginal likelihoods are calculated by decomposing the marginal density of the inflation
data as the product of predictive likelihoods. Specifically, let π1:t = (π1, . . . , πt)

′ denote
the inflation data up to time t. Then, we can factor the marginal likelihood for model
Mk as follows:

p(π |Xk,Mk) =
T∏
t=5

p(πt | π1:t−1, X1:t,k,Mk),

where p(πt+1 |π1:t,Mk) is the predictive likelihood and Xk is a set of covariates used in
model Mk such as the survey data or the unemployment gap.19

D Priors for TVP-VAR and TVP-VECM Models

Regarding priors for the TVP-VAR and TVP-VECM models, let ΩB denote the error
covariance matrix in the state equation of the VAR coefficients. Similarly, define Ωh

to be the error covariance matrix corresponding to the log-volatilities. We assume the
diagonal elements of ΩB and Ωh are independently distributed as

ω2
B,i ∼ IG(νB,i, SB,i), ω2

h,j ∼ IG(νh,j, Sh,j), i = 1, . . . , kB, j = 1, . . . , n,

where kB = (np+ 1)n+n(n−1)/2 = 11. We set the hyperparameters as follows. For the
degree of freedom parameters, they are assumed to be small: νB,i = νB,j = 5. The scale
parameters are set so that the prior mean of ω2

h,j is 0.12. In other words, the difference
between consecutive log-volatilities is within 0.2 with probability of about 0.95. Similarly,
the implied prior mean of ω2

B,i is 0.012 if it is associated with a VAR coefficient and 0.12

for an intercept.
Although we omit details in the interest of brevity, the models can be fitted using

standard Gibbs samplers, such as the one described in Chan and Eisenstat (2015). Since
the TVP-VECM can be written as a TVP-VAR, it can be estimated with the same
methods used for the TVP-VAR.

19We discard an initial four predictive likelihoods to reduce the sensitivity to priors.
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