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Abstract

We compare a number of GARCH and stochastic volatility (SV) models using

nine series of oil, petroleum product and natural gas prices in a formal Bayesian

model comparison exercise. The competing models include the standard models of

GARCH(1,1) and SV with an AR(1) log-volatility process, as well as more flexi-

ble models with jumps, volatility in mean, leverage effects, and t distributed and

moving average innovations. We find that: (1) SV models generally compare fa-

vorably to their GARCH counterparts; (2) the jump component and t distributed

innovations substantially improve the performance of the standard GARCH, but

are unimportant for the SV model; (3) the volatility feedback channel seems to be

superfluous; (4) the moving average component markedly improves the fit of both

GARCH and SV models; and (5) the leverage effect is important for modeling crude

oil prices—West Texas Intermediate and Brent—but not for other energy prices.

Overall, the SV model with moving average innovations is the best model for all

nine series.
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1 Introduction

The volatility of oil, petroleum product and natural gas prices has broad economic and

financial implications, and this has motivated a vast literature on modeling such volatil-

ity. Conventionally, this time-varying volatility is modeled—and the fit assessed—using

various generalized autoregressive conditional heteroscedastic (GARCH) models, under

which the conditional variance is a deterministic function of model parameters and past

data.1

Alternatively, some recent papers have considered stochastic volatility models, where the

volatility is a latent variable that follows a stochastic process (see, e.g., Sadorsky, 2005;

Vo, 2009; Trolle and Schwartz, 2009; Larsson and Nossman, 2011; Brooks and Prokopczuk,

2013). These two classes of models are nonnested and the implied time-varying volatilities

have very different properties. To the extent that they are compared at all, the literature

has mainly focused on their forecasting performance. While volatility forecasting is an

important problem, energy prices are widely used in macroeconomic models to analyze the

interplay between these prices and the macroeconomy (see, e.g., Kilian, 2009; Peersman

and Van Robays, 2012; Blanchard and Riggi, 2013). Consequently, it is of interest to

directly compare the model fit of these two classes of time-varying volatilty models in a

formal model comparison exercise, but this is rarely done in practice.

We fill this gap by assessing the model fit—while penalizing model complexity—of a

number of GARCH and stochastic volatility models for modeling the dynamics of oil,

petroleum product and natural gas prices. To that end, we perform a formal Bayesian

model comparison exercise to assess the evidence in favor of the GARCH and stochastic

volatility models given the data. Specifically, for each model we compute its marginal

data density, which evaluates how likely it is for the observed data to have occurred given

the model. Using this measure we can further obtain the posterior probabilities of the

models (see, e.g., Koop, 2003, for a detailed discussion on Bayesian model comparison).

For the model comparison exercise, we consider seven commonly-used GARCH models

in the literature: the standard GARCH(1,1) model, and the more flexible models of

GARCH(2,1), GARCH with jumps, GARCH in mean, GARCH with moving average

innovations, GARCH with t distributed innovations, and GARCH with an asymmetric

leverage effect. We then choose seven stochastic volatility models that are close counter-

1See, e.g., Fong and See (2001), Sadorsky (2006), Kang, Kang, and Yoon (2009), Agnolucci (2009),
Mohammadi and Su (2010), Nomikos and Andriosopoulos (2012), Mason and Wilmot (2014) and Manera,
Nicolini, and Vignati (2014).
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parts of these GARCH models. By directly comparing the GARCH and stochastic volatil-

ity models pairwise, we can assess whether the deterministic conditional heteroscedas-

ticity under GARCH or the stochastic variance under SV is more favored by the data.

In addition, we can compare the more flexible GARCH variants against the standard

GARCH—and the flexible stochastic volatility models against the standard SV—to ex-

amine what features are most empirically relevant for energy prices, thus providing useful

and practical guidelines for practitioners.

The main results can be summarized as follows. First, the stochastic volatility models

generally compare favorably to their GARCH counterparts, indicating that the time-

varying volatility is better modeled as a latent stochastic process. This result is in line

with the finding in the finance literature that stochastic volatility models often fit financial

returns better (see, e.g., Kim, Shepherd, and Chib, 1998; Yu, 2002).

Second, both the jump component and t distributed innovations substantially improve the

performance of the standard GARCH, but are unimportant for the stochastic volatility

model. Since the standard GARCH specifies a deterministic conditional variance process,

adding a random jump component or allowing for innovations with heavy-tailed distribu-

tions appear to give the model additional flexibility against misspecification. These are

apparently unnecessary for the stochastic volatility model. Third, the volatility feedback

channel in both the GARCH in mean and stochastic volatility in mean models seems

to be superfluous. Fourth, the moving average component substantially improves the

fit of both types of models. Fifth, the leverage effect is important for modeling crude

oil prices—West Texas Intermediate (WTI) and Brent—but not for other energy prices.

Overall, the SV model with moving average innovations is the best model for all nine

series. In a recursive out-of-sample forecasting exercise, we confirm these conclusions by

comparing the GARCH and stochastic volatility models using their density forecasts.

The rest of this article is organized as follows. Section 2 introduces the two classes of time-

varying volatility models—GARCH and stochastic volatility models. In Section 3 we give

an overview of Bayesian model comparison and outline an adaptive importance sampling

approach to compute the marginal likelihood for comparing models. Section 4 compares

the performance of the GARCH models with their stochastic volatility counterparts.

Estimation and forecasting results are also reported. Lastly, Section 5 concludes and

briefly discusses some future research directions.
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2 Time-Varying Volatility Models

In this section we discuss the two classes of time-varying volatility models used in the

model comparison exercise. The first class of models is the generalized autoregressive

conditional heteroscedastic (GARCH) models, which are developed by Bollerslev (1986)

to extend the earlier work on ARCH models by Engle (1982). The second set of models is

the stochastic volatility models, which are considered by Taylor (1994). In these models

the volatility is specified as a latent stochastic process.

2.1 GARCH Models

In this section we describe various GARCH models that are widely used to model energy

prices. The first one is the standard GARCH(1,1) model, which we simply refer to as

GARCH:

yt = µ+ εt, εt ∼ N (0, σ2
t ), (1)

σ2
t = α0 + α1ε

2
t−1 + β1σ

2
t−1, (2)

where ε0 = 0 and σ2
0 is a constant. To ensure the variance process σ2

t is always straightly

positive and stationary, we assume that α0 > 0, α1 > 0, β1 > 0 and α1 + β1 < 1. Note

that the conditional variance σ2
t is a deterministic function of the model parameters and

past data.

The conditional variance σ2
t in (2) follows an AR(1) process. Next, we consider the

GARCH(2,1) model—in which σ2
t follows an AR(2) process—that allows for richer vari-

ance dynamics:

σ2
t = α0 + α1ε

2
t−1 + β1σ

2
t−1 + β2σ

2
t−2,

where σ2
−1 = ε0 = 0 and σ2

0 is a constant. Again, to ensure the variance process σ2
t is

always straightly positive and stationary, we assume that the parameters α0, α1, β1, and

β2 are all positive and α1 + β1 + β2 < 1. We refer to this model as GARCH-2.

The third GARCH model allows for the possibility of infrequent “jumps” in the data se-

ries, which can accommodate drastic changes in energy prices. More specifically, consider
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the following GARCH with jumps (GARCH-J) model:

yt = µ+ ktqt + εt, εt ∼ N (0, σ2
t ),

σ2
t = α0 + α1(yt−1 − µ)2 + β1σ

2
t−1,

where qt ∈ {0, 1} is a jump variable with success probability P(qt = 1) = κ. Hence, if

qt = 1, a jump occurs at time t and its size is determined by kt, which is modeled as

kt ∼ N (µk, σ
2
k).

Next, consider the GARCH in mean (GARCH-M) model, under which the conditional

variance enters the conditional mean as a covariate:

yt = µ+ λσ2
t + εt, εt ∼ N (0, σ2

t ),

σ2
t = α0 + α1(yt−1 − µ− λσ2

t−1)
2 + β1σ

2
t−1.

This variant allows for the possibility that the data series depends on its volatility (risk).

It is obvious that when λ = 0, the GARCH-M model reduces to the GARCH model.

The fifth GARCH model combines a first-order moving average model with GARCH

innovations:

yt = µ+ εt,

εt = ut + ψut−1, ut ∼ N (0, σ2
t ),

where the invertibility condition is imposed, i.e., |ψ| < 1 and the variance σ2
t follows the

same GARCH process as in (2). This GARCH model is referred to as GARCH-MA. In

contrast to the other GARCH models considered above, this model allows the data series

to be correlated over time and might better model the short-run dynamics of the series.

Next, consider the GARCH model with t innovations (GARCH-t):

yt = µ+ εt, εt ∼ tν(0, σ
2
t ),

where σ2
t follows the GARCH process as in (2). Since the t distribution has heavier tails

than the Gaussian, the GARCH-t model allows for more extreme observations compared

to the standard GARCH.

The last model is the GARCH-GJR model of Glosten, Jagannathan, and Runkle (1993)

that allows for potentially larger impact of negative excess returns on the conditional
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variance. More specifically, the variance process becomes

σ2
t = α0 + (α1 + δ11l(εt−1 < 0))ε2t−1 + β1σ

2
t−1,

where 1l(·) is the indicator function. The asymmetric leverage effect is controlled by the

parameter δ1. It is clear that when δ1 = 0, this variant becomes the standard GARCH.

Various studies, such as Wei, Wang, and Huang (2010), have found that allowing for an

asymmetric leverage effect generally improves the forecast performance of the standard

GARCH.

2.2 Stochastic Volatility Models

Next we introduce the seven stochastic volatility models that are close counterparts of

the GARCH models described in the previous section. The volatility under a stochastic

volatility model is a random variable, in stark contrast to GARCH models in which the

conditional variance is a deterministic function of the model parameters and past data.

The first model is the standard stochastic volatility (SV) model:

yt = µ+ εyt , εyt ∼ N (0, eht), (3)

ht = µh + φh(ht−1 − µh) + εht , εht ∼ N (0, ω2
h). (4)

The log-volatility ht follows a stationary AR(1) process with |φh| < 1 and unconditional

mean µh. The process is initialized with h1 ∼ N (µh, ω
2
h/(1− φ2

h)).

In the second stochastic volatility model, the observation equation is the same as in (3),

but the log-volatility ht now follows a stationary AR(2) process:

ht = µh + φh(ht−1 − µh) + ρh(ht−2 − µh) + εht , εht ∼ N (0, ω2
h),

where we assume the roots of the characteristic polynomial associated with (φh, ρh) lie

outside the unit circle. Further, h1 and h2 are assumed to follow the unconditional

distribution:

h1, h2 ∼ N

(
µh,

(1− ρh)ω
2
h

(1 + ρh)((1− ρh)2 − φ2
h)

)
.

This stochastic volatility model is referred to as SV-2, which reduces to the standard SV

model when ρh = 0.
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Similar to the GARCH-J model, the third stochastic volatility model accommodates the

possibility of infrequent jumps. Specifically, under the stochastic volatility model with

jumps (SV-J), the observation equation becomes:

yt = µ+ ktqt + εyt , εyt ∼ N (0, eht),

where the log-volatility ht follows the same AR(1) process as in (4). The jump indicator

qt and jump size kt are modeled exactly the same as in the GARCH-J model.

Next we consider the stochastic volatility in mean (SV-M) model of Koopman and Hol Us-

pensky (2002), under which the stochastic volatility enters the observation equation as a

covariate:

yt = µ+ λeht + εyt , εyt ∼ N (0, eht).

As before, the log-volatility follows the same AR(1) process as in (4). The parameter λ

captures the extent of volatility feedback; when λ = 0, the SV-M reduces to the standard

SV model.

The fifth model is a version of the stochastic volatility models with moving average inno-

vations in Chan (2013). In particular, consider the following first-order moving average

model with stochastic volatility:

yt = µ+ εyt ,

εyt = ut + ψut−1, ut ∼ N (0, eht),

where u0 = 0 and |ψ| < 1. Again the log-volatility ht is assumed to follow the AR(1)

process as in (4). This stochastic volatility model is referred to as SV-MA.

Next, the counterpart of GARCH-t is the stochastic volatility model with t innovations

(SV-t):

yt = µ+ εyt , εyt ∼ tν(0, e
ht),

where the log-volatility ht is again assumed to follow the AR(1) process as in (4).

Similar to GARCH-GJR, the stochastic volatility model with leverage (SV-L) allows a

leverage effect. Specifically, the innovations in the observation and state equations can
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potentially be correlated:

yt = µ+ εyt ,

hh+1 = µh + φh(ht − µh) + εht ,

where the innovations εyt and εht jointly follow a bivariate normal distribution:

(
εyt

εht

)
∼ N

(
0,

(
eht ρe

1

2
htωh

ρe
1

2
htωh ω2

h

))
.

If ρ < 0, given a negative shock to yt at time t, the volatility at time t + 1 tends to be

larger. It is also clear that when ρ = 0, this model reduces to the standard SV.

We summarize the GARCH and stochastic volatility models in Table 1. Both the GARCH

and stochastic volatility models are estimated using Bayesian techniques. The estimation

is outlined in Appendix A.

Table 1: List of GARCH and stochastic volatility models.

GARCH models

GARCH GARCH(1,1) model where σ2
t follows a stationary AR(1)

GARCH-2 same as GARCH but σ2
t follows a stationary AR(2)

GARCH-J same as GARCH but the prices equation has a “jump” component
GARCH-M same as GARCH but σ2

t enters the prices equation as a covariate
GARCH-MA same as GARCH but the observation error follows an MA(1)
GARCH-t same as GARCH but the observation error follows a t distribution
GARCH-GJR GARCH with a leverage effect

Stochastic volatility models

SV stochastic volatility model where ht follows a stationary AR(1)
SV-2 same as SV but ht follows a stationary AR(2)
SV-J same as SV but the prices equation has a “jump” component
SV-M same as SV but ht enters the prices equation as a covariate
SV-MA same as SV but the observation error follows an MA(1)
SV-t same as SV but the observation error follows a t distribution
SV-L SV with a leverage effect

3 Model Comparison Using the Bayes Factor

In this section, we give an overview of Bayesian model comparison via the Bayes factor

and outline an efficient approach to compute the Bayes factor using importance sampling.
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Suppose we wish to compare a set of models {M1, . . . ,MK}. Each model Mk is formally

defined by two separate components: a likelihood function p(y |θk,Mk) that depends on

the model-specific parameter vector θk of dimension pk and a prior density p(θk |Mk).

One popular Bayesian model comparison criterion is the Bayes factor in favor of Mi

against Mj , defined as

BFij =
p(y |Mi)

p(y |Mj)
,

where

p(y |Mk) =

∫
p(y |θk,Mk)p(θk |Mk)dθk (5)

is the marginal likelihood under model Mk, k = i, j. This marginal likelihood can be

interpreted as a density forecast of the data under model Mk evaluated at the actual

observed data y. Hence, if the observed data are likely under the model, the associated

marginal likelihood would be “large”. Since the marginal likelihood is essentially a density

forecast evaluation, it has a built-in penalty for model complexity. In addition, it follows

that BFij > 1 indicates that the observed data are more likely under modelMi compared

to modelMj , and is thus viewed as evidence in favor of modelMi—the weight of evidence

is proportional to the value of the Bayes factor.

Furthermore, the log Bayes factor is asymptotically equivalent to the Schwarz information

criterion (SIC) proposed by Schwarz (1978). More specifically, recall that the SIC for

model Mk is defined as

SICk = log p(y | θ̂k,Mk)−
pk
2
log T,

where θ̂k is the maximum likelihood estimate and T is the sample size. Then, it can be

shown that (see, e.g., Kass and Raftery, 1995)

(SICi − SICj)− log BFij
log BFij

→ 0

as T → ∞. In addition, both the Bayes factor and SIC are consistent model selec-

tion criteria—i.e., they will asymptotically select the candidate model having the correct

structure with probability one.2

For a finite sample, the Bayes factor also has a natural interpretation. In particular, it is

2On the other hand, the commonly-used Akaike information criterion (AIC) is not consistent. For a
more detailed discussion on the differences between the AIC, SIC and Bayes factor, see Kass and Raftery
(1995).
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related to the posterior odds ratio between the two models as follows:

P(Mi |y)

P(Mj |y)
=

P(Mi)

P(Mj)
× BFij,

where P(Mi)/P(Mj) is the prior odds ratio. If both models are equally probable a priori,

i.e., the prior odds ratio is one, the posterior odds ratio between the two models is then

equal to the Bayes factor. Then, if, for example, BFij = 10, then model Mi is 10 times

more likely than model Mj given the data. For a more detailed discussion of the Bayes

factor, we refer the readers to Kass and Raftery (1995) and Koop (2003).

Since the Bayes factor is simply a ratio of two marginal likelihoods, researchers often only

report the marginal likelihoods of the set of competing models. We follow this practice.

Next, we outline a method for calculating the marginal likelihoods under the GARCH

and stochastic volatility models.

Generally the computation of the marginal likelihood is nontrivial—the integral in (5) is

often high-dimensional and cannot be obtained analytically. In this paper we follow Chan

and Eisenstat (2015), who implement an improved version of an adaptive importance

sampling method called the cross-entropy method (Rubinstein, 1997; Rubinstein and

Kroese, 2004) to compute the marginal likelihood.

The main idea is as follows. There is an ideal importance sampling density that would in

principle give a zero-variance importance sampling estimator for the marginal likelihood.

However, this density is only known up to a constant and therefore cannot be used as an

importance sampling density—which would require the normalizing constant to be known.

One way to get around this problem is to instead locate a density within a convenient

family of distributions such that its Kullback-Leibler divergence—or the cross-entropy

distance—to the ideal density is minimized. Once the optimal density is obtained, it is

used to construct the importance sampling estimator.

The main advantage of this adaptive importance sampling method is that it is easy to

implement and the numerical standard error of the estimator is readily available. The

method only requires the evaluation of the prior and the likelihood. For GARCH models

the likelihood can be quickly evaluated. For stochastic volatility models, the complete-

data likelihood—i.e., the joint distribution of the data and the log-volatilities—can be

readily evaluated. But the likelihood or more precisely the observed-data likelihood—i.e,

the marginal distribution of the data unconditional on the log-volatilities—does not have

a closed-form expression. Instead, we use the importance sampling algorithms in Chan
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and Grant (2014) to evaluate the observed-data likelihood.3 We leave the technical details

to Appendix B.

4 Empirical Results

In this section we compare the performance of the seven GARCH models and their

stochastic volatility counterparts discussed in Section 2 in fitting weekly price changes of

nine series of energy prices. The main goal of this exercise is to examine which class of

time-varying volatility models tends to fit the dynamics of a broad range of energy prices

better—while controlling for model complexity. In addition, we also seek to establish the

type of features that are useful in modeling these prices. For example, does adding an

additional channel of volatility feedback fit the data better? Or is it more important to

allow for short-run dynamics via a moving average component?

Table 2: Energy price data.

Crude oil (US Dollars per Barrel)

S1 Cushing, OK West Texas Intermediate

S2 Europe Brent

Petroleum products (US Dollars per Gallon)

S3 NY Harbor Conventional Gasoline Regular

S4 US Gulf Coast Conventional Gasoline Regular

S5 NY Harbor No. 2 Heating Oil

S6 Los Angeles, CA Ultra-Low Sulfur CARB Diesel

S7 US Gulf Coast Kerosene-Type Jet Fuel

S8 Mont Belvieu, TX Propane

Natural gas (US Dollars per Million Btu)

S9 Henry Hub Natural Gas

With these aims in mind, we choose a broad range of energy prices that are commonly

used in empirical applications. More specifically, we obtain the nine series of (FOB)

spot prices of crude oil, various petroleum products and natural gas from the US Energy

3It is also worth noting that the method of Gelfand and Dey (1994) is often used in conjunction with
the complete-data likelihood to compute the marginal likelihood. However, using an empirical example,
Chan and Grant (2015) show that this approach can have a substantial finite-sample bias in the marginal
likelihood estimate.
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Information Administration. The specific details of each data series are contained in

Table 2. The data frequency is weekly and the sample period is from 3 January 1997 to

6 February 2015. The data are transformed into nominal rates of change by taking the

first difference of the logs and multiplying by 100.

4.1 Model Comparison Results

All the models are estimated using the Bayesian techniques outlined in Appendix A. The

marginal likelihoods are computed using the improved cross-entropy method of Chan and

Eisenstat (2015), which is discussed in Appendix B. The results are reported in Table 3.

A few broad conclusions can be drawn from this exercise. Overall, the best model is

the SV-MA for all the nine time series. The second place is less clear-cut; the SV-2

often comes out on top, although the GARCH-MA does better for three series and the

SV-L one. Second, with the notable exceptions of the GARCH-J-vs-SV-J and GARCH-

t-vs-SV-t pairs, the SV models always outperform their GARCH counterparts. As an

example, consider the results for S1 (Cushing, OK West Texas Intermediate). The log

marginal likelihoods of the GARCH and SV models are, respectively, -2647.0 and -2632.4.

This implies a Bayes factor of 2.2 × 106 in favor of the SV model against its GARCH

counterpart, indicating overwhelming evidence for the former model. For the same series,

the Bayes factor in favor of the SV-MA against the GARCH-MA is 2.7×106, again showing

overwhelming evidence in support of the former model.

The exceptions of this general pattern are the GARCH-J-vs-SV-J and GARCH-t-vs-SV-t

pairs: both GARCHmodels perform slightly better than their SV counterparts for two out

of the nine series. As mentioned earlier, under GARCH models the conditional variance

is a deterministic function of the parameters and past data—in contrast to stochastic

volatility models, in which the log-volatility is a random variable. As such, stochastic

volatility models are more robust to misspecification and to drastic changes in the time

series. This helps explain why they tend to outperform their GARCH counterparts.

However, when a heavy-tailed distribution such as the t distribution is used or a jump

component—which is a random variable—is added to a GARCH, it gives the model extra

flexibility against misspecification and outliers, making the inherent advantage of SV

models less apparent. This also explains why both the GARCH-J and GARCH-t do

substantially better than the GARCH in the model comparison exercise,4 whereas the

4Mason and Wilmot (2014) also find that allowing for a jump process substantially improves the fit
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SV-J, SV-t and SV give very similar results—e.g., in the SV a “jump” can be partially

accommodated by a large shock in the stochastic volatility process.

Table 3: Log marginal likelihoods of the GARCH and SV models for the nine series of
weekly price changes on energy prices. The numerical standard errors are in parentheses.

S1 S2 S3 S4 S5 S6 S7 S8 S9

GARCH -2647.0 -2652.0 -2809.7 -2840.0 -2647.0 -2718.3 -2634.5 -2679.2 -3117.0

(0.05) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.01) (0.10)

SV -2632.4 -2636.7 -2783.8 -2822.6 -2612.2 -2693.5 -2623.1 -2644.0 -3058.6

(0.01) (0.01) (0.01) (0.01) (0.01) (0.02) (0.01) (0.06) (0.04)

GARCH-2 -2647.2 -2652.2 -2807.6 -2839.4 -2647.3 -2712.1 -2634.4 -2679.7 -3118.1

(0.10) (0.09) (0.04) (0.05) (0.11) (0.04) (0.06) (0.04) (0.04)

SV-2 -2631.9 -2636.4 -2783.5 -2821.9 -2611.8 -2692.2 -2622.6 -2641.2 -3057.9

(0.08) (0.07) (0.06) (0.11) (0.06) (0.10) (0.10) (0.08) (0.06)

GARCH-J -2634.6 -2638.4 -2789.7 -2822.1 -2613.0 -2700.1 -2627.7 -2650.3 -3061.0

(0.03) (0.07) (0.05) (0.05) (0.11) (0.06) (0.03) (0.06) (0.06)

SV-J -2632.3 -2637.1 -2784.4 -2823.1 -2613.4 -2694.3 -2624.0 -2645.1 -3059.2

(0.04) (0.02) (0.02) (0.03) (0.03) (0.03) (0.02) (0.06) (0.04)

GARCH-M -2653.6 -2658.8 -2817.0 -2847.3 -2654.0 -2725.4 -2641.3 -2680.6 -3123.6

(0.02) (0.03) (0.04) (0.02) (0.03) (0.02) (0.02) (0.03) (0.04)

SV-M -2637.8 -2642.9 -2790.3 -2828.8 -2618.8 -2699.9 -2629.1 -2646.2 -3065.3

(0.02) (0.02) (0.13) (0.04) (0.02) (0.04) (0.03) (0.04) (0.03)

GARCH-MA -2630.7 -2620.4 -2798.6 -2829.5 -2621.8 -2673.5 -2616.3 -2653.6 -3107.7

(0.03) (0.04) (0.02) (0.02) (0.16) (0.07) (0.04) (0.02) (0.04)

SV-MA -2615.9 -2610.1 -2771.8 -2806.6 -2588.6 -2648.6 -2606.6 -2622.1 -3048.7

(0.01) (0.01) (0.01) (0.02) (0.01) (0.02) (0.01) (0.05) (0.02)

GARCH-t -2636.5 -2641.4 -2788.1 -2824.8 -2616.3 -2698.9 -2627.6 -2641.4 -3058.3

(0.02) (0.02) (0.03) (0.02) (0.02) (0.02) (0.15) (0.01) (0.03)

SV-t -2632.3 -2636.9 -2784.0 -2823.6 -2612.9 -2693.4 -2623.9 -2644.5 -3059.2

(0.02) (0.01) (0.02) (0.01) (0.02) (0.02) (0.03) (0.05) (0.04)

GARCH-GJR -2646.6 -2649.8 -2812.5 -2842.5 -2649.9 -2719.3 -2637.1 -2679.7 -3113.0

(0.04) (0.04) (0.07) (0.03) (0.03) (0.03) (0.06) (0.11) (0.09)

SV-L -2628.5 -2633.5 -2785.3 -2823.8 -2614.0 -2695.3 -2624.7 -2646.2 -3059.7

(0.02) (0.02) (0.01) (0.02) (0.01) (0.02) (0.01) (0.03) (0.03)

Now, we further investigate which features are important in modeling the dynamics of

energy prices. By comparing the GARCH with GARCH-2 and the SV with SV-2, we

conclude that the richer AR(2) volatility process provides only marginal benefits. For

example, the Bayes factor in favor of the SV-2 against the SV is only 2 for S4 (US

Gulf Coast Conventional Gasoline Regular). Results for the other series are broadly

of the GARCH model for natural gas spot prices.
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similar. Thus, for modeling energy prices at least, one can feel comfortable maintaining

the conventional specification of an AR(1) volatility process.

Next, we examine the importance of volatility feedback for modeling energy prices. Al-

though this channel is found to be empirically important for stock returns, it is superfluous

for energy data. In fact, adding the volatility feedback component often markedly de-

creases the marginal likelihood of a model. For instance, the Bayes factor in favor of

the GARCH against the GARCH-M is about 1200 for S6 (Los Angeles, CA Ultra-Low

Sulfur CARB Diesel). This is in line with the finding in Sadorsky (2006), who finds that

GARCH in mean forecasts no better than the standard GARCH for crude oil, heating

oil and natural gas volatility. It is also worth noting that even though the GARCH-M

nests GARCH as a special case—hence, the GARCH-M would fit the data better—the

Bayes factor still prefers the simpler model, highlighting its built-in penalty against model

complexity.

To investigate the relevance of the moving average component, we compare the GARCH

with GARCH-MA and the SV with SV-MA. For both classes of models, adding the MA

component drastically improves the model-fit for all series. For example, the Bayes factor

in favor of the SV-MA against the SV is 3.2 × 109 for S8 (Mont Belvieu, TX Propane),

indicating that the weekly returns exhibit substantial serial correlation (see also the model

diagnostic tests in the next section). Similar results are obtained for the GARCH models

and for the other price series.

Finally, by comparing the GARCH with GARCH-GJR and the SV with SV-L, we con-

clude that the leverage effect is important for modeling crude oil prices (WTI and Brent)

but not for other energy prices. Since it is well-known that leverage effects are important

for equity returns, these results imply that crude oil prices behave more like equity data

than other energy prices.

4.2 Estimation Results

In this section we report the posterior estimates of the model parameters for both the

GARCH and stochastic volatility models. Due to space constraint, we only present

results for the crude oil price (Cushing, OK West Texas Intermediate), which are broadly

representative of the estimates for other energy prices.

Table 4 shows the results for the GARCHmodels. The parameters governing the evolution
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of the conditional variance process have similar estimates across models. In particular,

all indicate high persistence with the posterior mean of β1 estimated to be between 0.74

to 0.9—the lowest estimate is from the GARCH-2, in which the sum of β1 and β2 is

estimated to be 0.88, implying a persistence level similar to other models. The estimate

of β2 is small and an AR(1) for the conditional variance process appears to be sufficient,

which supports the ranking of the marginal likelihood.

The average jump size µk is estimated to be negative at about -1.4%. The estimate

for the jump probability κ is 0.05, which implies about 2.5 “jumps” per year for weekly

data. It is interesting to note that the posterior estimates of λ, ψ and δ1 all seem to

support the ranking of the marginal likelihood. For example, recall that when ψ = 0, the

GARCH-MA reduces to the standard GARCH. Since the marginal likelihood favors the

GARCH-MA relative to the GARCH, one would expect that the posterior distribution

of ψ has little mass around zero. In fact, the 95% credible interval of ψ is estimated to

be (0.16, 0.31), which excludes 0. Similarly, when λ = 0, the GARCH-M reduces to the

standard GARCH. The 95% credible interval of λ is estimated to be (−0.01, 0.04), which

includes 0, supporting the ranking of the marginal likelihood that favors the GARCH

over the GARCM-M. Next, the estimate of δ1 is 0.06 and is statistically different from 0,

implying a negative shock at time t would increase the conditional variance at time t+1.

Finally, the degree of freedom parameter ν is estimated to be about 11, indicating that

the tails of the t distribution are relatively heavy—i.e., outliers occur relatively frequently.

This supports the ranking of the marginal likelihood that prefers the GARCH-t model

compared to the standard GARCH.

We also present the results of two diagnostic tests. Specifically, we report the Ljung-Box

and McLeod-Li statistics of order 20 computed on the standardized residuals and squared

standardized residuals, respectively. Except for the GARCH-MA model, all the Ljung-

Box tests reject the null hypothesis of no serial correlation in the standardized residuals at

the 1% level. This diagnostic result again supports the ranking of the marginal likelihood,

which favors the GARCH-MA relative to the GARCH. In addition, all the McLeod-Li

tests fail to reject the null hypothesis of no serial correlation in the squared standardized

residuals at the 5% level, indicating that the GARCH models adequately capture the

time-varying volatility of the data.
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Table 4: Parameter posterior means and standard deviations (in parentheses) for the
GARCH models (S1: Cushing, OK West Texas Intermediate).

GARCH GARCH-2 GARCH-J GARCH-M GARCH-MA GARCH-t GARCH-GJR

µ 0.15 0.15 0.20 -0.10 0.16 0.18 0.09

(0.12) (0.12) (0.13) (0.23) (0.14) (0.12) (0.12)

α0 0.65 0.51 0.41 0.48 0.37 0.39 0.50

(0.22) (0.18) (0.16) (0.17) (0.14) (0.20) (0.18)

α1 0.10 0.10 0.08 0.08 0.08 0.08 0.05

(0.02) (0.02) (0.02) (0.01) (0.01) (0.02) (0.02)

β1 0.87 0.74 0.88 0.89 0.90 0.88 0.89

(0.03) (0.04) (0.02) (0.02) (0.01) (0.03) (0.02)

β2 – 0.14 – – – – –

– (0.03) – – – – –

κ – – 0.05 – – – –

– – (0.02) – – – –

µk – – -1.39 – – – –

– – (0.93) – – – –

σ2

k
– – 41.26 – – – –

– – (20.82) – – – –

λ – – – 0.02 – – –

– – – (0.01) – – –

ψ – – – – 0.24 – –

– – – – (0.04) – –

ν – – – – – 10.86 –

– – – – – (2.36) –

δ1 – – – – – – 0.06

– – – – – – (0.02)

Q(20) 66.4 65.5 65.8 67.7 37.5 66.0 64.6

(1.23) (0.65) (1.37) (2.03) (1.58) (1.54) (1.33)

Q2(20) 15.1 14.7 13.8 15.8 14.9 14.7 13.8

(1.76) (1.19) (1.26) (3.35) (1.62) (1.96) (1.24)

Notes: Q(20) and Q2(20) are respectively the Ljung-Box and McLeod-Li statistics of order 20
computed on the standardized residuals and squared standardized residuals. The 5% and 1%
critical values are 31.41 and 37.57, respectively.

Next, we present the parameter estimates for the stochastic volatility models in Table 5.

Similar to the estimates under GARCH models, the stochastic volatility process is highly

persistent for all models. In particular, the posterior mean of φh is estimated to be

between 0.96 to 0.97 across the various models. Other parameters governing the stochastic

volatility process are also similar across models.

In contrast to the GARCH-J results, the average jump size µk under SV-J is estimated
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to be positive (but with a large posterior standard deviation). Seemingly very different

“jumps” are identified under the SV-J compared to the GARCH-J. Given the small

estimate for µk, the marginal likelihood favors the SV model compared to SV-J, whereas

among the GARCH and GARCH-J pair it prefers the latter model.

Table 5: Parameter posterior means and standard deviations (in parentheses) for the
stochastic volatility models (S1: Cushing, OK West Texas Intermediate).

SV SV-2 SV-J SV-M SV-MA SV-t SV-L
µ 0.17 0.19 0.18 0.47 0.16 0.18 0.10

(0.12) (0.12) (0.14) (0.24) (0.14) (0.12) (0.12)
µh 2.67 2.66 2.63 2.67 2.63 2.63 2.68

(0.22) (0.25) (0.23) (0.22) (0.25) (0.23) (0.23)
φh 0.97 0.96 0.97 0.97 0.97 0.97 0.97

(0.01) (0.08) (0.01) (0.01) (0.01) (0.01) (0.01)
ω2
h 0.03 0.05 0.03 0.03 0.03 0.03 0.03

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
ρh – -0.03 – – – – –

– (0.09) – – – – –
κ – – 0.04 – – – –

– – (0.03) – – – –
µk – – 0.22 – – – –

– – (1.67) – – – –
σ2
k – – 18.56 – – – –

– – (22.06) – – – –
λ – – – -0.02 – – –

– – – (0.02) – – –
ψ – – – – 0.22 – –

– – – – (0.03) – –
ν – – – – – 56.13 –

– – – – – (23.32) –
ρ – – – – – – -0.38

– – – – – – (0.11)
Q(20) 64.5 64.4 61.6 64.1 34.5 64.2 63.7

(3.93) (4.32) (6.50) (4.17) (3.51) (3.93) (3.67)
Q2(20) 17.3 19.1 17.8 17.1 16.6 17.1 17.1

(3.76) (7.18) (4.80) (3.76) (3.80) (3.90) (3.48)

Notes: Q(20) and Q2(20) are respectively the Ljung-Box and McLeod-Li statistics of
order 20 computed on the standardized residuals and squared standardized residuals.
The 5% and 1% critical values are 31.41 and 37.57, respectively.

The estimate of the moving average parameter is similar across the GARCH-MA and

SV-MA models, with ψ estimated to be 0.22 under the SV-MA. Its 95% credible interval
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is (0.15, 0.29), which excludes 0. Hence, these estimation results also support the ranking

of the marginal likelihood which favors the SV-MA against the standard SV. Next, the

coefficient of the volatility λ is estimated to be -0.02 with a 95% credible interval (-0.05,

0.01), indicating that volatility feedback is unimportant for modeling crude oil returns.

In contrast to the GARCH-t results, the estimate of the degree of freedom parameter ν

under the SV-t is substantially larger—the posterior mean is about 56—indicating that

the tails of the t distribution are thin and similar to those of the Gaussian distribution.

Accordingly, both the SV and SV-t receive similar support from the marginal likelihood.

Lastly, the correlation ρ between the observation and state innovations is estimated to be

negative at -0.38. This implies a negative shock at time t tends to increase the volatility

at time t+ 1.

Finally, we also report the Ljung-Box and McLeod-Li statistics. Similar to the GARCH

results, all the Ljung-Box tests reject the null hypothesis of no serial correlation in the

standardized residuals at the 1% level, with the exception of the SV-MA model. This

again supports the ranking of the marginal likelihood, which favors the SV-MA compared

to the SV.

4.3 Forecasting Results

In this section we perform a recursive out-of-sample forecasting exercise to evaluate the

performance of the GARCH and stochastic volatility models. These models are often

compared by evaluating their volatility forecasts (e.g., Sadorsky, 2006; Wei et al., 2010)

or the Values-at-Risk (e.g., Fan, Zhang, Tsai, and Wei, 2008; Hung, Lee, and Liu, 2008),

which are tail quantiles of the return densities. Here we compare the models using the

entire forecast densities by computing the log predictive score.

More specifically, given the data up to time t, denoted as y1:t, we compute the one-step-

ahead predictive density p(yt+1 |y1:t) under a certain model and use it as the density

forecast for yt+1. This density forecast is evaluated by computing the log predictive

likelihood log p(yt+1 = yot+1 |y1:t), i.e., the log predictive density of yt+1 evaluated at the

observed value yot+1. Clearly, if the actual outcome yot+1 is likely under the density forecast,

the value of the log predictive likelihood will be large, and vice versa. Next, we move one

period forward and repeat the whole exercise with data y1:t+1, and so forth. Finally, the

log predictive score for the evaluation period t0 + 1, . . . , T is defined as the sum of the
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log predictive likelihoods:
T−1∑

t=t0

log p(yt+1 = yot+1 |y1:t).

A larger log predictive score indicates better forecast performance. See, e.g., Geweke and

Amisano (2011) for a more detailed discussion of the log predictive score and its con-

nection to the marginal likelihood. Below present results for the crude oil price (Europe

Brent). The evaluation period for the forecasting exercise is from January 2000 to the

end of the sample. The results are reported in Table 6.

Table 6: Log predictive scores of the GARCH and SV models for forecasting changes in
crude oil prices (S2: Europe Brent).

GARCH GARCH-2 GARCH-J GARCH-M GARCH-MA GARCH-t GARCH-GJR

-2174.9 -2173.8 -2163.1 -2177.6 -2146.6 -2165.2 -2169.0

SV SV-2 SV-J SV-M SV-MA SV-t SV-L

-2160.6 -2170.1 -2162.4 -2162.6 -2137.2 -2161.2 -2157.4

These density forecasting results are broadly similar to the model comparison results using

the marginal likelihood. In particular, the SV models provide better density forecasts than

their GARCH counterparts. Moreover, the jump component and t distributed innovations

improve forecasts for GARCH, but they are unimportant for the SV model. Finally, the

SV model with moving average innovations is the best forecasting model for Europe

Brent.

5 Concluding Remarks and Future Research

We have undertaken a formal Bayesian model comparison exercise to assess a number

of GARCH and stochastic volatility models for modeling oil, petroleum product and

natural gas prices. Using the marginal likelihood to assess the various models, we find

that stochastic volatility models almost always outperform their GARCH counterparts,

suggesting that stochastic volatility models might provide a better alternative to the

more conventional GARCH models. Overall, the stochastic volatility model with moving

average innovations is the best model for all nine series considered.

For future research, it would be worthwhile to compare multivariate GARCH and stochas-

tic volatility models in fitting multiple energy prices. In particular, it would be important
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to determine the number of sources of fluctuation in these series. Moreover, it would also

be interesting to incorporate macroeconomic variables in the multivariate analysis, as the

interplay between energy prices and macroeconomic variables is often of interest.
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Appendix A: Priors and Estimation

In this appendix we discuss the priors and outline the estimation methods for fitting the

GARCH and stochastic volatility models discussed in Section 2.

Priors

We choose broadly similar priors across the GARCH and stochastic volatility models.

In particular, we use the same prior for common parameters. All priors are proper but

relatively noninformative.

For the standard GARCH, we assume the following independent priors for µ and γ =

(α0, α1, β1)
′:

µ ∼ N (µ0, Vµ), log γ ∼ N (γ0,Vγ)1l(α1 + β1 < 1), (6)

that is, γ follows a truncated log-normal distribution with the stationarity restriction that

α1 + β1 < 1. We set the hyperparameters to be µ0 = 0, Vµ = 10, γ0 = (1, log 0.1, log 0.8)′

and Vγ = diag(10, 1, 1). These values imply relatively noninformative priors with prior

medians that are similar to typical estimates from financial data. In particular, the prior

medians of µ and γ are respectively 0 and (2.72, 0.1, 0.8)′. For the GARCH-2, we use

the same prior for µ, but replace the prior for γ with a prior for γ̃ = (α0, α1, β1, β2)
′

where log γ̃ ∼ N (γ̃0,Vγ̃)1l(α1 + β1 + β2 < 1) with γ̃0 = (1, log 0.1, log 0.8, log 0.1)′ and

Vγ̃ = diag(10, 1, 1, 1).

For each of the remaining GARCH models, the priors for µ and γ are exactly the same as

in (6). Moreover, under the GARCH-J, the jump intensity κ is assumed to have a uniform

distribution on the interval (0, 0.1), and the average jump size and the jump variance

δ = (µk, log σ
2
k)

′ are distributed as a bivariate normal distribution: κ ∼ U(0, 0.1) and

δ ∼ N (δ0,Vδ). We set δ0 = (0, log 10)′ and Vδ = diag(10, 1) so that the average jump

size is 0. For the GARCH-M, the coefficient of the volatility is assumed to have a normal

distribution: λ ∼ N (λ0, Vλ), where λ0 = 0 and Vλ = 100. Next, the MA(1) coefficient

in the GARCH-MA has a normal distribution truncated within the unit interval: ψ ∼

N (ψ0, Vψ)1l(|ψ| < 1), where ψ0 = 0 and Vψ = 1. For the GARCH-t, the degree of freedom

parameter ν has a uniform distribution on (2, 100): ν ∼ U(2, 100). Note that we assume

ν > 2 to ensure that the first two moments of the t distribution exist. Lastly, for the

leverage parameter δ1 in the GARCH-GJR, we assume a uniform prior conditional on

γ, so long as the variance process is strictly positive and stationary. In particular, we
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impose the conditions α1 + δ1 > 0 and α1 + β1 + δ1 < 1. Hence, we assume the uniform

prior (δ1 |γ) ∼ U(−α1, 1− α1 − β1).

Next, we discuss the set of priors for each of the stochastic volatility models. In general,

we choose the same hyperparameters for parameters that are common across models. For

the standard SV, we assume the following independent priors for µ, µh, φh and ω2
h:

µ ∼ N (µ0, Vµ), µh ∼ N (µh0, Vµh),

φh ∼ N (φh0, Vφh)1l(|φh| < 1), ω2
h ∼ IG(νh, Sh),

(7)

where IG(·, ·) denotes the inverse-gamma distribution. We set µ0 = 0, µh0 = 1, Vµ =

Vµh = 10, φh0 = 0.97, Vφh = 0.12, νh = 5 and Sh = 0.16. These hyperparameters are set

so that the stochastic volatility process has similar dynamics as the conditional variance

under the GARCH models.

For the SV-2, we assume the same priors for µ, µh and ω2
h as in (7), but replace the prior

for φh with a prior for θh = (φh, ρh)
′: θh ∼ N (θh0,Vθh

)1l(θh ∈ A), where θh0 = (0.97, 0)′,

Vθh
= diag(0.12, 1) andA ⊂ R2 is the set where the roots of the characteristic polynomial

defined by θh lie outside the unit circle. For each of the remaining stochastic volatility

models, the priors for µ, µh, φh and ω
2
h are the same as in (7). The additional parameters

have exactly the same priors as their GARCH counterparts. Lastly, for the SV-L, the

correlation parameter ρ is assumed to have the uniform prior ρ ∼ U(−1, 1).

Bayesian Estimation

All the GARCH and stochastic volatility models are estimated using Markov chain Monte

Carlo (MCMC) methods. Specifically, we sample from the posterior distributions of the

models by constructing Markov samplers and use the posterior draws obtained to compute

various quantities of interest such as the posterior means and the marginal likelihoods.

For the stochastic volatility models, a key step is to jointly sample the log-volatilities. For

example, under the standard SV model, we need to sample from the conditional density

p(h |y, µ, µh, φh, ω
2
h). This is done using the acceptance-rejection Metropolis-Hastings

algorithm described in Chan (2015), which is based on the precision sampler of Chan and

Jeliazkov (2009). A key feature of this algorithm is its use of fast band matrix routines

rather than using the conventional Kalman filter. The former approach is in general more

efficient than the latter.
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To implement the acceptance-rejection Metropolis-Hastings algorithm, one key ingredient

is an appropriate proposal density that well approximates the target p(h |y, µ, µh, φh, ω
2
h).

The basic idea is to approximate the target using a Gaussian density. To that end, note

that p(h |y, µ, µh, φh, ω
2
h) ∝ p(y |µ,h)p(h |µh, φh, ω

2
h). It can be shown that the latter

density p(h |µh, φh, ω
2
h) is Gaussian. In fact, we have

log p(h |µh, φh, ω
2
h) = −

1

2
(h′H′

φh
Σ−1
h Hφhh− 2h′H′

φh
Σ−1
h Hφhδh) + c1, (8)

where c1 is a constant independent of h,

Hφh =




1 0 0 · · · 0

−φh 1 0 · · · 0

0 −φh 1 · · · 0
...

. . . . . . . . .
...

0 0 · · · −φh 1




is a lower triangular matrix, Σh = diag(ω2
h/(1 − φ2

h), ω
2
h, . . . , ω

2
h) and δh = H−1

φh
δ̃h with

δ̃h = (µh, (1− φh)µh, . . . , (1− φh)µh)
′.

Next, we approximate p(y |µ,h) by a Gaussian density in h. To that end, we expand

log p(y |µ,h) =
∑T

t=1 log p(yt |µ, ht) around the point h̃—which is chosen to be the mode

of p(h |y, µ, µh, φh, ω
2
h)—by a second-order Taylor expansion:

log p(y |µ,h) ≈ log p(y |µ, h̃) + (h− h̃)′f −
1

2
(h− h̃)′G(h− h̃)

=−
1

2
(h′Gh− 2h′(f +Gh̃)) + c2, (9)

where c2 is a constant independent of h, f = (f1, . . . , fT )
′ and G = diag(G1, . . . , GT ) with

ft =
∂

∂ht
log p(yt |µ, ht)|ht=h̃t , Gt = −

∂2

∂h2t
log p(yt |µ, ht)|ht=h̃t .

That is, G is the negative Hessian of the log-density evaluated at h̃. For the standard

stochastic volatility model, G is diagonal (hence a band matrix).
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Finally, combining (8) and (9), we have

log p(h |y, µ, µh, φh, ω
2
h) = log p(y |µ,h) + log p(h |µh, φh, ω

2
h) + c3,

≈ −
1

2
(h′Khh− 2h′kh) + c4, (10)

where c3 and c4 are constants independent of h, Kh = H′

φh
Σ−1
h Hφh + G and kh =

f +Gh̃+H′

φh
Σ−1
h Hφhδh. It can be shown that the expression in (10) is the log-kernel of

theN (ĥ,K−1
h
) density (see, e.g., Kroese and Chan, 2014, p. 238), where ĥ = K−1

h
kh. This

Gaussian density with mean vector ĥ and precision matrixKh is then used as the proposal

density in the acceptance-rejection Metropolis-Hastings algorithm. It is important to note

that Kh is a band matrix, and consequently sampling from this proposal density is fast;

see, e.g., Chan and Jeliazkov (2009). We refer the readers to Chan and Grant (2014) for

the estimation details of the stochastic volatility models.

For the GARCH models, we use Metropolis-Hastings algorithms to sample from the

posterior distributions. For example, for the standard GARCH, we group the parameters

into two blocks—µ and γ = (α0, α1, β1)
′—and we draw from the two full conditional

distributions p(µ |y,γ) and p(γ |y, µ) sequentially. Since both conditional distributions

are nonstandard,5 Metropolis-Hastings algorithms are required. To sample µ, we use a

Gaussian proposal with mean ȳ and variance s2/T , where ȳ and s2 are the sample mean

and sample variance respectively. For γ, we use a Gaussian proposal centered at the

mode of p(γ |y, µ) with covariance matrix set to be the outer product of the scores. For

other GARCH models with additional parameters, the basic sampler remains the same

but with an extra block to sample the additional parameters.

5The conditional distribution of µ is not Gaussian as µ also appears in the conditional variance σ2

t
.
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Appendix B: Marginal Likelihood Computation

The marginal likelihoods for the GARCH and stochastic volatility models are computed

using the adaptive importance sampling approach in Chan and Eisenstat (2015). More

specifically, the marginal likelihood p(y) for a given model is estimated using:

p̂(y) =
1

R

R∑

i=1

p(y |θ(i))p(θ(i))

g(θ(i))
, (11)

where θ(1), . . . ,θ(R) are independent draws obtained from the importance density g(·)

that dominates the product of the likelihood and the prior p(y | ·)p(·). The importance

sampling estimator (11) is an unbiased, simulation-consistent estimator of the marginal

likelihood p(y). The choice of the importance density is critical for the performance of

this estimator. As outlined in Chan and Eisenstat (2015), the theoretical zero-variance

importance density for estimating p(y) is the posterior density p(θ |y)—which cannot

be used as its normalizing constant is unknown. The improved cross-entropy method

generates a procedure to construct an optimal importance density by minimizing the

Kullback-Leibler divergence to the zero-variance importance density.

The optimal importance density is typically located within the same parametric class as

the prior densities. For example, in the case of the standard GARCH in (1)–(2), the

optimal importance density has the form: g(θ) = p(µ)p(γ), where the prior densities

are given in Appendix A. Once the optimal importance density g(θ) is constructed, the

importance sampling estimator in (11) can be obtained easily for the GARCH models,

as the (observed-data) likelihood p(y |θ) can be evaluated quickly. For instance, the

log-likelihood for the standard GARCH is given by

log p(y |µ,γ) = −
T

2
log(2π)−

1

2

T∑

t=1

log σ2
t −

1

2

T∑

t=1

(yt − µ)2

σ2
t

,

where the conditional variance process σ2
t is given in (2).

For the stochastic volatility models, the observed-data likelihood p(y |θ) is not avail-

able analytically and again we evaluate it using importance sampling. Recall that the

observed-data likelihood is given by

p(y |θ) =

∫
p(y |θ,h)p(h |θ)dh,
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where p(y |θ,h) is the conditional likelihood and p(h |θ) is the prior density of the log-

volatilities h. If h(1), . . . ,h(R) are independent samples from the importance density g(h),

then we can estimate the observed-data likelihood p(y |θ) using the following importance

sampling estimator:

p̂(y |θ) =
1

R

R∑

i=1

p(y |θ,h(i))p(h(i) |θ)

g(h(i))
.

To choose a suitable g(·), we note that the theoretical zero-variance importance density

for estimating p(y |θ) is the conditional density p(h |y,θ) ∝ p(y |θ,h)p(h |θ). Hence,

we would like to choose g(·) to be “close” to p(h |y,θ).

Recall that when we estimate the stochastic volatility models, one key step is to approx-

imate the conditional distribution p(h |y,θ) using a Gaussian density (see Appendix A

for details). For example, in the case of the standard SV model, we can use the Gaussian

density in (10) as our importance sampling density. For each of the other stochastic

volatility models, we can use a similar Gaussian approximation; see Chan and Grant

(2014) for details.
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