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Abstract

We consider the problem of accurately measuring the credit risk of a portfolio consisting of
loans, bonds and other financial assets. One particular performance measure of interest is the
probability of large portfolio losses over a fixed time horizon. We revisit the so-called t-copula
that generalizes the popular normal copula to allow for extremal dependence among defaults.
By utilizing the asymptotic description of how the rare event occurs, we derive two simple
simulation algorithms based on conditional Monte Carlo to estimate the probability that
the portfolio incurs large losses under the t-copula. We further show that the less efficient
estimator exhibits bounded relative error. An extensive simulation study demonstrates that
both estimators outperform existing algorithms. We then discuss a generalization of the
t-copula model that allows the multivariate defaults to have an asymmetric distribution.
Lastly, we show how the estimators proposed for the t-copula can be modified to estimate
the portfolio risk under the skew t-copula model.
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1 Introduction

Losses resulting from the failure of an obligor to make a contractual payment, generally referred
to as credit risk, are one of the major concerns of financial institutions. Consequently, the prob-
lem of accurately measuring the credit risk of a portfolio consisting of various financial assets
has received considerable attention in the literature. Each obligor in the portfolio is subject to
possible default, and such an event is often captured by the so-called threshold models, where a
default occurs when a latent variable exceeds a given threshold. In order to model the depen-
dence of simultaneous defaults observed empirically, a dependence structure is often imposed
on the multivariate default distribution. The most popular choice of such a structure is the
multivariate normal distribution. This gives rise to the celebrated normal copula model, which
is widely used in the financial industry and forms the basis of the J. P. Morgan’s CreditMetrics
and other management systems (Gupton et al., 1997; Li, 2000). See also the monographs by
Bluhm et al. (2002) and McNeil et al. (2005). Under the normal copula framework, depen-
dence is often induced via a set of common factors affecting multiple obligors. These factors are
typically interpreted as economy-wide risks, to which all the obligors are exposed, though to
varying degrees. Conditional on these factors, the obligors then become independent. In terms
of performance measures of credit risk, one that is of particular importance is the probability of
large portfolio losses over a fixed time horizon. Since this probability is typically not available
analytically, Monte Carlo methods are required to estimate this quantity.

To generate more scenarios with large losses in simulation, one common approach is to shift
the factor mean via importance sampling (IS) (see, e.g., Rubinstein and Kroese, 2007), as
suggested in, e.g., Kalkbrener et al. (2004), Joshi (2004) and Egloff et al. (2005). Although
this heuristics works well empirically in the context of single-factor normal copula models,
there is little theoretical support, and consequently, the procedure might fail for certain sets of
parameter values. Glasserman and Li (2005) derive logarithmic limits for the tail of the loss
distribution associated with single-factor homogeneous portfolios. In particular, they show that
for the regime with moderately high correlation among the obligors, the occurrence of large
losses is determined primarily by the common factor, thus justifying the heuristics of shifting
the factor mean. Moreover, they propose the following two-step IS procedure: first apply IS to
shift the factor mean, then apply IS again conditional on the common factor affecting multiple
obligors. They further show that the proposed estimator is logarithmically efficient. Although
the utility of this two-step procedure is supported by both theoretical and numerical results, it is
difficult to generalize the procedure to the general multi-factor model. In view of this difficulty,
Glasserman et al. (2007) analyze the general multi-factor normal copula setting and derive
logarithmic asymptotics for the loss distribution. The asymptotic results are later exploited
in Glasserman et al. (2008) to develop logarithmically efficient IS techniques to estimate the
tail probabilities of large portfolio losses. We refer the readers to the recent review in Grundke
(2009) for other related approaches.

Despite its popularity, the normal copula model does not capture various stylized facts about
financial variables brought forth by recent empirical research. In particular, one of the most
prominent features of financial variables is that they exhibit extremal dependence, i.e., they are
asymptotically dependent. Loosely speaking, the variables take on large values (in absolute
terms) simultaneously with non-negligible probability, and it is not captured by the correlation
structure implied by the multivariate normal distribution. In view of this inadequacy of the
normal copula, Bassamboo et al. (2008) propose the t-copula model, based on the multivariate
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t-distribution, that attempts to capture the relatively frequent occurrences of extremal comove-
ments of financial variables. They argue that in many instances it is a more adequate way to
model dependencies than the normal copula. The authors derive sharp asymptotics for the loss
distribution, and show that under the t copula model, large portfolio losses occur primarily
when the so-called shock variable takes on small values, while other random variables, including
the common factors, are relatively unimportant in determining the occurrence of large losses. In
other words, shifting the factor mean alone, as suggested by the aforementioned IS procedures,
would not significantly increase the number of scenarios with large losses, and consequently,
substantial variance reduction might not be achieved. Therefore, the authors propose two IS
algorithms to estimate the probability of large portfolio losses. The first estimator uses IS based
on an exponential change of measure (ECM) (see, e.g., Asmussen and Glynn, 2007) and has
bounded relative error; the second uses a variant of hazard rate twisting (HRT) (Juneja and
Shahabuddin, 2002), which is shown to be logarithmically efficient. An extensive simulation
study shows that while both estimators offer substantial variance reduction, the former pro-
vides 6 to 10 times higher variance reduction than the latter. Nevertheless, the more efficient
ECM algorithm involves generating random variables from a nonstandard distribution via re-
jection sampling, which takes on average three times more time compared to naive Monte Carlo
simulation. In addition, the normalizing constant of the proposal density is not known, and has
to be computed by numerical routines in order to be used in the likelihood ratio evaluation.

Instead of the two IS algorithms, we propose two novel estimators based on conditional Monte
Carlo (see, e.g., Asmussen and Glynn, 2007; Rubinstein and Kroese, 2007) to estimate the
probability of large portfolio loss under the t-copula model. We prove that the less efficient
estimator has bounded relative error. A simulation study similar to that in Bassamboo et al.
(2008) further shows that the proposed estimators outperform (in terms of variance reduction)
both ECM and HRT algorithms. Moreover, the new algorithms involve only generating random
variables from standard distributions, and consequently they are as efficient as naive simulation
in terms of random variable generation effort. An additional advantage is that the new algo-
rithms require trivial programming effort and are easier to implement than those proposed in
Bassamboo et al. (2008), as the latter require generating random variables from nonstandard
distributions. We then consider a generalization of the t-copula model to an asymmetric de-
fault distribution, as opposed to the symmetric distribution implied by the normal copula and
t-copula models. This generalization is relevant and potentially important as it incorporates the
well-documented observation that in practice financial variables are highly skewed (Fernandez
and Steel, 1998; Franses and van Dijk, 2000). In a credit risk setting, for instance, there is
relatively little potential gain when the underlying economic conditions improve, but there is a
substantial downside risk when the market condition worsens. Consequently, the multivariate
default distribution is expected to be positively skewed (since a large positive draw of the latent
variable represents a default). Failure of taking this asymmetry into account might result in
underestimation of the credit risk of the portfolio.
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The rest of this article is organized as follows. In Section 2 we formulate the problem of es-
timating large portfolio losses and introduce the normal copula model. We then discuss the
t-copula model in Section 3. Section 4 discusses two estimation methods based on conditional
Monte Carlo for estimating the probability of large portfolio loss under the t-copula model. The
performance of the these estimators are demonstrated via an extensive simulation study in Sec-
tion 5. Finally, we consider the skew t-copula model that accommodates an asymmetric default
distribution. There we also study how the skewness of the multivariate default distribution
affects the probability of large portfolio loss.

2 Problem Formulation

Consider a lender owning a portfolio of loans consisting of n obligors, each of whom has a
positive, albeit small, probability of defaulting. Let the probability of default for the ith obligor
be pi ∈ (0, 1), which we take as given. In practice, these probabilities can often be estimated
by various econometrics models using historical data and other observed characteristics of the
current obligors. We further assume that the monetary loss associated with the default of
the ith obligor, denoted as ci, is known. We introduce a vector of underlying latent variables
X = (X1, . . . , Xn) so that the ith obligor defaults if Xi exceeds some given threshold level xi.
More specifically, let fXi(x) denote the (marginal) probability density function (pdf) of Xi.
Given the probability of default pi, the threshold xi is determined implicitly by

PfXi
(Xi > xi) =

∫ ∞
xi

fXi(u) du = pi .

One could interpret the latent variable Xi as the underlying financial condition of the ith obligor,
which is not directly observable to the lender. However, when the obligor’s financial condition
become worse than a critical level (xi), she goes bankrupt and the lender observes a default
in the ith loan. Our main interest is to learn about the distribution of the loss incurred from
defaults

L(X) = c1I{X1>x1} + · · ·+ cnI{Xn>xn}, (1)

where I{·} denotes the indicator function. In particular, we wish to estimate accurately the
probability of large losses of the form

`(γ) = Pf (L(X) > γ) (2)

where X ∼ f(x) and γ = bn for some b > 0. In order to estimate the above probability, one
needs to specify the joint distribution of the latent variables X = (X1, . . . , Xn). It is obvious
that the usefulness of the model depends critically on the distributional assumptions of the
vector X. On the one hand, the researcher wishes to make as few assumptions about the joint
distribution as possible, since imposing restrictive but unrealistic assumptions often lead to
misleading conclusions. On the other hand, a parameter-rich model often makes the analysis
intractable. How this trade-off between flexibility and tractability is made is therefore of vital
importance.

One popular model that is widely used in the financial industry is the normal copula model
that forms the basis of the CreditMetrics and other related models. The normal copula model
attempts to capture the dependence among obligors while maintaining mathematical tractability
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by assuming the vector of latent variables follows a multivariate normal distribution. More
specifically, the underlying correlations are often specified through a linear factor model

Xi = wi1Z1 + · · ·+ widZd + wiηi, i = 1, . . . , n, (3)

where Z1, . . . , Zd are independent and identically distributed (iid) standard normal variables
known as factors that capture the systemic risk common to all the obligors, wi1, . . . , wid are
factor loadings that measure the sensitivity of ith obligor’s financial position to each factor, ηi
is a zeros mean normal random variable independent of the factors that captures the idiosyn-
cratic risk of the ith obligor. Since each latent variable Xi is a linear combination of normally
distributed random variables, the latent vector X has a multivariate normal distribution where
the correlation structure is induced by the linear factor model in (3).

3 The t-copula Model

One of the potential problems of the normal copula model is that it might assign too little
probability to the event of many simultaneous defaults. In view of this, Bassamboo et al.
(2008) introduce the t-copula model by assuming the underlying latent variables X follow a
multivariate t distribution. Following Bassamboo et al. (2008) we restrict our attention to the
single-factor model (d=1) to keep the notations simple. It is important to note that there is no
difficulty generalizing the model to a general d-factor model (see the discussion in Section 4).
As in the normal copula model, the factors and the individuals’ idiosyncratic risks are modeled
as independent normally distributed random variables, i.e.,

Z ∼ N(0, 1), ηi ∼ N(0, σ2
η), i = 1, . . . , n. (4)

To induce a t structure, let us introduce a shock variable λ > 0 that is independent of Z and
η = (η1, . . . , ηn) such that λ2 ∼ Gamma(ν/2, ν/2) for some ν > 0. It is easy to check that the
pdf of λ is given by

fλ(x) =
2νν/2

2ν/2Γ(ν/2)
xν−1e−νx

2/2, x > 0. (5)

Next, define
Xi =

(
ρZ +

√
1− ρ2 ηi

)
λ−1, i = 1, . . . , n. (6)

It is well known that if λ has the pdf in (5), then marginally X = (X1, . . . , Xn) follows a
multivariate t distribution with degree of freedom ν (see, e.g., Geweke, 1993). The shock variable
λ is a pure mathematical construct to induce a t structure, but one might interpret it as an
economy-wide shock variable. When it takes on small values, we observe many simultaneous
defaults.

The following theorem states an asymptotic result for the probability of large portfolio losses. To
set the stage, let h(x) be a function that increases at a subexponential rate such that h(x)→∞
as x→∞. Let n denote the number of obligors in the portfolio and set the default thresholds
for the ith obligor to be xi = aih(n), where ai > 0 is a positive constant. Put differently, the
ith obligor defaults when Xi > aih(n). Recall that ci denotes the monetary loss associated with
the ith obligor’s default. Lastly, write the overall portfolio as

Ln = c1I{X1>a1h(n)} + · · ·+ cnI{Xn>anh(n)}.

5



Theorem 1 (Bassamboo et al., 2008). Let the sequence ((ci, ai) : i > 0) take values in a
finite set W. Further assume that the proportion of each element (ci, ai) ∈ W in the portfolio
converges to qi > 0. Under the distributional assumptions in (4) and (5)

lim
n→∞

h(n)ν P(Ln > nb) = K,

for 0 < b < c, where K is a positive constant and c is the limiting average loss when all the
obligors default.

4 Conditional Monte Carlo Simulation

In this section we present two algorithms based on conditional Monte Carlo to estimate P(L(X) >
γ)—the rare-event probability of the occurrence of large losses—under the t-copula introduced
in Section 3. We emphasize that the proposed algorithms can be easily extended to cover the
general d-factor model of the form

Xi = (wi1Z1 + · · ·+ widZd + wiηi)λ−1, i = 1, . . . , n, (7)

where Z1, . . . , Zd are iid standard normal random variables, as this model has exactly the
same asymptotics as the single-factor model. In fact, it can be shown that the loss L(X) is
large primarily when the shock variable λ is small. In Chan and Kroese (2010) we consider a
slightly more general d-factor model where the factors and idiosyncratic risks are modeled as
independent t random variables. More specifically, by introducing independent shock variables
τ2
j ∼ Gamma(νz/2, νz/2), j = 1, . . . , d, and λ2

i ∼ Gamma(νη/2, νη/2), i = 1, . . . , n, we can
equivalently write the model as

Xi = wi1Z1τ
−1
1 + · · ·+ widZdτ

−1
d + wiηiλ

−1
i , i = 1, . . . , n. (8)

Comparing to the specification in (7), the model in (8) is more general in the sense that the
former is a restricted version of the latter model by assuming τ1 = · · · = τd = λ1 = · · · = λn.
Regarding the tail asymptotics under the specification (8), the rare event {L(X) > γ} occurs
primarily when one of the shock variables τ1, . . . , τd is small while the other random variables
are ‘typical’. By utilizing this asymptotic description, we are able to construct an efficient
conditional Monte Carlo algorithm based on an estimator first developed in Asmussen and
Kroese (2006).

Despite the similarity of tail asymptotics for the loss distribution, the techniques developed
previously do not directly apply to the current model. However, the same approach still proves
to be fruitful. More specifically, the rare event {L(X) > γ} happens primarily when the shock
variable λ takes small values, while Z and η = (η1, . . . , ηn) have little influence on the occurrence
of the rare event. Put differently, only λ is significantly affected by conditioning on the rare
event, while all the other variables are not. This suggests that substantial variance reduction
could be achieved simply by ‘integrating out’ λ analytically (or evaluating the integral using
fast routines). Therefore, let us consider the following simple algorithm: first simulate Z and η
from the nominal distributions, and then ‘integrate out’ λ given (Z,η). To this end, define

Ri =
ρZ +

√
1− ρ2 ηi
ai

, i = 1, . . . , n.
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Recall that the individual threshold of defaulting, xi, is related to ai via xi = aih(n). Let
R(1) 6 . . . 6 R(n) be the order statistics of R1, . . . , Rn, and let c(i) denote the corresponding
monetary loss associated with R(i). Then, it is easy to check that the event {L(X) > γ} happens
if and only if λ < R(k)/h(n), where k = min{l :

∑n
i=l+1 c(i) 6 γ}. In particular, if ci = c for

all i = 1, . . . , n, then k = n − bγ/cc, where b·c represents the integer part. For notational
convenience, let Y = (Z,η) and denote the nominal density of Y as f(y; u), where u is a vector
of parameters. In other words,

f(y; u) = fN(z; 0, 1)
n∏
i=1

fN(ηi; 0, σ2
η), (9)

where fN(·;µ, σ2) is the density of the N(µ, σ2) distribution. Since λ2 ∼ Gamma(ν/2, ν/2), we
have

P(L(X) > γ |Z,η) = P
(
λ <

R(k)

h(n)

∣∣∣∣Z,η) = FG

(
r2

h(n)2

)
≡ S(Y), (10)

where r = max
(
R(k), 0

)
and FG is the cumulative distribution function (cdf) of the Gamma(ν/2, ν/2)

distribution. Finally, the rare-event probability (2) can be estimated by the conditional Monte
Carlo (CondMC) estimator:

1
N

N∑
i=1

S(Y(i)), (11)

where Y(i) = (Z(i),η(i)), i = 1, . . . , N are obtained from the nominal pdf f(y; u) in (9). We
summarize the procedure below.

Algorithm 1 (Conditional Monte Carlo for the t-copula Model).

1. Obtain N samples Y(1), . . . ,Y(N) from the nominal pdf f(y; u) defined in (9).

2. Use the samples Y(1), . . . ,Y(N) to compute the CondMC estimator in (11).

We now show that the CondMC estimator has bounded relative error. Let FY denote the
distribution of Y, and let E be the corresponding expectation operator.

Theorem 2. Under the same assumptions as in Theorem 1, we have

lim sup
n→∞

ES2(Y)
P(Ln > nb)2

<∞.

In other words, the CondMC estimator in (11) has bounded relative error.

The proof of the above theorem is given in the appendix. Despite the good computational and
theoretical properties of the CondMC estimator (see Section 5), one can improve its efficiency by
adding ideas from the cross-entropy method (Rubinstein and Kroese, 2004, 2007). Specifically,
instead of the naive Monte Carlo estimator in (11), we consider the IS estimator

1
N

N∑
i=1

S(Y(i))
f(Y(i); u)
f(Y(i); v∗)

, (12)
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where Y(1), . . . ,Y(N) ∼ f(·; v∗) and f(·; v∗) is a proposal density chosen within the same
parametric family as that of the nominal pdf f(·; u). In our case the parametric family under
consideration is

F =

{
f(y; v) = fN(z;µz, Vz)

n∏
i=1

fN(ηi;µη, Vη)

}
,

where v = (µz, Vz, µη, Vη) is a vector of parameters. The optimal proposal density is obtained
by locating the member f ∈ F that minimizes its cross-entropy distance to the zero-variance
proposal density

g∗(y) ∝ S(y)f(y; u).

In our case, minimization of the cross-entropy is equivalent to solving the following maximization
problem (for details see Rubinstein and Kroese, 2007, pp. 136–141):

max
v

∫
S(y) log f(y; v)f(y; u)dy. (13)

Since most often an analytical solution to the above maximization problem is not available, we
consider instead its stochastic counterpart

max
v

1
M

M∑
i=1

S(Y(i)) log f(Y(i); v), (14)

where Y(1), . . . ,Y(M) ∼ f(·; u). The maximization problem in (14) is easy to solve. In fact, the
solutions are available analytically:

µ∗z =
∑M

i=1 S(Y(i))Z(i)∑M
i=1 S(Y(i))

, V ∗z =
∑M

i=1 S(Y(i))(Z(i) − µ∗z)2∑M
i=1 S(Y(i))

, (15)

µ∗η =

∑M
i=1 S(Y(i))

∑n
j=1 η

(i)
j

n
∑M

i=1 S(Y(i))
, V ∗η =

∑M
i=1 S(Y(i))

∑n
j=1(η(i)

j − µ∗η)2

n
∑M

i=1 S(Y(i))
. (16)

Once we obtain the optimal proposal density f(y; v∗), we simply compute the CondMC-CE
estimator in (12). We summarize the above procedure as follows.

Algorithm 2 (Conditional Monte Carlo with CE for the t-copula Model).

1. Obtain M samples Y(1), . . . ,Y(M) from the nominal pdf f(y; u) defined in (9).

2. Use the sample to solve the maximization program in (14). That is, compute v∗ =
(µ∗z, V

∗
z , µ

∗
η, Vη∗) using (15)–(16) to obtain the proposal density f(y; v∗).

3. Obtain N samples Y(1), . . . ,Y(N) from f(y; v∗) and compute the CondMC-CE estimator
in (12).

It is worth noting that CondMC involves generating random variables only from the nominal
distribution f(y; u). Hence, it is as efficient as naive simulation in terms of random variable
generation time. In addition, it does not require computing any likelihood ratio that occurs in
any IS estimator. In contrast, CondMC-CE requires a preliminary run to estimate the optimal
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parameters v∗ for the proposal density, and at a first glance seems to be less efficient. However,
the sample size needed for the preliminary run is small (in practice M = 1000 is enough), and
the effort for computing the optimal parameter v∗ in (15)–(16) is trivial. Moreover, as the
simulation experiments in the next section show, the variance reduction achieved is well worth
the additional computational effort.

5 Numerical Results

In this section we demonstrate the performance of the proposed estimators, CondMC and
CondMC-CE, via simulation studies similar to those in Bassamboo et al. (2008). The broad
conclusions drawn from these experiments are that both algorithms offer substantial variance
reduction compared with naive simulation, and they compare favorably to the two IS estima-
tors, called ECM and HRT, proposed in Bassamboo et al. (2008). Specifically, while CondMC
performs similarly to the more efficient ECM algorithm, offering 1.2 to 4 times higher variance
reduction, CondMC-CE performs much better, providing 20 to 100 times higher variance reduc-
tion. Another factor that is in favor of the proposed algorithms is that both involve generating
random variables only from standard distributions (normal distributions to be specific). In con-
trast, the ECM estimator involves rejection sampling, which takes on average three times longer
than naive simulation. Moreover, the normalizing constant of the proposal density, which is not
known, has to be computed by numerical routines, thus making the algorithm slower and more
difficult to implement.

For comparison purposes, we utilize the same sets of parameter values as those in Bassamboo
et al. (2008) Tables 1–4,1 where only homogeneous portfolios are considered. Nevertheless, it
is important to emphasize that the empirical performance of the proposed algorithms as well
as the fact that the estimators have bounded relative error are not affected by assuming an
inhomogeneous credit portfolio, as the asymptotics under an inhomogeneous credit portfolio
are exactly the same. In fact, Theorem 1 is proved by assuming an inhomogeneous credit
portfolio. In all the experiments in this subsection we set σ2

η = 9, x =
√
n× 0.5, l = b× n and

c = 1.

To access the accuracy of the estimators, we use the notion of relative error, which is simply
the ratio of the estimator’s standard deviation to the true probability of the rare event. More
precisely, for an unbiased estimator ̂̀= N−1

∑N
i=1H(Xi) of `, its relative error is defined as

RE =
√

Var(̂̀)/`. However, in practice we do not know the value of the true probability `, but
the relatively error can be estimated by the consistent estimator

S/
√
N̂̀ ,

where S2 is the sample variance of H(X).

For each set of specified parameters, we generate 50000 samples for both algorithms. Specifically,
for CondMC-CE we use a sample size of M = 1000 for estimating the optimal parameters via

1In Bassamboo et al. (2008) Tables 3–4, the authors actually computed P(L(X) > γ) instead of P(L(X) > γ)
as stated. As a result, the estimated rare-event probabilities there are slightly larger than those we report in the
corresponding tables.
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the CE method, and a sample of size N = 49000 for the main run. Table 1 shows the estimated
relative errors (in %) of the proposed estimators, as well as those of the ECM and HRT, for
various values of the degree of freedom parameter ν. We also report the variance reduction
achieved by the proposed estimators compared with navie simulation. The estimated rare-event
probabilities ̂̀(γ) are obtained by the more accurate CondMC-CE estimator. Other model
parameters are chosen to be n = 250, ρ = 0.25 and b = 0.25. In Table 2 we perform the same
comparison but now we vary the correlation parameter ρ while keeping ν fixed at 12. As is
clear from the tables, both algorithms offer substantial variance reduction compared with naive
simulation, and they compare favorably to both the ECM and HRT estimators.

Table 1: Performance of the CondMC and CondMC-CE estimators for the t-copula model for
various values of ν. Variance reduction is compared with naive simulation.

Relative Error (%) Variance Reduction
ν ̂̀(γ) CondMC CondMC-CE ECM HRT CondMC CondMC-CE
4 8.13× 10−3 0.3 0.1 0.6 1.1 271 2440
8 2.42× 10−4 0.7 0.2 0.9 1.8 1690 20656
12 1.07× 10−5 1.2 0.3 1.7 2.6 12980 2.08× 105

16 6.16× 10−7 2.0 0.5 2.8 3.6 81170 1.30× 106

20 4.38× 10−8 3.3 0.6 3.7 5.4 4.19× 105 1.27× 107

Table 2: Performance of the CondMC and CondMC-CE estimators for the t-copula model for
various values of ρ. Variance reduction is compared with naive simulation.

Relative Error (%) Variance Reduction
ρ ̂̀(γ) CondMC CondMC-CE ECM HRT CondMC CondMC-CE

0.1 8.58× 10−6 0.8 0.4 0.9 1.8 32520 1.77× 105

0.2 9.83× 10−6 1.0 0.4 1.2 2.3 18370 1.34× 105

0.3 1.19× 10−5 1.3 0.4 1.7 3.2 9112 1.68× 105

0.4 1.46× 10−5 1.7 0.3 3.1 4.0 4472 1.56× 105

It is also worth noting that as ν decreases (see Table 1), the probability of large portfolio loss
increases several orders of magnitude, highlighting the importance of correctly modeling the tail
behavior of the latent variables X. This observation suggests that the t-copula model might be
a better choice than the normal copula model, as the former offers more flexible modeling of tail
behavior, and includes the latter as a limiting case. Another feature that is worth commenting
is that when ρ increases, the performance of CondMC deteriorates while that of CondMC-
CE is essentially unchanged (see Table 2). This should not be a surprise, as for CondMC we
only ‘integrate out’ λ, while generating other variables from their nominal distributions. The
underlying rationale for this procedure is that the rare event {L(X) > γ} happens primarily
when λ is small, and other variables have little influence on the occurrence of the rare event
{L(X) > γ}. As ρ increases, the factor Z becomes relatively more important in determining the
occurrence of the rare event, and ignoring this contribution of Z deteriorates the performance
of the algorithm. But for CondMC-CE, in addition to ‘integrating out’ λ, we also twist the
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distributions of all the other variables. Therefore its performance is essentially unchanged as
we increase ρ.

In Table 3 we report the relative errors (in %) of CondMC and CondMC-CE as well as those
of ECM and HRT for various values of n, the number of obligors. Other model parameters are
chosen to be ν = 12, ρ = 0.25 and b = 0.25. Table 4 shows the results of a similar analysis but
now we vary b, the proportion of defaults in the portfolio, while keeping n fixed at 250. The
results suggest that both algorithms perform remarkably well even when n is large, where the
model contains hundreds of random variables.

Table 3: Performance of the CondMC and CondMC-CE estimators for the t-copula model for
various values of n. Variance reduction is compared with naive simulation.

Relative Error (%) Variance Reduction
n ̂̀(γ) CondMC CondMC-CE ECM HRT CondMC CondMC-CE

100 1.83× 10−3 1.2 0.5 1.6 1.8 73 550
250 1.07× 10−5 1.2 0.3 1.7 2.6 12980 20660
500 1.51× 10−7 1.1 0.3 1.5 3.4 1.07× 106 1.93× 107

1000 2.28× 10−9 1.0 0.2 1.6 3.6 8.98× 107 2.72× 109

Table 4: Performance of the CondMC and CondMC-CE estimators for the t-copula model for
various values of b. Variance reduction is compared with naive simulation.

Relative Error (%) Variance Reduction
b ̂̀(γ) CondMC CondMC-CE ECM HRT CondMC CondMC-CE

0.1 3.47× 10−3 0.5 0.2 0.9 1.6 232 1107
0.2 7.37× 10−5 0.9 0.3 1.2 2.5 3553 32950
0.3 1.12× 10−6 1.7 0.4 2.0 3.4 59980 9.15× 105

6 The Skew t-copula Model

Although the t-copula model allows a more flexible dependence structure that accommodates the
extremal dependence among the defaults, it is not flexible enough to allow for an asymmetric
default distribution. In this section we consider a skew t-copula model based on the skew-
normal distribution (Azzalini, 1985; Azzalini and Valle, 1996) that allows for the aforementioned
asymmetry. Specifically, given a normally distributed random variable U ∼ N(µ, σ2), if we define
Y = U + δW , where δ is a fixed parameter and W follows a standard normal distribution left
truncated at 0, then Y has a skew-normal distribution with parameter δ controlling the skewness
of the distribution: if δ > 0 (δ < 0), then Y is positively (negatively) skewed; if δ = 0, it reduces
to a symmetric normally distributed random variable. To introduce a skew t structure, the
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latent variables Xi are modeled as follows:

Xi =
(
ρZ + δW +

√
1− ρ2 ηi

)
λ−1, i = 1, . . . , n, (17)

W ∼ TN

(
−
√

2
π
, 1

)
, (18)

where TN(µ, σ2) is a normal distribution with mean µ and variance σ2 left truncated at −
√

2/π.

The main reason why the random variable W is assumed to have mean −
√

2/π (and left trun-
cated at the same value) rather than 0 is that in this way its expected value is 0. Hence, the
expected value of Xi would not be affected by adding the term δW . This simple formulation
generalizes the t-copula model to allow X to have an asymmetric distribution, where the skew-
ness is controlled by the parameter δ. It is obvious that if we set δ = 0, it reduces to the
t-copula model introduced in Section 3. Another advantage of this construction is that it is
very parsimonious as it introduces only one extra parameter compared to the t copula model.
Moreover, the two conditional Monte Carlo algorithms developed for estimating the probability
of large losses under the t-copula can be easily modified to cover the skew t-copula case.

We now draw our attention to the problem of estimating P(L(X) > γ) under the skew t-copula
model. For notational convenience, let Ỹ = (Y,W ) = (Z,η,W ) and denote the nominal
distribution of Ỹ by f̃(ỹ; ũ), where ũ is a vector of parameters. In other words,

f̃(ỹ; ũ) = fTN

(
−
√

2/π, 1
)
fN(z; 0, 1)

n∏
i=1

fN(ηi; 0, σ2
η), (19)

where fTN(µ, σ2) is the pdf of a N(µ, σ2) distributed random variable left truncated at −
√

2/π.
Define

R̃i =
ρZ +

√
1− ρ2 ηi + δW

ai
, i = 1, . . . , n,

and let R̃(1), . . . , R̃(n) be the corresponding order statistics. Under the skew t-copula model, the
rare event {L(X) > γ} happens if and only if λ < R̃(k)/h(n), where k = min{l :

∑n
i=l+1 c(i) 6 γ}.

Therefore, we can estimate the rare-event probability `(γ) = P(L(X > γ) by the CondMC
estimator

1
N

N∑
i=1

S̃(Ỹ(i)), (20)

where Ỹ1, . . . , Ỹn ∼ f̃(·; ũ), S̃(Ỹ) = FG

(
r̃2/h(n)2

)
and r̃ = max

(
R̃(k), 0

)
. Truncated normal

random variables can be obtained by the inverse-transform method or various efficient rejection
algorithms (e.g., Geweke, 1991; Robert, 1995).

For the CondMC-CE estimator of `(γ) under the skew t-copula model, we locate the proposal
density f̃(·; ṽ∗) within the parametric family

F̃ =

{
f̃(ỹ; ṽ) = fTN(µw, 1)fN(z;µz, Vz)

n∏
i=1

fN(ηi;µη, Vη)

}
,

where ṽ = (µw, µz, Vz, µη, Vη). Notice that for the random variable W we only consider tilting
its mean but not its variance. To obtain the optimal parameter vector ṽ∗ via the CE method, we
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solve a maximization program similar to (14). Specifically, we obtain M samples Ỹ(1), . . . , Ỹ(M)

from the nominal pdf f̃(·; ũ) and use them to compute µ∗z, V
∗
z , µ

∗
η, and V ∗η via (15)–(16), re-

placing S(·) by S̃(·) and Y by Ỹ. Lastly, µ∗w can be found by locating the root of the following
univariate function in µw (e.g., by bisection method):

−
∑M

i=1 S̃(Ỹ(i))W (i)∑M
i=1 S̃(Ỹ(i))

+ µw −
φ(µw +

√
2/π)

Φ(µw +
√

2/π)
= 0, (21)

where φ(·) and Φ(·) are respectively the pdf and cdf of the standard normal distribution. Once
the proposal density f̃(·; ṽ∗) is obtained, the CondMC-CE estimator for the skew t-copula model
can be computed similar to (12).

Finally, we investigate how the skewness parameter δ of the multivariate default distribution
affects the probability of large portfolio losses under the skew t-copula model. For the following
simulated experiment, we set n = 250, ν = 12, σ2

η = 9, c = 1, x =
√
n×0.5, ρ = 0.25, b = 0.25,

and l = b × n. The simulation budget is again 50000. Table 5 reports the relative errors (in
%) of the proposed estimators, as well as the variance reduction obtained compared with naive
simulation. The estimated rare-event probabilities ̂̀(γ) are obtained by the more accurate
CondMC-CE estimator.

Table 5: Performance of the CondMC and CondMC-CE estimators for the skew t-copula model
for various values of n. Variance reduction is compared with naive simulation.

Relative Error (%) Variance Reduction
δ ̂̀(γ) CondMC CondMC-CE CondMC CondMC-CE
0 1.07× 10−5 1.2 0.5 12980 70630

0.5 2.74× 10−5 2.1 0.3 1509 80200
1 1.93× 10−4 3.6 0.3 88 15120

1.5 1.03× 10−3 3.5 0.3 16 2542

As is clear from the table, the skewness of the multivariate default distribution has a profound
effect on the the probability of incurring a large portfolio loss, thus highlighting the importance
of correctly choosing a credit risk model. It is also of interest to note that as δ gets larger and
the event {L(X) > γ} becomes less rare, the performance of the CondMC estimator actually
deteriorates. This at first sight might seem surprising. But when one takes a closer look, one
realizes that for the CondMC estimator, only λ is ‘integrated out’ while all the other variables
are generated from their nominal distributions. Therefore, its performance depends critically
on the asymptotic description of the way in which the event {L(X) > γ} occurs. As the event
becomes less rare, the asymptotic description is less accurate. Consequently, its performance
also deteriorates and approaches to that of the crude Monte Carlo.

7 Concluding Remarks

In this article we first propose two new simulation algorithms based on conditional Monte Carlo
to estimate large portfolio losses under the t-copula model. Through an extensive simulation
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study, we demonstrate that both estimators offer substantial variance reduction and outperform
existing algorithms. Next, we generalize the t-copula model to allow an asymmetric default
distribution. A simulation study shows that the skewness parameter of the default distribution
has a large impact on the probability of large portfolio losses. This illustrates the importance
of correctly specifying the joint default distribution, and since the skew t-copula model includes
both t- and normal copulas as special cases, it is arguably a more adequate way to model the
default correlation.

Appendix

We will first introduce some notations that are needed for the proofs. Recall that

Ri =
ρZ +

√
1− ρ2 ηi
ai

,

R(i) is the ith order statistics of R1, . . . , Rn, and c(i) the corresponding monetary loss. Define
rn = R(k), where k = min{l :

∑n
i=l+1 c(i) 6 γ} and γ = bn. Let Qi =

√
1− ρ2 ηi/ai, and define

Q(i) and qn similarly. We will need the following lemma for the proof of Theorem 2.

Lemma 1. Under the assumptions of Theorem 1, we have

lim sup
n→∞

Er2νn <∞.

Proof. For notational simplicity, we will only prove the case where ci = c and ai = a; the
general case follows analogously. Since Qi ∼ N

(
0, (1− ρ2)σ2

η/a
2
)

and qn = Q(k) is the kth order
statistics with limn→∞ k/n = (1 − b/a), by the Central Limit Theorem qn is asymptotically
normal with mean q and variance σ2/n, where q and σ2 are some constants not depending on Z
(for more details see van der Vert, 1998, Chapter 21). Therefore, given Z = z, rn = qn + ρZ/a
is asymptotically normal with mean ρz/a + q and variance σ2/n. Consequently, E

[
r2νn |Z = z

]
is asymptotically a polynomial of order 2ν in z, with leading term (ρz/a+ q)2ν . Finally, by the
law of iterated expectation, asymptotically Er2νn = E

[
(ρZ/a+ q)2ν

]
+ O(n). Now the result

follows immediately.

Proof of Theorem 2. The theorem follows from the following computations:

lim sup
n→∞

h(n)2νES2(Y) = lim sup
n→∞

h(n)2νE

(∫ rn
h(n)

0
k1t

ν−1e−νt
2/2dt

)2

6 lim sup
n→∞

h(n)2νE

(∫ rn
h(n)

0
k1t

ν−1dt

)2

= lim sup
n→∞

h(n)2νE
(

k1r
ν
n

νh(n)ν

)2

= k2 lim sup
n→∞

Er2νn <∞,
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where k1 and k2 are some unimportant constants not depending on n. By Theorem 1, which
provides the asymptotic for the probability of large portfolio losses P(Ln > nb), we conclude
that the CondMC estimator has bounded relative error.
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