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Macroeconomists working with multivariate models typically face uncertainty
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unknown. Methods are drawn from the Bayesian clustering literature to
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1. Introduction

Macroeconomists working with multivariate models such as VARs face
a myriad of modelling choices. Traditionally, such choices have involved re-
strictions on parameters. For instance, cointegration, lag length selection
or the economic theory used by DSGE modelers all involve restrictions on
the coefficients of a VAR (or similar multivariate time series model). How-
ever, the increasing realization of the importance of parameter change has led
macroeconomists to work with more parameter-rich models which allow for
such change. Examples include time-varying parameter (TVP) VAR models
(see, among many others, Cogley and Sargent, 2001, 2005 or Primiceri 2005),
multivariate Markov switching models such as Sims and Zha (2006) or struc-
tural break VAR models such as Jochmann, Koop, and Strachan (2010). For
related work in the financial econometrics literature, see, e.g., He and Maheu
(2010).

Often the researcher is unsure of the nature of parameter change (e.g.
is it associated with VAR coefficients or the error covariance matrix? is it
associated with time such as in a structural break model or does change oc-
cur over the business cycle?, etc.). Multivariate time series models such as
VARs are parameter-rich even with constant parameters. Allowing for pa-
rameter change in VARs increases the number of parameters to be estimated.
This raises worries about over-fitting and over-parameterization. The pres-
ence of model uncertainty relating to time-variation in parameters greatly
exacerbates these worries.

The present paper is motivated by these considerations. Faced with un-
certainty over the nature of parameter change, we want an econometric
method which will discover its nature in a data-based fashion. And faced
with over-fitting, we want to do this in as parsimonious manner as possible.
In many cases, this latter goal can be achieved by focussing on economically
important parameters. For instance, a VAR may have hundreds of param-
eters (or even more, see Banbura, Giannone, and Reichlin, 2010). These
parameters control the dynamics (short-run and long-run) of the variables
in the model as well as the economic relationships of interest to the macroe-
conomists (e.g. impulse responses are functions of VAR coefficients and the
error covariance matrix). But VAR coefficients are hard to directly inter-
pret and allowing for parameter change in all of them can lead to a very
parameter-rich model. When considering ways of allowing for parameter
change, the researcher may wish to focus on some economically meaningful
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function of the parameters (e.g. allowing for only the monetary transmis-
sion mechanism to change). And it is typically most important to model
parameter change in the economic feature under study. For instance, in a
study of the monetary policy transmission mechanism it is very important
to correctly model parameter change in this relationship, but it may be less
important to correctly model parameter change in other parts of the model.

In this paper, we develop an econometric methodology which is more
parsimonious than other approaches (such as TVP-VARs) and uncovers pa-
rameter change of an unknown sort in features of economic importance. We
focus on the long run steady states of VAR dependent variables (although the
general ideas can be adapted to any feature of interest). These are features
that have a straightforward economic interpretation and theoretical macroe-
conomic models such as DSGE models typically have strong implications for
long run steady states. We extend the steady state VAR of Villani (2009)
to allow for the steady states to change over time. Of course, it would be
straightforward to adapt any of the existing modelling approaches described
above (e.g. Markov switching or structural break models) so as to apply
only to the steady states. However, such an approach would assume all of
the steady states change in a particular way (e.g. a structural break model
would imply they all change at the break time). The econometric methodol-
ogy developed in this paper (drawing on ideas from the Bayesian clustering
literature, see Tadesse, Sha, and Vannucci, 2005) is more sophisticated than
this. It determines (in an automatic, data-based fashion) which variables
exhibit breaks in their steady states (i.e. some variables can exhibit breaks
and others not) and the nature of the break process (e.g. it can estimate
structural breaks which occur at a point in time or parameter change over
the business cycle or anything else).

The paper is organised as follows. The next section of this paper describes
the modelling framework and provides a general outline of the Markov chain
Monte Carlo (MCMC) algorithm used to estimate the model. Full technical
details on prior, posterior and MCMC algorithm are provided in the Technical
Appendix. The third section of the paper illustrates the usefulness of our
methods in an empirical application relating to one presented in Del Negro
and Schorfheide (2008). We use a five-variate VAR and find that breaks exist
in the steady states of some of the series but not others.
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2. Modelling Framework

Bayesian VAR analysis traditionally works with a VAR of the form:

A† (L) yt = µ† + εt,

where yt is an n × 1 vector of dependent variables for t = 1, . . . , T , εt is
N (0,Σ) and A† (L) = I − A†

1L − · · · − A†
pL

p is a polynomial in the lag
operator. Conventional Bayesian VAR approaches such as the Minnesota
prior (see Doan, Litterman, and Sims, 1984) place a prior on the parameters
in A† (L) and µ†. This parameterization can be hard to directly interpret
(e.g. µ† is not the unconditional mean of the series). In contrast to this, the
steady state VAR (see Villani, 2009) can be written as

A (L) (yt − µ) = εt. (1)

This specification for the VAR has the advantage that µ is the unconditional
mean of yt and, thus, can be interpreted as the steady state of yt. As argued
in Villani (2009), the steady state is often something that researchers have
strong prior beliefs about (unlike A1, . . . , Ap). Thus, it may be preferable
to focus prior elicitation efforts on µ. The parameters in A (L), controlling
the short run dynamics for deviations from steady states, may be of less
interest to the macroeconomist. For instance, DSGE modelers often have
strong prior information about steady states and elicit their priors in terms
of such structural parameters (see, among many others, Smets and Wouters,
2007; Del Negro and Schorfheide, 2008). A drawback of the steady state
VAR relative to the traditional VAR is that MCMC methods must be used.
However, the gain in interpretability and the ability to elicit priors directly
off of parameters with an economic interpretation are large benefits which
may outweigh this drawback.

In empirical macroeconomic work, it is likely that the steady states of
some variables remain constant over time, while others change at a partic-
ular point in time (i.e. structural breaks might occur), while others might
change in some other fashion (e.g. they may differ between expansions and
recessions). However, the researcher is typically unsure about which of these
possibilities holds for which variable. Unless n is small, the number of mod-
elling choices can be daunting. In this paper, we draw on ideas from the
Bayesian clustering literature (see, e.g., Tadesse, Sha, and Vannucci, 2005)
to propose a modelling framework which allows us to group the dependent
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variables into clusters which have the same structure. For instance, one
cluster might have constant steady states, another cluster might include de-
pendent variables whose long run steady states exhibit a break, etc. This
grouping is done in an automatic data-based manner.

Since the contributions of this paper relate to µ, we will draw out the
basic intuition of our methodology ignoring the role of A (L) and the error
covariance matrix. Of course, in our empirical application A (L) will be
included as well as a time-varying error covariance matrix. Complete details
of the full model are given in the Technical Appendix.

Accordingly, let us begin with a simple model:

yt = µ1 + εt, (2)

where εt is N (0,Σ1). In the spirit of Tadesse, Sha, and Vannucci (2005), we
begin by extending this to a mixture of Normals specification

p (yt|q, µ,Σ) =

G∑

j=1

qjφ (yt|µj,Σj) , (3)

where φ (yt|µj,Σj) is the p.d.f. of the Normal distribution with mean µj and
variance Σj , q = (q1, . . . , qG)

′, µ = (µ′
1, . . . , µ

′
G)

′ and Σ = (Σ1, . . . ,ΣG). Or,
equivalently, we can introduce the discrete random variables: λt ∈ {1, . . . , G}
such that:

yt|λt = j ∼ N (µj,Σj) , (4)

where p (λt = j) = qj . For future reference, let λ = (λ1, . . . , λT )
′ and y =

(y′1, . . . , y
′
T )

′.
This is a standard mixture of Normals representation which has been

used in many papers. Mixtures of Normals are very flexible as discussed,
e.g., in Geweke and Keane (2007) and Geweke and Amisano (2011). For our
purposes, we stress that (4) allows for clustering over time and so would be
able to pick up features like structural breaks or regime switching, where the
steady states of all variables change. That is, it says each yt for t = 1, . . . , T
can be drawn from one of G different distributions. For instance, if y1, . . . , yτ
were drawn from one distribution and yτ+1, . . . , yT were drawn from a second,
then we would have a structural break at time τ . But it is also possible that yj
is drawn from the first distribution where j denotes times when the economy
is in recession (and other time periods are drawn from a second distribution).
Then we have a model with properties similar to a Markov switching model
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where properties differ over the business cycle. In general, any grouping is
possible.

It is also worth noting that (4) allows for the error covariance matrix to
differ across regimes. So formally, if we find evidence for G > 1 this implies
either that the steady states are changing or that the error covariance matrix
is changing. It is possible to restrict Σ1 = · · · = ΣG if the researcher wishes to
focus solely on steady-state changes in the context of a homoskedastic VAR.
Alternatively, at the cost of adding extra blocks to the MCMC algorithm, the
error covariance matrix could be modelled separately from the mixtures of
Normal component of the model (e.g. as a multivariate stochastic volatility
process).

Simple mixtures of Normals model such as (4) allow for all parameters
to differ across elements in the mixture. For high-dimensional models such
as VARs such flexibility can lead to an over-parameterised model. This
flexibility can be unnecessary and lead to undesirable consequences. If the
steady states in only one or two variables change and n is large, it is distinctly
possible that the econometric model will indicate no change. That is, the
model (4) offers the choice between “steady states of all variables are constant
over time” and “all n steady states change”. Given these alternatives, and
the reward for parsimony built into Bayesian model selection methods, it will
only choose the latter if most of the steady states change or if the change
in the steady state in one variable is huge. These considerations motivate
the development of a model designed to pick up breaks which occur only in
some subset of the variables. In practice, the researcher rarely knows which
subsets of variables might have breaks in their steady states, so the model
should be able to find these subsets in an automatic data-based fashion. The
following extension of the standard mixture of Normals model can achieve
these goals.

Let γ = (γ1, . . . , γn)
′ be a vector of dummy variables where γj = 1 implies

that the jth dependent variable follows a mixture of Normals representation
such as that given in (4). If γj = 0 then the jth dependent variable does
not follow a mixture of Normals, but rather has a time-invariant steady state
(and error covariance matrix) such as (2). In other words, γ serves to divide
our dependent variables into two groups, where one group allows for up to
G changes in steady states over time or across regimes and the other group
has constant steady states.

Formally, let yt(γ=1) denote the vector containing the elements of yt which
have γj = 1 and yt(γ=0) the vector containing the remaining elements of
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yt. And adopt the same “subscript (γ = 0/1)” notational convention for the
parameters in the model (e.g. µ(γ=0) will be the unconditional mean for all
variables which have a time-invariant steady state, n(γ=0) will be the number
of such variables, etc.). This leads to the following distribution for y, λ which
Tadesse, Sha, and Vannucci (2005) use as their likelihood function:2

p (y, λ|γ, q, µ,Σ) = 2π−n(γ=0)
T
2

∣∣Σ(γ=0)

∣∣−T
2

× exp
{
−1

2

∑T
t=1

(
yt(γ=0) − µ(γ=0)

)′
Σ−1

(γ=0)

(
yt(γ=0) − µ(γ=0)

)}

×
∏G

j=1 2π
−n(γ=1)

Tj

2

∣∣Σj,(γ=1)

∣∣−
Tj

2 q
Tj

j

× exp
{
−1

2

∑
t∈Cj

(
yt(γ=1) − µj,(γ=1)

)′
Σ−1

j(γ=1)

(
yt(γ=1) − µj,(γ=1)

)}
(5)

where Tj is the number of observations in the jth element in the Normal
mixture given in (4) and t ∈ Cj denotes observations belonging to cluster j
(i.e. Cj is the set of observations for which λt = j). Note that λ enters this
likelihood function since it determines Tj.

It is worth noting that (5) assumes that, conditional on γ, the dependent
variables are broken into two groups: those which exhibit breaks/parameter
change and those which do not. This structure of the error covariance ma-
trices means that, these two groups are (conditionally) uncorrelated with
one another. However, unconditionally (i.e. with γ integrated out) they are
correlated with one another.

To carry out posterior simulation in the steady state VAR version of this
model, we require a prior to combine with the likelihood function (5) and
an MCMC algorithm for drawing the parameters γ, q, µ,Σ, λ and A1, . . . , Ap.
Note that the relationship p (λt = j) = qj given after (4) provides us with a
hierarchical prior for λ. For γ we assume a Bernoulli prior which implies, a
priori, each variable is equally likely to exhibit no breaks as exhibit breaks.
Complete details of these priors and priors for other parameters are given
in the Technical Appendix. The appendix also includes MCMC diagnostics
indicating convergence of the algorithm.

The basic idea of our MCMC algorithm can be described very simply:
it combines the algorithm of Tadesse, Sha, and Vannucci (2005) with a

2In the terminology of, e.g., Frühwirth-Schnatter and Wagner (2008) this is the com-
plete data likelihood, as opposed to the integrated likelihood which would be p (y|γ, q, µ,Σ).
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Bayesian VAR algorithm. Complete details are given in the Technical Ap-
pendix. There are many approaches to selecting, G, the number of elements
in the Normal mixture. For instance, marginal likelihoods or cross-validation
have been used. Tadesse, Sha, and Vannucci (2005) use a reversible-jump
MCMC algorithm. In this paper, we choose G using the Bayesian infor-
mation criterion (BIC) defined as BIC = −2 ln L̂ + m lnT , where L̂ is the
maximised likelihood value and m is the number of parameters in the model.
For G = 1, L̂ is obtained as follows: first the likelihood function is evaluated
(when G = 1, there are no latent variables so the likelihood value can be

easily obtained) at each posterior draw, and L̂ is set to be the maximum

value. For G > 1 cases, L̂ is approximated by the average of the complete
data likelihood values evaluated at each posterior draw.

3. Empirical Illustration with a Five-variate VAR

3.1. Data

The data set is similar to that used in Del Negro and Schorfheide (2008)
and runs from 1954Q3 through 2012Q3. It consists of five commonly-used US
macroeconomic variables: real GDP per capita (Yt), hours worked per capita
(Lt), labor income share (lsht), the GDP deflator (Pt) and interest rates (the
Fed Funds rate, Rt). All data were obtained from the FRED database of
the Federal Reserve Bank of St. Louis. The variables are constructed and
transformed as in Del Negro and Schorheide (2008), pages 1196 and 1199,
and we reproduce their definitions and transformations in the following table:

Output growth 400(lnYt − lnYt−1)
Hours 100 lnLt

Labor share 100 ln lsht
Inflation 400(lnPt − lnPt−1)
Interest rates Rt

3.2. Empirical Illustration

Table 1 presents BICs for various values of G and p and it can be seen
that G = 2 and p = 3 are the preferred choices. There is strong support for
models with breaks in steady states (since G = 1 receives little support), but
a small number of breaks seems adequate (since there is little evidence for
G = 3). In the remainder of this section, we set G = 2 and p = 3.
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Table 1: BIC’s.

G = 1 G = 2 G = 3
p = 1 4132.0 4161.7 4214.8
p = 2 3771.9 3710.7 3848.5
p = 3 3672.3 3610.6 3892.0

The evidence in favor of G = 2 suggests breaks are occurring in some
of the steady states. But which ones? The estimated posterior mode for
the cluster label, γ, is (0, 0, 0, 1, 1)′, suggesting only inflation and interest
rates experienced changes in their steady states. The posterior mean is very
similar to the posterior mode, indicating the clustering algorithm is clearly
identifying which variables have breaks and which ones do not. If we re-
run the MCMC algorithm, conditional on γ = (0, 0, 0, 1, 1)′, we can obtain
parameter estimates which arise from a single model with a clear interpreta-
tion. This model is parameterised in terms of µ(γ=0) = (µ1

(γ=0), µ
2
(γ=0), µ

3
(γ=0))

′

(i.e. a 3× 1 vector with elements being the steady states for output growth
per capita, hours worked per capita and labor income share respectively),(
µ1
1,(γ=1), µ

1
2,(γ=1)

)
(i.e. these are the steady states in the two regimes for

inflation) and
(
µ2
1,(γ=1), µ

2
2,(γ=1)

)
(i.e. these are the steady states in the two

regimes for interest rates). The error covariances are labelled with a simi-
lar notational convention where subscripts denote regimes and superscripts
particular parameters within a regime. The estimated posterior means and
standard deviations for some of the key parameters are reported in Table 2.

Most of the parameter estimates are similar to those found in a standard
VAR, so we will focus our discussion on those which differ. Table 2 provides
strong evidence of a large change in the steady state for inflation, with slightly
weaker evidence in favor of a smaller change in the steady state for the
interest rate. But note also that the regime change we are finding looks to
be associated with a change in the volatility of both variables. Remember
that our approach allows for different regimes to have different means and
different error variances. For both inflation and interest rates we are finding
volatilities to be much lower in the second regime than the first regime.
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Table 2: Posterior Means and Standard Deviations of Parameters.

parameter E(·|y)
√
Var(·|y) parameter E(·|y)

√
Var(·|y)

µ1
(γ=0) 1.733 0.187 q1 0.109 0.035

µ2
(γ=0) -754.222 11.822 Σ1,1

(γ=0) 10.465 1.014

µ3
(γ=0) -72.592 1.425 Σ2,1

(γ=0) 1.488 0.179

µ1
1,(γ=1) 5.769 1.319 Σ3,1

(γ=0) -1.083 0.154

µ2
1,(γ=1) 8.853 3.091 Σ2,2

(γ=0) 0.436 0.043

µ1
2,(γ=1) 2.435 0.435 Σ3,2

(γ=0) -0.076 0.028

µ2
2,(γ=1) 4.168 0.700 Σ3,3

(γ=0) 0.390 0.037

Σ1,1
1,(γ=1) 3.136 1.252 Σ1,1

2,(γ=1) 1.329 0.166

Σ2,1
1,(γ=1) 0.558 0.782 Σ2,1

2,(γ=1) -0.104 0.058

Σ2,2
1,(γ=1) 3.534 1.269 Σ2,2

2,(γ=1) 0.366 0.044

1960 1970 1980 1990 2000 2010
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1: Probability of the first regime: P (λt = 1 | y).

Figure 1 presents evidence on when the two regimes are occurring. That

10



is, it reports the estimated probabilities P (λt = 1|y) for t = 1, . . . , T . Of
course, the reader can figure out P (λt = 2|y) since it is 1−P (λt = 1|y). It can
be seen that our econometric methodology is clearly finding changes in steady
states in interest rates and inflation to be associated with the period 1973-
1983. This is the period after the collapse of the Bretton-Woods agreement
and OPEC oil price shock up until the Great Moderation of the business
cycle. This was a period of high and volatile inflation and interest rates.
For these variables, our methodology finds sufficient differences from other
periods, for a prolonged period, such as to indicate changes in their steady
states. It is not finding the changes in behavior in the other variables (output
growth, hours and labor share) during this period to be sufficiently different
from other periods so as to indicate changes in steady states. These findings
are plausible. In post-war experience, the 1973-1983 period was unique in
terms of exceptionally high inflation and associated interest rate policies.
However, the dynamic time series properties of the remaining real variables
were not exceptional during 1973-1983 and our methodology is indicating the
steady states for these variables have been constant over time.

It is interesting to note that we are not finding substantial evidence in
favor of the Great Moderation period or the recent Great Recession as being
associated with changes in long run steady states. The Great Moderation in-
volves changes in volatilities. Our methodology does allow different regimes
to be associated with different volatilities as well as changes in steady states.
The fact that we are not finding the Great Moderation to be a different
regime indicates the importance of steady state change in our model. With-
out changes in steady states (as appear not to have occurred during the Great
Moderation), the changes in volatility are not large enough for our model to
classify this as a different regime.

With regards to the Great Recession, there is little evidence that this is
a third regime involving changes in steady states. That is, Table 1 indicates
G = 3 is unlikely (see also Figure 1 where the probability of regime change
does increase after 2007 but only slightly). This finding could reflect the
fact that, even though the values of some of the variables have changed sub-
stantively, this does not necessarily mean their steady states have changed.
Or, even if the steady states have changed, they are by definition long-run
phenomena and it might take a long time for any econometric methodology
to definitively identify such a change. Distinguishing between a temporary
and a permanent change will, by its very nature, be something that requires
a certain amount of data which is unavailable for the most recent years in
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our data set.

4. Conclusion

In this paper, we have developed an econometric methodology for multi-
variate macroeconomic models, based on Tadesse, Sha, and Vannucci (2005),
which differs from existing methods in that it allows both for clustering in
terms of variables and in terms of regimes. That is, it automatically divides
the variables into groups. Within each group, variables exhibit a common
pattern (e.g. they can exhibit structural breaks at the same time). We apply
this methodology to the case of the steady-state VAR of Villani (2009). We
focus on the issue of breaks in long-run steady states, although we argue
that the methodology could be useful in a wide variety of empirical macroe-
conomic contexts.

Our empirical illustration, using a moderately-sized VAR, indicates that
the methodology works well and leads to parsimonious representations. In-
stead of allowing for breaks in the steady states (and error covariance ma-
trices) of all variables (as would be done in a conventional structural break
model) or allowing for breaks in dozens or hundreds of VAR coefficients (as
would be done in a Markov-switching VAR or TVP-VAR), our methodology
indicates breaks are occurring in the steady states of only two variables.

12



Banbura, M., Giannone, D., Reichlin, L., 2010. Large bayesian VAR. Journal
of Applied Econometrics 25, 71–92.

Cogley, T., Sargent, T., 2001. Evolving post-WorldWar II inflation dynamics.
NBER Macroeconomic Annual 16, 331–373.

Cogley, T., Sargent, T., 2005. Drifts and volatilities: Monetary policies and
outcomes in the post WWII U.S. Review of Economic Dynamics 8, 262–
302.

Del Negro, M., Schorfheide, F., 2008. Forming priors for DSGE models (and
how it affects the assessment of nominal rigidities). Journal of Monetary
Economics 55, 1191–1208.

Doan, T., Litterman, R., Sims, C., 1984. Forecasting and conditional projec-
tion using realistic prior distributions. Econometric Reviews 3, 1–144.
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Technical Appendix

The Model

Write the steady state VAR as:

(yt−µλt
)−A1(yt−1−µλt

)−· · ·−Ap(yt−p−µλt
) = εt, εt ∼ N(0,Σλt

), (6)

where λt ∈ {1, 2, . . . , G} denotes regimes and Ai, i = 1 . . . , p are n × n
matrices of VAR coefficients such that yt is stationary (the characteristic
polynomial of A = (A1, . . . , Ap) has roots outside the unit circle). Let
γ = (γ1, . . . , γn)

′ be a vector of cluster labels: if γj = 0, then µj
λt
, the jth

component of µλt
, are the same for all λt ∈ {1, . . . , G}, i.e., µj

1 = · · · = µj
G;

otherwise, they are different. Defining y∗t = A(L)yt, we have

y∗t ∼ N(A(1)µλt
,Σλt

),

where A(1) = I −
∑p

i=1Ai. Let y
∗ = (y∗1, . . . , y

∗
T ).

The Prior

For the variable selection indicator, we assume that its elements are i.i.d.
Bernoulli random variables, i.e., γj ∼ Ber(ψ), with joint density

p(γ) =
n∏

i=1

ψγi(1− ψ)1−γi ,

where ψ can be elicited as the proportion of variables expected a priori to
exhibit multiple changes in steady states. In our application we set ψ = 0.5.
The regime labels λt, t = 1, . . . , T are i.i.d. discrete random variables with
a hierarchical prior given by P (λt = j) = qj ≥ 0 with

∑G
i=1 qi = 1. In

turn, q = (q1, . . . , qG) is a random variable with a symmetric Dirichlet prior,
q ∼ Dir(α0, . . . , α0), where α0 is set to be 3 in our application.

The prior for a = vecA′ = vec([A1, . . . , Ap]
′) is Normal with mean and

covariance matrix obtained as follows: we first estimate the VAR coefficients
in the time-varying intercept model

yt = µ̃t + Ã1yt−1 + · · ·+ Ãpyt−p + vt, vt ∼ N(0,Ω),

with a random walk state equation

µ̃t = µ̃t−1 + wt, wt ∼ N(0, Q),
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where Q is a diagonal matrix. Then the prior mean is set to be E(Ã | y)
with prior covariance matrix 0.012 × I, i.e., a ∼ N(a0, 0.01

2 × I), where
a0 = vec(E(Ã | y)′).

Finally, we assume the following natural conjugate priors for µ1, . . . , µG

and Σ1, . . . ,ΣG:

µ(γ=0)|A(1)(γ=0),Σ(γ=0) ∼ N(η0(γ=0), h0A(1)
−1
(γ=0)Σ(γ=0)A(1)

−1′

(γ=0)),

µj,(γ=1)|A(1)(γ=1),Σj,(γ=1) ∼ N(η0(γ=1), h1A(1)
−1
(γ=1)Σj,(γ=1)A(1)

−1′

(γ=1)),

Σ(γ=0) ∼ IW (δ + n− nγ , Q0(γ=0)),

Σj,(γ=1) ∼ IW (δ + nγ , Q1(γ=1)).

where IW (·, ·) denotes the inverse-Wishart distribution. The degree of free-
dom parameter, δ, is set to be n, while η0 = 0 and h0 = h1 = 10 to indicate
weak prior information. Finally, we take Q0 = 1/τ0I and Q1 = 1/τ1I, where
τ0 and τ1 are chosen as suggested in Tadesse, Sha, and Vannucci (2005).

MCMC Algorithm

Our posterior simulator is based on the collapsed sampler proposed in
Tadesse, Sha, and Vannucci (2005). Specifically, we sample the parameters
and latent variables marginally of µ1, . . . , µG and Σ1, . . . ,ΣG. Note that given
γ and a, p(y∗, λ|q, γ, a), the joint distribution of (y∗, λ) marginal of µ1, . . . , µG

and Σ1, . . . ,ΣG, is available analytically (see equation 7). Using derivations
similar to Tadesse, Sha, and Vannucci (2005), page 605, it can be shown that

p(y∗, λ|q, γ, a) = π−Tn/2

G∏

k=1

{
Kk(γ=1)|Q1(γ=1)|

(δ+nγ−1)/2|Q1(γ=1) + Sk(γ=1)|
−(Tk+δ+nγ−1)/2

}

×H(γ=0)|Q0(γ=0)|
(δ+n−nγ−1)/2|Q0(γ=0) + S0(γ=0)|

−(T+δ+n−nγ−1)/2,
(7)

16



where

Kk(γ=1) = qTk

k (1 + h1Tk)
−nγ/2

nγ∏

j=1

Γ((Tk + δ + nγ − j)/2)

Γ((δ + nγ − j)/2)
,

H(γ=0) = (1 + h0T )
−(n−nγ)/2

n−nγ∏

j=1

Γ((T + δ + n− nγ − j)/2)

Γ((δ + n− nγ − j)/2)
,

Sk(γ=1) =
∑

t∈Cj

(y∗t(γ=1) − ȳ∗t(γ=1))(y
∗
t(γ=1) − ȳ∗t(γ=1))

′

+
Tk

h1Tk + 1
(A(1)(γ=1)η0(γ=1) − ȳ∗t(γ=1))(A(1)(γ=1)η0(γ=1) − ȳ∗t(γ=1))

′,

S0(γ=0) =

T∑

t=1

(y∗t(γ=0) − ȳ∗t(γ=0))(y
∗
t(γ=0) − ȳ∗t(γ=0))

′

+
T

h0T + 1
(A(1)(γ=0)η0(γ=0) − ȳ∗t(γ=0))(A(1)(γ=0)η0(γ=0) − ȳ∗t(γ=0))

′,

nγ =
∑n

i=1 γi, Tk is the number of λt that are equal to k, i.e., Tk =
∑T

t=1 1(λt =
k), ȳ∗t(γ=1) and ȳ

∗
t(γ=0) are the sample means of y∗t(γ=1) and y

∗
t(γ=0) respectively.

The posterior simulator now consists of the following four steps:
(1) sample γ|y, λ, q, a;
(2) sample λ|y, γ, q, a;
(3) sample q|y, λ, γ, a;
(4) sample a|y, λ, γ, q;

The details of Steps (1)-(2) are given in Tadesse, Sha, and Vannucci (2005)
equations (10)-(12) and the discussion in their subsections 5.1–5.2, with the
likelihood given in (7). Step 3 is a simple Gibbs step as (conditional on λ), q
has a Dirichlet distribution: q|y, λ, γ, a ∼ Dir(α1, . . . , αG), where αk = α0 +
Tk and Tk is the number of λt that are equal to k. To avoid the label-switching
problem, we impose the restriction that q1 ≤ · · · ≤ qG. Such a draw can be
obtained, for example, by rejection sampling. To implement Step 4, recall
that the prior for a is a ∼ N(a0, 0.01

2×I). Since the prior is tight, we can use
p(a) as the proposal density in an independence-chain sampler. Specifically,
given the current draw a, a candidate draw ac is generated from N(a0, 0.01

2×
I). If the characteristic roots of the companion matrix associated with ac are
all within the unit circle, we accept ac with probability min{αMH, 1}, where

αMH =
p(y∗c, λ|q, γ, ac)

p(y∗, λ|q, γ, a)
,
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y∗ct = Ac(L)yt and A
c(L) is the lag polynomial associated with ac; otherwise,

retain the draw a. Since a is a high-dimensional vector, in our implementation
we divide A into several blocks. In particular, each row of A constitutes a
block, and each block is sampled sequentially.

Posterior results in the empirical application are based on 50000 poste-
rior draws, following a burn-in period of 1000. In order to investigate MCMC
convergence, the following table presents the convergence diagnostic devel-
oped in Geweke (1992) for the parameters considered in Table 2 in the body
of the paper. If the MCMC algorithm has converged then Geweke’s conver-
gence diagnostic has a standard Normal distribution. In the table, it can be
seen that the diagnostics are all less than 1.96, indicating that convergence
has taken place.

Table 3: Geweke’s convergence diagnostics.

µ1
(γ=0) 1.714 q1 -0.219

µ2
(γ=0) 1.164 Σ1,1

(γ=0) 0.614

µ3
(γ=0) 0.738 Σ2,1

(γ=0) 0.217

µ1
1,(γ=1) 0.655 Σ3,1

(γ=0) 0.232

µ2
1,(γ=1) -0.527 Σ2,2

(γ=0) 0.559

µ1
2,(γ=1) 0.526 Σ3,2

(γ=0) 0.112

µ2
2,(γ=1) -0.069 Σ3,3

(γ=0) -1.387

Σ1,1
1,(γ=1) -0.580 Σ1,1

2,(γ=1) 0.748

Σ2,1
1,(γ=1) -0.205 Σ2,1

2,(γ=1) 0.541

Σ2,2
1,(γ=1) 0.385 Σ2,2

2,(γ=1) 1.561
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