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Abstract

Estimation of rare-event probabilities in high-dimensional settings via importance sampling
is a difficult problem due to the degeneracy of the likelihood ratio. In fact, it is generally
recommended that Monte Carlo estimators involving likelihood ratios should not be used in
such settings. In view of this, we develop efficient algorithms based on conditional Monte
Carlo to estimate rare-event probabilities in situations where the degeneracy problem is ex-
pected to be severe. By utilizing an asymptotic description of how the rare event occurs,
we derive algorithms that involve generating random variables only from the nominal distri-
butions, thus avoiding any likelihood ratio. We consider two settings that occur frequently
in applied probability: systems involving bottleneck elements and models involving heavy-
tailed random variables. We first consider the problem of estimating P(X1 + · · ·+Xn > γ),
where X1, . . . , Xn are independent but not identically distributed (ind) heavy-tailed random
variables. Guided by insights obtained from this model, we then study a variety of more
general settings. Specifically, we consider a complex bridge network and a generalization
of the widely popular normal copula model used in managing portfolio credit risk, both
of which involve hundreds of random variables. We show that the same conditioning idea,
guided by an asymptotic description of the way in which the rare event happens, can be
used to derive estimators that outperform existing ones.
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1 Introduction

Most stochastic models of practical interest involve a large number of random variables inter-
acting in a complex way, where relevant performance measures of the models are not available
analytically. In such cases, Monte Carlo methods are indispensable for estimating various
quantities of interest, for example the estimation of rare-event probabilities. However, in high-
dimensional models the estimation of rare-event probability is a particularly difficult problem,
due to the degeneracy properties of the likelihood ratio. In fact, Rubinstein (2007) comments
that importance sampling (IS) with high-dimensional likelihood ratio should not be used in
those problems. In view of this, instead of considering IS we develop efficient algorithms for es-
timating rare-event probabilities in high-dimensional settings based on another popular variance
reduction idea, namely, conditional Monte Carlo (Asmussen and Glynn, 2007; Rubinstein and
Kroese, 2007). By utilizing an asymptotic description of how the rare event occurs, we derive
algorithms that involve generating random variables only from the nominal distributions, thus
avoiding the problem of choosing a suitable proposal density.

We consider two general settings. The first of these concerns models with bottleneck elements.
That is, the parameters of those random variables which are critical in the occurrence of the
rare event. Although the screening method (Rubinstein, 2007) is especially developed for such
a setting, it can only mitigate the degeneracy problem. The second general setting involves
heavy-tailed random variables, in which case the popular exponential change of measure tech-
nique (Asmussen and Glynn, 2007) cannot be directly applied. In both settings, however, the
asymptotic description of the rare event occurrence can be easily exploited to develop efficient
conditional Monte Carlo algorithms.

In terms of specific models, the simplest and most well-studied problem is the estimation of the
probability P(Sn > γ), where Sn = X1+· · ·+Xn and X1, . . . , Xn are independent and identically
distributed (iid) random variables. This particular problem has attracted considerable attention
due to its relevance in queueing theory and various applications in finance and risk management
(see, e.g., Cruz, 2002; Asmussen and Glynn, 2007). The literature on the case where the
random variables are thin-tailed is extensive, but not until recently has substantial progress
been made on the heavy-tailed case. The first logarithmically efficient algorithm in the setting
of sums of iid heavy-tailed random variables appears to be Asmussen and Binswanger (1997),
which is based on the conditional Monte Carlo method, conditioning on the order statistics
X(1), . . . , X(n). Other efficient IS estimators are reported in Asmussen et al. (2000) and Juneja
and Shahabuddin (2002), where the former involves order statistics and large deviation theory,
and the latter uses the idea of delayed hazard rate twisting. The cross-entropy (CE) method is
later utilized to derive another efficient IS estimator in Asmussen et al. (2005). However, the
first estimator with bounded relative error is as recent as Asmussen and Kroese (2006), where
the authors propose a conditional Monte Carlo estimator based upon the identity P(Sn > γ) =
nP(Sn > γ,Mn = Xn), where Mn = max(X1, . . . , Xn). Most recently, Juneja (2007) proposes
an estimator with asymptotically vanishing relative error by decomposing P(Sn > γ) into two
parts where the dominant part is available analytically and only the minor part needs to be
estimated by simulation.

Although the setting of the sum of iid random variables has numerous applications and is
interesting in its own right, many important problems in various fields involve more complex
and sophisticated frameworks. In particular, problems often take the form of estimating the
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quantity P(S(X) > γ), where S(·) is some specified function and X = (X1, . . . , Xn) is a vector of
random variables that are not necessarily identical nor even independent (see, e.g., Glasserman
et al., 2002; Glasserman, 2004; Bassmaboo et al., 2008, among many others). To gain insights
into more general settings, we first extend the results in Asmussen and Kroese (2006) to estimate
P(X1 + · · · + Xn > γ), when X1, . . . , Xn are independent but not identically distributed (ind)
random variables. Guided by these insights, we consider a variety of more general settings
than the sum of ind random variables. In particular, we consider the bridge network studied
in Rubinstein (2007) and the t-copula model introduced by Bassmaboo et al. (2008), both of
which involve hundreds of random variables, so that the problem of degeneracy is expected to
be severe for any Monte Carlo estimator utilizing likelihood ratios. We show that the same
conditioning idea, motivated by an asymptotic description of the way in which the rare event
happens, can be used to derive estimators that outperform existing algorithms. In addition, the
proposed algorithms involve generating random variables only from the nominal distributions,
thus avoiding the potential degeneracy problem of the likelihood ratio. It is worth noting that
for all proposed algorithms the extra computation effort is negligible. Firstly, in terms of random
variable generation, the proposed algorithms require less CPU time than the crude Monte Carlo
method, as fewer random variables are needed. Secondly, even though the proposed algorithms
require evaluations of the distribution function of the random variables, the computation effort
is trivial, as analytic formulas (for the case of Pareto and Weibull distributions) or fast routines
(for the case of t distribution) are available. In fact, when analytic formulas are available,
evaluations of the distribution function take less than 1 % of the total computation time; when
analytic formulas are not available, evaluations take less than 10 % of the total computation
time.

The rest of the article is organized as follows. Section 2 generalizes the conditional Monte Carlo
estimator of Asmussen and Kroese (2006) to cover the case of sums of ind random variables.
The performance of the proposed estimator is demonstrated via various simulation experiments.
In particular, we consider the two most important examples of subexponential distributions:
the Pareto and Weibull cases. Next, we apply the same conditioning ideas to more complicated
settings than sums of ind random variables. Specifically, we first consider the stochastic shortest
path within a simple bridge network in Section 3. Then we extend our studies to an m×n bridge
network in Section 4 and show how the proposed algorithm can be applied to this much more
complicated setting with only minor modifications. In Section 5, we investigate a generalization
of the normal copula model, a popular model in finance for estimating the probability of large
portfolio losses. We show that the ideas developed in previous sections can be applied in a
straightforward manner.

2 Sum of Ind Random Variables

A non-negative random variable X (or its distribution F ) is said to be heavy-tailed when its
exponential moments fail to exist, i.e., EetX =∞ for t > 0. Let X = (X1, . . . , Xn) be a vector
of ind heavy-tailed random variables with distributions F1, . . . , Fn. Consider the problem of
estimating the probability of the form

` = P(S(X) > γ), (1)
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where S(X) = X1 + · · ·+Xn and γ > 0 is large so that ` is small. Most often in the literature a
narrower class of distributions is considered, namely the class of subexponential distributions,
where F is said to be subexponential if

P(X1 + · · ·+Xn > γ)
P(X1 > γ)

→ n as γ →∞,

and X1, . . . , Xn are iid with distribution F . In the numerical examples in this section, we will
consider the two most important examples of subexponential distributions: Pareto and Weibull
distributions.

In the context of rare event simulation, two measures of efficiency are widely used. An estimator
Z ≡ Z(γ) (i.e., some function of the random variables X) is said to be logarithmically efficient,
or simply efficient, if

lim sup
γ→∞

VarZ(γ)
[EZ(γ)]2−ε

= 0

for all ε > 0. A stronger condition is the concept of bounded relative error :

lim sup
γ→∞

VarZ(γ)
[EZ(γ)]2

<∞.

In the setting of iid heavy-tailed random variables (F1 = . . . = Fn = F ), the asymptotic
distribution of X1, . . . , Xn given the rare event {S(X) > γ} is such that with probability 1/n
one of the variables, say X1, is distributed according to the conditional distribution X1 |X1 >
γ, while the other variables X2, . . . , Xn are distributed according to the original (nominal)
distributions. To utilize this asymptotic description of the rare event, Asmussen and Kroese
(2006) write (1) as

` = nP(S(X) > γ, Mn = Xn) = nEF

(γ −
n−1∑
j=1

Xj) ∨Mn−1

 , (2)

where Mj = maxi6j Xi, F (x) = 1− F (x) and a ∨ b is a shorthand notation for max(a, b). The
identity in (2) suggests the following conditional Monte Carlo estimator:

̂̀ =
1
N

N∑
i=1

nF

(γ −
n−1∑
j=1

X
(i)
j ) ∨M (i)

n−1

 , (3)

where M (i)
k = maxj6kX

(i)
j and X

(i)
j j = 1, . . . , n − 1, i = 1, . . . , N are iid random variables

generated from the common distribution F . The superior performance of the above conditional
MC estimator is illustrated in Asmussen and Kroese (2006) via various simulation studies. In
addition, it appears to be the first estimator with bounded relative error for the regularly varying
heavy-tailed distributions.

The above estimator can be generalized to cover the ind case. To set the stage, let X−i denote
the vector X with the ith element removed, i.e., X−i = (X1, . . . , Xi−1, Xi+1, . . . , Xn), and
M̃i = max(X−i). Since for the general ind case we can write the rare-event probability in (1) as

` =
n∑
i=1

P(S(X) > γ, Xi = Mn) =
n∑
i=1

EF i

(γ −
∑
j 6=i

Xj) ∨ M̃i

 , (4)
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we consider the estimator

̂̀ =
1
N

N∑
k=1

n∑
i=1

F i

(γ −
∑
j 6=i

X
(k)
j ) ∨ M̃i

 , (5)

where X(k)
j , j = 1, . . . , n, k = 1, . . . , N are random variables with distribution Fj . In other

words, we generate N copies of X1, . . . , Xn from the nominal distributions F1, . . . , Fn, and for
each i = 1, . . . , n, we use the sample X−i = (X1, . . . , Xi−1, Xi+1, . . . , Xn) to estimate the ith
component of the summand in (4), i.e., the quantity F i

(
(γ −

∑
j 6=iXj) ∨ M̃i

)
. It is important

to note that even though we use overlapping samples to compute the various components of the
summand, it is obvious that the conditional MC estimator in (5) is still unbiased. Moreover, in
order to get N samples, one only needs a total of N ×n random draws. In the next subsections
we will illustrate the performance of the proposed estimator via various simulated experiments.
In particular we consider the two most important examples of subexponential distributions: the
Pareto and Weibull distributions.

2.1 Pareto Case

The first example of a subexponential distribution is the Pareto distribution, defined by the
probability density function (pdf)

f(x;α, λ) = αλ(1 + λx)−(α+1), x > 0, (α > 0, λ > 0). (6)

We will show that for the Pareto case, the conditional MC estimator (5) has bounded relative
error. We first recall a result proved in Asmussen and Kroese (2006).

Lemma 2.1 Let X1, . . . , Xn be independent but not necessarily identically distributed Pareto
random variables with distributions F1, . . . , Fn. Then for 1 6 i 6 n,

EF i

(γ −
∑
j 6=i

Xj) ∨ M̃i

2

6 ciF i(γ)2, (7)

where the expectation is taken with respect to F1, . . . , Fi−1, Fi+1, . . . , Fn, ci is a constant not
dependent on γ, and M̃i = max(X−i).

In the original proof, Asmussen and Kroese (2006) only consider the case where X1, . . . , Xn have
identical distributions. Nevertheless, the same arguments work even when the distributions are
non-identical. With the above result, it is straightforward to show the estimator (5) has bounded
relative error.

Proposition 2.2 The conditional Monte Carlo estimator (5) has bounded relative error under
the Pareto case.
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Proof For notational convenience, let δi = (γ −
∑

j 6=iXj) ∨ M̃i. The claim now follows from:

E

(
n∑
i=1

F i(δi)

)2

=
n∑
i=1

n∑
j=1

EF i(δi)F j(δj) 6
1
2

n∑
i=1

n∑
j=1

E(F i(δi)2 + F j(δj)2)

6 n

n∑
i=1

ciF i(γ)2 6 C

n∑
i=1

F i(γ)2 6 C

(
n∑
i=1

F i(γ)

)2

,

where C = nmax(c1, . . . , cn), and ci, i = 1 . . . , n are constants independent of γ.

We provide two numerical examples for the sum of n = 10 ind Pareto random variables

Xi
ind∼ Pareto(αi, λi), i = 1, . . . , n. In the first example we set αi = 2 + i/10 and λi = 1,

and αi = 2.5 and λi = 0.5 + i/n in the second. We estimate the rare-event probability (1) for
various γ using the proposed conditional MC estimator (5), with a sample of size N = 100, 000.
For comparison, we also estimate the same probabilities by the transform likelihood method
(Kroese and Rubinstein, 2004). In particular, we keep αi fixed and sequentially update λi via
the TLR procedure, to obtain the optimal parameters for the IS estimator. We use a sample
size of N1 = 100, 000 for the estimation of the optimal parameters and N = 100, 000 for the
main importance sampling run. The estimated probabilities for the conditional MC estimator
and the TLR estimator, together with their relative errors, are reported in Tables 1–2. In the
tables we also give the factor of variance reduction for both estimators compared with the crude
Monte Carlo estimator. As is apparent from the tables, both estimators offer substantial vari-
ance reduction when γ is large. Moreover, the proposed estimator compares favorably with the
TLR estimator and outperforms it (in terms of variance reduction) by a factor of 104 to 107 in
the first example and 104 to 109 in the second. Also note that for large γ, the TLR estimator
consistently underestimates the true probabilities.

Table 1: Performance of the proposed conditional Monte Carlo for rare-event probability es-
timation of Pareto ind random variables with n = 10, αi = 2 + i/n and λi = 1. Variance
reduction is compared with the crude Monte Carlo estimator.

TLR conditional Monte Carlo
γ ̂̀ RE (%) Var. reduction ̂̀ RE (%) Var. reduction

100 1.89× 10−4 7 10 1.91× 10−4 0.04 3.32× 105

500 4.51× 10−6 9 277 4.74× 10−6 7.1× 10−3 4.14× 108

1,000 9.59× 10−7 11 908 1.01× 10−6 3.4× 10−3 8.57× 109

5,000 1.97× 10−7 11 4,360 2.21× 10−7 1.5× 10−3 2.03× 1011
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Table 2: Performance of the proposed conditional Monte Carlo estimator for rare-event prob-
ability estimation of Pareto ind random variables with n = 10, αi = 2.5 and λi = 0.5 + i/10.
Variance reduction is compared with the crude Monte Carlo estimator.

TLR conditional Monte Carlo
γ ̂̀ RE (%) Var. reduction ̂̀ RE (%) Var. reduction

100 1.48× 10−4 11 9 1.46× 10−4 0.05 3.16× 105

500 1.88× 10−6 22 348 2.35× 10−6 5.9× 10−3 6.21× 108

1,000 3.15× 10−7 26 1,830 4.10× 10−7 2.6× 10−3 1.85× 1010

5,000 5.82× 10−8 13 5,450 7.26× 10−9 4.8× 10−4 2.97× 1013

2.2 Weibull Case

For the second example of a subexponential distribution, we consider the Weibull distribution,
which is defined by the pdf

f(x;α, λ) = αλ(λx)α−1e−(λx)α , x > 0, (α > 0, λ > 0). (8)

Tables 3 and 4 present the results of a numerical study similar to that for the Pareto case. In

particular, we consider the sum of n = 10 ind Weibull random variables Xi
ind∼ Weib(αi, λi), i =

1, . . . , n, with αi = 0.25 and λi = 0.5 + i/n in the first numerical example, and αi = 0.75 and
λi = 0.5 + i/n in the second. For the proposed conditional MC estimator (5), we again use
a sample of size N = 100, 000. For comparison, we also estimate the same probabilities using
the cross-entropy method (CE) (Rubinstein and Kroese, 2004), performing a two-parameter
update (αi and λi) in each iteration. We use a sample size of N1 = 100, 000 for the estimation
of the optimal parameters and N = 100, 000 for the main importance sampling run. The
results show that both estimators offer substantial variance reduction when γ is large. It is
also worth noting that the conditional MC estimator performs much better when αi’s are small
(αi = 0.25) than when they are large (αi = 0.75). This is not surprising since the conditional
MC estimator is motivated by the asymptotic description for the sum of heavy-tailed random
variables, and when the αi’s approach 1 the tails of Weibull random variables become thinner
and more exponential-like.

Table 3: Performance of the proposed conditional Monte Carlo for rare-event probability esti-
mation of Weibull ind random variables with n = 10, αi = 0.25 and λi = 0.5 + i/10. Variance
reduction is compared with the crude Monte Carlo estimator.

CE conditional Monte Carlo
γ ̂̀ RE (%) Var. reduction ̂̀ RE (%) Var. reduction

10,000 5.97× 10−4 2.1 36 5.96× 10−4 0.06 54,200
20,000 9.68× 10−5 3.1 107 9.64× 10−5 0.04 6.47× 105

50,000 5.36× 10−6 4.9 791 5.32× 10−6 0.02 4.33× 107

100,000 3.83× 10−7 6.0 7,190 3.81× 10−7 0.01 2.22× 109
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Table 4: Performance of the proposed conditional Monte Carlo estimator for rare-event proba-
bility estimation of Pareto ind random variables with n = 10, αi = 0.75 and λi = 0.5 + i/10,.
Variance reduction is compared with the crude Monte Carlo estimator.

CE conditional Monte Carlo
γ ̂̀ RE (%) Var. reduction ̂̀ RE (%) Var. reduction
40 7.99× 10−4 0.95 139 7.96× 10−4 0.98 131
50 8.10× 10−5 1.2 834 8.19× 10−5 1.4 614
70 1.21× 10−6 2.4 14,500 1.21× 10−6 2.5 13,100
100 4.64× 10−9 5.8 6.79× 105 4.62× 10−9 2.0 5.19× 106

3 A Simple Bridge Network

We now explore various more general settings than P(X1 + · · ·+Xn > γ). We will demonstrate
that the same conditioning ideas, motivated by the asymptotic description of how the rare
event occurs, can be used to derive efficient estimators in those settings. In this section, we first
consider the problem of estimating the probability that the shortest path from node A to node
B in the network of Figure 1 has a length of at least γ, where the random lengths X1, . . . , X5

of the links are assumed to be independent.

Figure 1: A simple bridge network.

Defining X = (X1, . . . , X5) and

S(X) = min{X1 +X4, X1 +X3 +X5, X2 +X5, X2 +X3 +X4}, (9)

we are interested in estimating the probability

` = P(S(X) > γ). (10)

As a motivating example, let us first consider the special case where Xi ∼ Exp(λi), i = 1, . . . , 5
with pdf f(x; θ) = θe−θx and λ = (λ1, λ2, λ3, λ4, λ5) = (1, 1, 3, 2, 10). Note that in this particular
example, the parameter values λ are chosen in such a way that the rare event {S(X) > γ}
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happens primarily when both X1 and X2 are large, while the other variables are in some
sense ‘typical’ (in the language of Rubinstein (2007), only λ1 and λ2 are bottleneck elements).
Put differently, if one derives the conditional distribution given the rare event {S(X) > γ},
only X1 and X2 are affected significantly by the conditioning. Therefore, the general principle
in importance sampling — of taking the proposal density to be as close as possible to the
conditional distribution given the rare event — would suggest twisting only the distributions
of X1 and X2, while leaving the others unchanged. Further variance reduction can be achieved
by ‘integrating out’ X1 and X2 via conditional Monte Carlo. More specifically, note that given
Xi = xi, i = 3, 4, 5, we can write equation (10) as follows:

P(S(X) > γ|X3 = x3, X4 = x4, X5 = x5)
= P(X1 > (γ − x4) ∨ (γ − x3 − x5), X2 > (γ − x5) ∨ (γ − x3 − x4))
= F 1((γ − x4) ∨ (γ − x3 − x5))F 2((γ − x5) ∨ (γ − x3 − x4)),

where a ∨ b = max(a, b), F i(x) = 1 − Fi(x) and Fi is the distribution of Xi. Therefore, we
consider the following conditional Monte Carlo estimator

̂̀
s =

1
N

N∑
k=1

F 1

(
(γ −X(k)

4 ) ∨ (γ −X(k)
3 −X(k)

5 )
)
F 2

(
(γ −X(k)

5 ) ∨ (γ −X(k)
3 −X(k)

4 )
)
, (11)

where X(k)
i

ind∼ Exp(λi), i = 3, 4, 5, k = 1 . . . , N . For comparison, we also estimate the rare-event
probability ` using the screening method (Rubinstein, 2007; Rubinstein and Kroese, 2007), which
is shown to outperform the standard cross-entropy method and variance minimization method
(Rubinstein and Kroese, 2007, pp.132-136) in certain settings. In the estimation, we only twist
the distributions of X1 and X2. The proposal density is of the form of a product of exponential
densities where the parameters are determined by the CE method. We use a sample size of
N1 = 10, 000 to estimate the optimal parameters for the proposal density and N = 100, 000
for the main importance sampling run. For the conditional MC estimator we also use a sample
size of N = 100, 000. Table 5 reports the CE with screening (CE-SCR) and conditional MC
estimates and their corresponding relative errors for the case Xi ∼ Exp(λi), i = 1, . . . , 5 and
λ = (1, 1, 3, 2, 10).

Table 5: Performance of the proposed conditional Monte Carlo estimator for the simple bridge
example where the random lengths are exponentially distributed random variables with λ =
(1, 1, 3, 2, 10). Variance reduction is compared with the crude Monte Carlo estimator.

CE with screening conditional Monte Carlo
γ ̂̀ RE (%) Var. reduction ̂̀ RE (%) Var. reduction
4 4.37× 10−4 1.9 64 4.33× 10−4 0.06 56,800
6 7.94× 10−6 2.8 1,620 7.92× 10−6 0.06 3.18× 106

8 1.46× 10−7 3.7 49,300 1.45× 10−7 0.06 1.70× 108

10 2.65× 10−9 4.4 1.86× 106 2.66× 10−9 0.06 9.38× 109

As a second numerical example, we consider the same network but with the path lengths
X1, . . . , X5 being independent Weib(α, λi) random variables with α = 0.2 and λ = (1, 1, 3, 2, 10).
The proposal density for the screening method is of the form of a product of Weibull densities
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with α fixed at 0.2, and λ determined by the CE method. We use the same sample size as
in the previous example, and the results are reported in Table 6. In both cases, the proposed
conditional MC estimator performs remarkably well and outperforms the CE-SCR estimator
(in terms of variance reduction) by a factor of 900 to 5,000 in the light-tailed case and 106 to
108 in the heavy-tailed one. It is also evident from Tables 5 and 6 that the proposed algorithm
preforms much better in the heavy-tailed case in terms of much lower relative errors.

Table 6: Performance of the proposed conditional Monte Carlo estimator for the simple bridge
example where the random lengths are Weibull distributed random variables with α = 0.2 and
λ = (1, 1, 3, 2, 10). Variance reduction is compared with the crude Monte Carlo estimator.

CE with screening conditional Monte Carlo
γ ̂̀ RE (%) Var. reduction ̂̀ RE (%) Var. reduction

5,000 1.71× 10−5 2.6 881 1.70× 10−5 2.4× 10−3 1.02× 109

10,000 3.35× 10−6 2.9 3,550 3.31× 10−6 1.1× 10−3 2.71× 1010

20,000 5.02× 10−7 3.3 17,800 5.07× 10−7 5.3× 10−4 7.03× 1011

50,000 2.69× 10−8 4.0 2.31× 105 2.74× 10−8 3.0× 10−4 3.94× 1013

3.1 Independent and Identically Distributed Heavy-tailed Case

We now consider the case where the random path lengths are iid heavy-tailed random variables
with common distribution F . Recall that in the previous two examples the rare event {S(X) >
γ} occurs primarily when both X1 and X2 are large, due to the bottleneck parameter λ1 and
λ2. In other words, only X1 and X2 are much affected by conditioning on the rare event
{S(X) > γ}, while the other variables are not. Therefore, substantial variance reduction is
achieved by ‘integrating out’ X1 and X2. For the case of iid heavy-tailed random variables, the
rare event {S(X) > γ} occurs when either both X1 and X2 or both X4 and X5 are large. To
utilize the asymptotic description of the rare event under the iid case, consider the identity

P(S(X) > γ) = 2P(S(X) > γ, X1 > X4, X2 > X5)+2P(S(X) > γ, X1 > X4, X2 < X5). (12)

Hence, given Xi = xi, i = 3, 4, 5, the rare-event probability can be written as

P(S(X) > γ|X3 = x3, X4 = x4, X5 = x5)
= 2P(X1 > γ1 ∨ γ2 ∨ x4) [P(X2 > γ3 ∨ γ4 ∨ x5) + P(x5 > X2 > γ3 ∨ γ4)] ,

where
γ1 = γ − x4, γ2 = γ − x3 − x5, γ3 = γ − x5, γ4 = γ − x3 − x4.

Therefore, we consider the estimator

̂̀=
2
N

N∑
k=1

F (γ(k)
1 ∨γ

(k)
2 ∨X

(k)
4 )

(
F (γ(k)

3 ∨ γ(k)
4 ∨X(k)

5 ) + (F (γ(k)
3 ∨ γ(k)

4 )− F (X(k)
5 )) ∨ 0

)
, (13)

where X(k)
i

iid∼ F, i = 3, 4, 5, k = 1 . . . , N .
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As a numerical example, consider the simple bridge network where the Xi
iid∼Weib(α, λ), i =

1, . . . , 5 with α = 0.2 and λ = 1. For comparison, we also estimate the rare-event probability `
via the CE method. For the CE method, we use a sample size of N1 = 50, 000 for the estimation
of the optimal parameters and N = 100, 000 for the main importance sampling run. For the
conditional MC estimator, we use the same sample size of N = 100, 000. Table 7 presents the
CE and conditional MC estimates and the corresponding relative errors. Variance reduction is
compared with the crude Monte Carlo estimator. The proposed estimator performs remarkably
well in terms of variance reduction and compares most favorably with the CE estimator.

Table 7: Performance of the proposed conditional Monte Carlo estimator (13) for the simple
bridge example where the random lengths are iid Weibull distributed random variables with
α = 0.2 and λ = 1. Variance reduction is compared with the crude Monte Carlo estimator.

CE conditional Monte Carlo
γ ̂̀ RE (%) Var. reduction ̂̀ RE (%) Var. reduction

5,000 3.42× 10−5 5.5 97 3.41× 10−5 0.37 21,000
10,000 6.75× 10−6 6.9 311 6.64× 10−6 0.35 1.24× 105

20,000 1.03× 10−6 7.4 1,790 1.02× 10−6 0.29 5.01× 105

50,000 5.21× 10−8 10 18,600 5.49× 10−8 3.3× 10−3 1.68× 1011

3.2 Independent but Not Identically Distributed Heavy-tailed Case

We now generalize the conditional MC estimator (13) to the ind case. Notice that if, say, X1 and
X2 have much heavier tails than X4 and X5, then the rare event {S(X) > γ} happens primarily
when both X1 and X2 are large, and we only need to consider the estimator ̂̀s in (11). Thus
the relevant setting here is when X1, . . . , X5 are non-identically distributed but with similar tail
indices. Observe that for the ind case, identity (12) becomes

P(S(X) > γ) = P(S(X) > γ, X1 > X4, X2 > X5) + P(S(X) > γ, X1 > X4, X2 < X5)
+ P(S(X) > γ, X4 > X1, X2 > X5) + P(S(X) > γ, X4 > X1, X5 > X2),

which suggests the estimator

̂̀ =
1
N

N∑
k=1

[
F 1(γ(k)

1 ∨ γ(k)
2 ∨X(k)

4 )
(
F 2(γ(k)

3 ∨ γ(k)
4 ∨X(k)

5 ) + (F 2(γ(k)
3 ∨ γ(k)

4 )− F 2(X(k)
5 )) ∨ 0

)
+ F 4(γ(k)

5 ∨ γ(k)
6 ∨X(k)

1 )
(
F 5(γ(k)

7 ∨ γ(k)
8 ∨X(k)

2 ) + (F 5(γ(k)
7 ∨ γ(k)

8 )− F 5(X(k)
2 )) ∨ 0

)]
, (14)

where

γ
(k)
1 = γ −X(k)

4 , γ
(k)
2 = γ −X(k)

3 −X(k)
5 , γ

(k)
3 = γ −X(k)

5 , γ
(k)
4 = γ −X3 −X(k)

4 ,

γ
(k)
5 = γ −X(k)

1 , γ
(k)
6 = γ −X(k)

2 −X(k)
3 , γ

(k)
7 = γ −X(k)

2 , γ
(k)
8 = γ −X1 −X(k)

3 ,

and X
(k)
i ∼ Fi, i = 1, . . . , 5, k = 1 . . . , N . It is also obvious that if Xi, i = 1, . . . , 5 are iid

random variables, the above estimator (14) reduces to (13).
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As a numerical example, consider the simple bridge network where Xi
ind∼ Weib(α, λi), i =

1, . . . , 5 with α = 0.2 and λ = (λ1, λ2, λ3, λ4, λ5) = (1.2, 0.8, 1, 0.9, 1.1). Table 8 presents the CE
and conditional Monte Carlo estimates, as well as the corresponding relative errors. Variance
reduction is compared with the crude Monte Carlo estimator. Again the proposed algorithm
gives more accurate estimates and outperforms the CE estimator.

Table 8: Performance of the proposed conditional Monte Carlo estimator (14) for the simple
bridge example where the random lengths are iid Weibull distributed random variables with
α = 0.2 and λ = (λ1, λ2, λ3, λ4, λ5) = (1.2, 0.8, 1, 0.9, 1.1). Variance reduction is compared with
the crude Monte Carlo estimator.

CE conditional Monte Carlo
γ ̂̀ RE (%) Var. reduction ̂̀ RE (%) Var. reduction

5,000 3.53× 10−5 4.5 137 3.50× 10−5 0.28 37,800
10,000 6.73× 10−6 6.0 415 6.82× 10−6 0.30 1.67× 105

20,000 1.04× 10−6 8.4 1,350 1.06× 10−6 0.51 3.65× 105

50,000 5.72× 10−8 11 14,100 5.69× 10−8 2.3× 10−3 3.42× 1011

4 An m× n Bridge System

In this section we extend our investigation to the m × n bridge system in Figure 2, where m
denotes the number of parallel paths and n represents the number of bridges in each path.
Observe that for the m×n bridge system, there are altogether 5mn random variables, and this
high dimensionality makes it a particularly difficult problem for simulation. In fact, Rubinstein
(2007) comments that IS should not be used in high-dimensional problems because of the
degeneracy properties of the likelihood ratio. However, in the presence of bottleneck elements,
Rubinstein (2007) shows substantial variance reduction can still be achieved via the screening
method. This problem is also investigated in Botev and Kroese (2008), who propose a novel
simulation approach that circumvents the degeneracy problem by avoiding the likelihood ratio
altogether. In the following we will discuss a conditional MC estimator that outperforms (in
terms of variance reduction) both approaches.
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Figure 2: An m× n bridge network.

Denote the lengths of the edges within the (i, j)th bridge by Xij1, . . . , Xij5. We are interested
in estimating the rare-event probability that the shortest path from node C to node D in the
network has a length of at least γ. Define

S(X) = min{Y11 + · · ·+ Y1n, . . . , Ym1 + · · ·+ Ymn},

where

Yij = min{Xij1 +Xij4, Xij1 +Xij3 +Xij5, Xij2 +Xij5, Xij2 +Xij3 +Xij4}.

We are interested in estimating ` = P(S(X) > γ) for some large constant γ. We note that the
rare event {S(X) > γ} happens if and only if Yi1 + · · · + Yin > γ, for i = 1, . . . , n. Hence, it
suffices to derive conditional Monte Carlo estimators for estimating the probabilities

`i = P(Yi1 + · · ·+ Yin > γ), i = 1, . . . ,m,

because

` =
m∏
i=1

`i.

As a motiving example, consider the case where Xijk ∼ Exp(λijk), with λ111 = λ112 = λ211 =
λ212 = λ311 = λ312 = 1, while the remaining parameters are set to 4. This particular ex-
ample was studied by Rubinstein (2007) and Rubinstein and Kroese (2007) for illustrating
the screening method. Specifically, the parameters are chosen in such a way that the rare
event {S(X) > γ} occurs primarily when all Xi1j , i = 1, 2, 3, j = 1, 2 are large. In other
words, only λi1j , i = 1, 2, 3, j = 1, 2 are bottleneck elements and one only needs to twist
the distributions of the corresponding random variables. For our conditional Monte Carlo es-
timator, since only Xi1j , i = 1, 2, 3, j = 1, 2 are affected by conditioning on the rare event
{S(X) > γ}, we can simulate other variables from their nominal distributions, and only ‘inte-
grate out’ Xi1j , i = 1, 2, 3, j = 1, 2 via conditional Monte Carlo methods. To this end, let us
consider the estimator

̂̀
i =

1
N

N∑
k=1

F i11((γ̃(k) −X(k)
i14) ∨ (γ̃(k) −X(k)

i13 −X
(k)
i15))F i12((γ̃(k) −X(k)

i15) ∨ (γ̃(k) −X(k)
i13 −X

(k)
i14)),
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where γ̃(k) = max(γ−
∑n

j=2 Y
(k)
ij , 0) and X(l)

ijk

iid∼ Exp(4). Then we deliver the unbiased estimator

(since each ̂̀i is estimated by an independent sample):

̂̀=
n∏
i=1

̂̀
i. (15)

The variance of the above estimator can by estimated readily by the formula (Goodman, 1962):

V̂ar

(
n∏
i=1

Xi

)
=

n∏
i=1

µ̂2
i

(
n∏
i=1

(
σ̂2
i

µ̂2
i

+ 1
)
− 1

)
, (16)

where µ̂i and σ̂2
i are respectively the sample mean and variance of Xi.

As a numerical example, we use a sample size of N = 400, 000 for the conditional Monte
Carlo estimator. As a comparison, we also estimate the rare-event probability via the CE
method with screening (CE-SCR), where only the aforementioned six bottleneck elements are
tilted. For the CE-SCR estimator, we use a sample size of N1 = 100, 000 for estimation of
the optimal parameters and N = 400, 000 for the main importance sampling run. Table 9
presents the conditional Monte Carlo and CE-SCR estimates for the 3 × 10 bridge system, as
well as the corresponding relative errors. As is apparent from the table, the proposed conditional
Monte Carlo estimator performs remarkably well even in this complex example with 150 random
variables, and it outperforms (in terms of variance reduction) the CE-SCR estimator by a factor
of 1,000 to 40,000.

Table 9: Performance of the proposed conditional Monte Carlo estimator for the 3× 10 bridge
network where the random lengths are ind exponentially distributed random variables with
λi1j = 1, i = 1, 2, 3, j = 1, 2, while the remaining parameters are set to 4. Variance reduction
is compared with the crude Monte Carlo estimator.

CE with screening conditional Monte Carlo
γ ̂̀ RE (%) Var. reduction ̂̀ RE (%) Var. reduction

5.0 2.3× 10−5 20 3 2.22× 10−5 0.60 3,100
5.5 1.2× 10−6 26 31 1.17× 10−6 0.71 42,000
6.0 5.7× 10−8 50 173 5.97× 10−8 0.82 6.16× 105

6.5 4.0× 10−9 55 276 3.00× 10−9 0.86 1.13× 107

4.1 Independent and Identically Distributed Case

It is important to realize that the reason why the above conditional Monte Carlo estimator
performs well is that the problem is set up in such a way that the rare event {S(X) > γ} occurs
primarily when all Xi1j , i = 1, 2, 3, j = 1, 2 are large. In this section we consider a more
general setting in which the asymptotic description of the rare event occurrence is different, and
similar considerations (and additional conditioning) as in Section 3.1 are needed. Specifically,
let us consider the case where Yij— the shortest lengths of the (i, j)th bridge— are iid random
variables; in particular, we assume Xijk ∼ Fk, k = 1, . . . , 5, where Fk is the distribution of a
heavy-tailed random variable. Under this setting, the rare event {Yi1 + · · · + Yin > γ} occurs
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primarily when one of the Yij , j = 1, . . . , n, say, Yin is large, while the others are ‘typical’. With
this in mind, we consider the identity

`i = P(Yi1 + · · ·+ Yin > γ) = nP(Yi1 + · · ·+ Yin > γ, Yin = Min) (17)

= nP

Yin > (γ −
n−1∑
j=1

Yij) ∨Mi,n−1

 , (18)

where Mij = max(Yi1, . . . , Yij). Given Yi1, . . . , Yi,n−1, the problem is now reduced to the case
of a simple bridge with ind random lengths. In other words, we can estimate `i as follows: first
generate N copies of Yi1, . . . , Yi,n−1 (by drawing Xij1, . . . , Xij5). Then use the estimator (14)
to estimate `i simply by replacing γ by (γ −

∑n−1
j=1 Yij) ∨Mi,n−1 (and multiplying the quantity

by n).

As a numerical example, consider a 5 × 20 bridge network where the random path lengths

Xijk
iid∼Weib(α, λ), i = 1, . . . , 5, j = 1, . . . , 20, k = 1, . . . , 5 with α = 0.2 and λ = 1. Note that

in this example there are a total of 500 variables and estimation of the optimal parameters via
the CE method is not practical (and the screening method does not apply). Thus we do not
report the CE estimates. For the conditional Monte Carlo estimator, we use a sample size of
N = 100, 000. The conditional Monte Carlo estimates and the corresponding relative errors are
reported in Table 10. Variance reduction is compared with the crude Monte Carlo estimator.
Observe that even in this fairly large example the proposed conditional Monte Carlo estimator
performs quite well.

Table 10: Performance of the proposed conditional Monte Carlo estimator for the 5× 20 bridge
network where the random lengths are iid Weibull random variables with α = 0.2 and λ = 1.
Variance reduction is compared with the crude Monte Carlo estimator.

γ ̂̀ RE (%) Var. reduction
200 3.30× 10−4 0.82 447
300 2.43× 10−5 0.84 5,830
500 5.89× 10−7 0.86 2.30× 105

1000 1.98× 10−9 0.89 6.45× 107

4.2 Independent but Not Identically Distributed Case

Finally we consider the most general case where Yij— the length of the shortest path of

the(i, j)th bridge— are ind random variables; in particular, we assume Xijk
ind∼ Fijk, i =

1, . . . ,m, j = 1, . . . , n, k = 1, . . . , 5, where Fijk is the distribution of a heavy-tailed ran-
dom variable. As in the previous case, we write `i by conditioning on certain events to take
advantage of the asymptotic description of the rare event occurrence. To this end, consider the
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identity

`i = P(Yi1 + · · ·+ Yin > γ) =
n∑
j=1

P(Yi1 + · · ·+ Yin > γ, Yij = M̃ij) (19)

=
n∑
j=1

P

Yij > (γ −
∑
k 6=j

Yik) ∨ M̃ij

 , (20)

where M̃ij = max(Y−ij) and Y−ij = (Yi1, . . . , Yi,j−1, Yi,j+1, . . . , Yin). Given Y−ij , the problem
is now reduced to the case of a simple bridge with ind random lengths. Therefore, we can
estimate `i as follows: first generate N copies of Yi1, . . . , Yin (by drawing Xij1, . . . , Xij5). For
l = 1, . . . , n, use the sample Y−il and estimator (14) to estimate the lth component of the
summand of `i, simply by replacing γ by (γ −

∑
k 6=j Yik)∨ M̃ij . It is essential to note that even

though we use the same sample to estimate the n components of `i, the proposed estimator is
unbiased.

To illustrate the effectiveness of the above estimator, we consider a 5 × 20 bridge network

where the random path lengths are ind Weibull random variables Xijk
ind∼ Weib(αijk, λijk), with

α1j1 = 0.2+j/100, and λ1j4 = 1+j/10, while the other parameters αijk and λijk are respectively
0.2 and 1. In the numerical example we use a sample size of N = 100, 000, and Table 11 presents
the conditional Monte Carlo estimates and the corresponding relative errors. As can be seen
from the table, substantial variance reduction is achieved even in this fairly complex example
with 500 non-identically distributed variables.

Table 11: Performance of the proposed conditional Monte Carlo estimator for the 5× 20 bridge
network where the random lengths are ind Weibull random variables with α1j1 = 0.2 + j/100,
and λ1j4 = 1 + j/10 while other αijk and λijk are respectively 0.2 and 1. Variance reduction is
compared with the crude Monte Carlo estimator.

γ ̂̀ RE (%) Var. reduction
200 1.51× 10−4 0.16 6,730
300 1.00× 10−5 0.15 1.10× 105

500 2.16× 10−7 0.15 5.63× 106

1000 6.44× 10−10 0.13 2.31× 109

5 The t-copula Model

In this section, we turn our attention to study a popular model in finance for estimating the
probability of large portfolio losses. Suppose we have a portfolio of loans consisting of n obligors,
each of which has a given probability of defaulting, which is denoted as pi ∈ (0, 1), i = 1, . . . , n.
Introduce a vector of underlying latent variables X = (X1, . . . , Xn) such that the ith obligor
defaults if Xi exceeds some given threshold level xi, i.e., pi = P(Xi > xi). The portfolio loss
incurred from defaults is thus given by

S(X) = c1I{X1>x1} + · · ·+ cnI{Xn>xn}, (21)
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where I{·} denotes the indicator function, and ci is the monetary loss associated with the default
of the ith obligor. The primary interest is to estimate accurately the probability of large losses
of the form

`(γ) = P(S(X) > γ), (22)

where γ = bn for some b > 0. To complete the model specifications, one needs to specify the
joint distribution of the latent variables X = (X1, . . . , Xn). One popular model that is widely
used in the financial industry, and forms the basis of the CreditMetrics and other related models
(Gupton et al., 1997; Li, 2000), is the normal copula model, under which the dependence among
obligors is modeled by assuming the vector of latent variables follows a multivariate normal
distribution. The underlying correlations are often specified through a linear factor model as
follows

Xi = wi1Z1 + · · ·+ wimZm + wiηi, (23)

where Z1, . . . , Zm are iid standard normal variables known as factors that capture the systemic
risk common to all the obligors and ηi is a normal random variable independent of the factors
that captures the idiosyncratic risk of the ith obligor. In addition, it is often assumed (without
loss of generality) that w2

i1 + · · ·+w2
im +w2

i = 1. Since the normal distribution has ‘thin tails’,
Glasserman and Li (2005) propose an importance sampling estimator based on an exponential
change of measure to estimate the probability of large portfolio loss in (22).

Nevertheless, the normal copula model, though mathematically simple, does not capture some
important features of financial variables. In particular, it assumes the latent variables have
a multivariate normal distribution, which does not agree with the empirical observation that
many financial series exhibit extremal dependence and have tails heavier than those of the
normal distribution (see, e.g. Geweke, 1993; Mashal and Zeevi, 2002, among many others).
Therefore, the normal copula model may underestimate the probability of large portfolio losses.
In view of this, Bassmaboo et al. (2008) introduce the t-copula model that generalizes the normal
copula model by assuming the latent variables follow a multivariate Student-t distribution.

Unlike Bassmaboo et al. (2008), who restrict their analysis to a single factor (m=1), we consider
the general m-factor model. Specifically, we assume that the latent factors Z1, . . . , Zm are
iid standard Student-t random variables with degree of freedom parameter νZ , and that the
ηi, i = 1 . . . , n are iid Student-t random variables independent of the factors Z1, . . . , Zm with
mean 0, scale parameter σ2

η and degree of freedom parameter νη.

To derive a conditional Monte Carlo estimator for `, we first observe that the rare event {S(X) >
γ} occurs primarily when one of the factors, say Zi, is large, while all the other variables are
typical. Therefore, substantial variance reduction can be achieved simply by integrating out
the maximal factor Zi. To this end, we write the rare-event probability in (22) as

` =
m∑
i=1

P(S(X) > γ,Zi = Mm), (24)

where Mm = max(Z1, . . . , Zm). As in the previous examples, we generate N copies of Y =
(Z, η), where Z = (Z1, . . . , Zm) and η = (η1, . . . , ηn), from the nominal distributions and use
Y−i = (Z−i, η) to estimate the ith component of the above summand. It is therefore sufficient
to derive an estimator for, say, P(S(X) > γ,Zi = Mm). Fix the index i and define

hij = (xj −
∑
l 6=i

wjlZl − wjηj)w−1
ji , j = 1, . . . , n. (25)
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Now order hi1, . . . , hin in ascending order and call the ordered values gij , j = 1, . . . , n. Arrange
the monetary losses c1, . . . , cn associated to the obligors’ defaults in the same order as gij and
denote them as d1, . . . , dn. Heuristically, the event {S(X) > γ,Zi = Mm} happens when the
maximal factor Zi is so large that a “sufficient” number of obligors defaults. More precisely,
let r = min{l :

∑l
j=1 dj > γ}. Then the event {S(X) > γ,Zi = Mm} happens if and only if

Zi > gir ∨ M̃ , where M̃i = max(Z−i). In particular, if cj = c for all j = 1, . . . , n (and therefore
dj = d), then r = bγ/dc+ 1, where b·c indicates the integer part. Thus if we have N copies of
Y(1)
−i , . . . ,Y

(N)
−i , we can estimate P(S(X) > γ,Zi = Mm) by

̂̀
i =

1
N

N∑
k=1

F νZ

(
g
(k)
ir ∨ M̃

(k)
i

)
, (26)

where M̃ (k)
i = max(Z(k)

−i ), and FνZ (·) is the distribution of the standard Student-t distribution
with degree of freedom parameter νZ .

In the following numerical examples, we assume the obligors have the same individual threshold
of defaulting (x1 = . . . = xn = 0.5 ×

√
n), and the monetary losses associated to the obligors’

defaults are the same (c1 = . . . = cn = 1). In addition, the factors Z1, . . . , Zm are assumed to
be iid standard Student-t random variables with degree of freedom parameter νZ = 6, while
the individual risk factors η1, . . . , ηn are iid Student-t random variables with mean zero, scale
parameter σ2

η = 9 and degree of freedom parameter νη = 6. Furthermore, we set the number
of factors m to be 5 and for simplicity we assume all obligors have the same sensitivities to the
factors: (wi1, . . . , wim) = (0.1, 0.2, 0.3, 0.4, 0.5), i = 1, . . . , n. Recall that the overall threshold
is defined to be γ = bn. In the first numerical example, we fix n = 250 and estimate the rare-
event probability ` for various default rates b. In the second numerical example, we fix b = 0.25
and estimate ` for various numbers of obligors n. For both examples we use a sample size of
N = 50, 000. Tables 12 and 13 report the estimates and their corresponding relative errors, as
well as the variance reduction compared with the crude Monte Carlo estimator. As is clear from
the tables, the proposed conditional Monte Carlo estimator gives fairly accurate estimates for
all the scenarios studied, even though the sample size is rather small. In addition, even when
the model involves more than a thousand random variables (the case when n = 1, 000), the
proposed algorithm performs remarkably well.

Table 12: Performance of the proposed conditional Monte Carlo estimator for the t-copula
model with n = 250 obligors for various default rates b. Variance reduction is compared with
the crude Monte Carlo estimator.

b ̂̀ RE (%) Var. reduction
0.1 6.46× 10−5 0.89 3,910
0.2 1.73× 10−5 0.53 41,000
0.3 8.41× 10−6 0.41 1.42× 105

0.4 5.00× 10−6 0.36 3.13× 105
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Table 13: Performance of the proposed conditional Monte Carlo estimator for the t-copula model
with various numbers of obligors n. Variance reduction is compared with the crude Monte Carlo
estimator.

n ̂̀ RE (%) Var. reduction
100 6.91× 10−4 1.0 265
250 1.18× 10−5 0.46 80,700
500 8.76× 10−7 0.23 4.34× 106

1000 8.13× 10−8 0.13 1.56× 108

6 Concluding Remarks and Future Research

In this article we demonstrate how to utilize the asymptotic description of the way in which the
rare event occurs to derive efficient conditional Monte Carlo estimators in a variety of settings.
We show that the conditioning ideas discussed in Asmussen and Kroese (2006) can be applied
to various far more complex models than the setting of sums of iid random variables. The
effectiveness of the proposed algorithms are then illustrated by extensive simulation studies.
By utilizing the same conditioning ideas, we are currently developing efficient algorithms for
estimating the probabilities of large portfolio losses in the context of t-copula and other related
models. For future research, it would be interesting to investigate possible ways to modify
the proposed algorithm to estimate the mean excess, defined by E(X − γ |X > γ), or more
generally, E(S(X) − γ |S(X) > γ) for some specified function S(·). In addition, it would also
be interesting to explore other applications, such as deriving efficient algorithms for computing
portfolio Value-at-Risk involving heavy-tailed random variables.
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