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Abstract

The modified harmonic mean is widely used for estimating the marginal likelihood.
We investigate the empirical performance of two versions of this estimator: one
based on the observed-data likelihood and the other on the complete-data likelihood.
Through an empirical example using US and UK inflation, we show that the version
based on the complete-data likelihood has a substantial finite sample bias and
tends to select the wrong model, whereas the version based on the observed-data
likelihood works well.
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1 Introduction

The marginal likelihood or marginal data density is a widely used Bayesian model selec-
tion criterion and its estimation has generated a large literature. One popular method for
its estimation is the modified harmonic mean estimator of Gelfand and Dey (1994) (for
recent applications in economics, see, e.g., Koop and Potter, 2010; Liu, Waggoner, and
Zha, 2011; Lanne, Luoma, and Luoto, 2012; Bianchi, 2013). For latent variable models
such as state space and regime-switching models, this estimator is often used in conjunc-
tion with the complete-data likelihood—i.e., the joint density of the data and the latent
variables given the parameters. Recent examples include Berg, Meyer, and Yu (2004),
Justiniano and Primiceri (2008) and Jochmann, Koop, and Potter (2010).

This paper first introduces a new variant of the unobserved components model where the
marginal likelihood can be computed analytically. Then, through a real data example
we show that the Gelfand-Dey estimator based on the complete-data likelihood has a
substantial finite sample bias and tends to select the wrong model, whereas the estimator
based on the observed-data likelihood works fine. This finding is perhaps not surpris-
ing as the complete-data likelihood is typically very high-dimensional, which makes the
corresponding estimator unstable. Our results complement findings in Li, Zeng, and Yu
(2012) and Chan and Grant (2014a), who argue against the use of the complete-data
likelihood in a related context of computing the deviance information criterion.

The rest of this paper is organized as follows. Section 2 discusses the Bayes factor and
the Gelfand-Dey estimators. Section 3 introduces the unobserved components model
and outlines the analytical computation of the marginal likelihood. Then, using US and
UK CPI inflation data, we compare the two Gelfand-Dey estimators with the analytical
results.

2 Bayes Factor and Marginal Likelihood

In this section we give an overview of Bayesian model comparison and discuss the method
of Gelfand and Dey (1994) for estimating the marginal likelihood. To set the stage,
suppose we wish to compare a collection of models {M1, . . . ,MK}. Each model Mk is
formally defined by a likelihood function p(y |θk,Mk) and a prior on the model-specific
parameter vector θk denoted by p(θk |Mk). One popular Bayesian model comparison
criterion is the Bayes factor in favor of Mi against Mj, defined as

BFij =
p(y |Mi)

p(y |Mj)
,

where p(y |Mk) =
∫
p(y |θk,Mk)p(θk |Mk)dθk is the marginal likelihood under model

Mk, k = i, j, which is simply the marginal data density under model Mk evaluated at the
observed data y. Hence, if the observed data are likely under the model, the associated
marginal likelihood would be “large” and vice versa. It follows that BFij > 1 indicates
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evidence in favor of model Mi against Mj, and the weight of evidence is proportional to
the value of the Bayes factor.

In fact, the Bayes factor is related to the posterior odds ratio between the two models as
follows:

P(Mi |y)

P(Mj |y)
=

P(Mi)

P(Mj)
× BFij,

where P(Mi)/P(Mj) is the prior odds ratio. If both models are equally probable a priori,
i.e., p(Mi) = p(Mj), the posterior odds ratio between the two models is then equal to the
Bayes factor. In that case, if, for example, BFij = 20, then model Mi is 20 times more
likely than model Mj given the data. For a more detailed discussion of the Bayes factor
and its role in Bayesian model comparison, see Koop (2003) or Kroese and Chan (2014).

The Bayes factor therefore has a natural interpretation. Moreover, using it to compare
models, we need only to obtain the marginal likelihoods of the competing models. One
popular method for estimating the marginal likelihood of a given model p(y)—we suppress
the model index from here onwards for notational convenience—is due to Gelfand and
Dey (1994). Specifically, they realize that for any probability density function f with
support contained in the support of the posterior density, we have the following identity:

E
(

f(θ)

p(θ)p(y |θ)

∣∣∣∣ y

)
=

∫
f(θ)

p(θ)p(y |θ)

p(θ)p(y |θ)

p(y)
dθ = p(y)−1, (1)

where the expectation is taken with respect to p(θ |y) = p(θ)p(y |θ)/p(y). Therefore,
one can estimate p(y) using the following estimator:

GDo =

{
1

R

R∑
i=1

f(θi)

p(θi)p(y |θi)

}−1
, (2)

where θ1, . . . ,θR are posterior draws. Note that this estimator is simulation consistent
in the sense that it converges to p(y) in probability as R tends to infinity, but it is not
unbiased—i.e., E(GDo) 6= p(y) in general.

Geweke (1999) shows that if the tuning function f has tails lighter than those of the pos-
terior density, the estimator in (2) then has a finite variance. One such tuning function
is a normal approximation of the posterior density with tail truncations determined by
asymptotic arguments. Specifically, let θ̂ and Qθ denote the posterior mean and covari-
ance matrix respectively. Then, f is set to be the N (θ̂,Qθ) density truncated within the
region

{θ ∈ Rm : (θ − θ̂)′Q−1θ (θ − θ̂) < χ2
α,m},

where χ2
α,m is the (1− α) quantile of the χ2

m distribution and m is the dimension of θ.

For many complex models where the likelihood p(y |θ) cannot be evaluated analytically,
estimation is often facilitated by data augmentation. Specifically, the model p(y |θ) is
augmented with a vector of latent variables z such that

p(y |θ) =

∫
p(y, z |θ)dz =

∫
p(y | z,θ)p(z |θ)dz,
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where p(y, z |θ) is the complete-data likelihood and p(y | z,θ) denotes the conditional
likelihood. To avoid ambiguity, p(y |θ) is then referred to as the observed-data likelihood
or the integrated likelihood.

One advantage of this augmented representation is that the complete-data likelihood
p(y, z |θ) = p(y | z,θ)p(z |θ) is easy to evaluate by construction. Given this latent vari-
able representation, one can use a similar argument as in (1) to obtain another estimator
of the marginal likelihood p(y) that avoids the evaluation of the observed-data likelihood
p(y |θ):

GDc =

{
1

R

R∑
i=1

f(θi, zi)

p(y, zi |θi)p(θi)

}−1
, (3)

where (θ1, z1), . . . , (θR, zR) are posterior draws from the augmented model p(θ, z |y) and
f is a tuning function.

However, the variance of GDc is generally much larger than that of GDo. Moreover, the
former estimator is expected to perform poorly in general—the key difficulty is to obtain
a suitable tuning function f that is typically very high-dimensional. In fact, in the next
section we give an example where we can compute the marginal likelihood analytically.
We show that GDc gives estimates that are quite different from the analytical results.

3 Application: Estimating Trend Inflation

In this section we consider a version of the unobserved components model where its
marginal likelihood can be computed analytically. The analytical result is then com-
pared to the estimates obtained by the method of Gelfand and Dey (1994) based on
the complete-data and observed-data likelihoods. We use this example to investigate the
empirical performance of the two estimators.

3.1 Unobserved Components Model

Consider the following unobserved components model:

yt = τt + εt, (4)

τt = τt−1 + ut, (5)

where εt ∼ N (0, σ2) and ut ∼ N (0, gσ2) are independent for a fixed g, with initial
condition τ1 ∼ N (0, σ2Vτ ) for a fixed Vτ . Note that here the error variance of the state
equation (5) is assumed to be a fraction—controlled by g—of the error variance in the
measurement equation (4). The states are the unobserved components τ = (τ1, . . . , τT )′

and the only parameter is σ2. In the next section we compute the marginal likelihood
under different values of g.
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Stacking ε = (ε1, . . . , εT )′ and y = (y1, . . . , yT )′, the measurement equation (4) can be
written as:

y = τ + ε,

where ε ∼ N (0, σ2IT ). Hence, the conditional likelihood of the model (4)–(5) is given by

f(y | τ , σ2) = (2πσ2)−
T
2 e−

1
2σ2

(y−τ )′(y−τ ). (6)

In the Appendix we derive the joint density of the states p(τ |σ2) and show that the
complete-data likelihood is

p(y, τ |σ2) = (2πσ2)−T |Su|−
1
2 e−

1
2σ2

((y−τ )′(y−τ )+τ ′H′S−1
u Hτ), (7)

where Su = diag(Vτ , g, . . . , g) and

H =


1 0 . . . 0
−1 1 . . . 0
...

. . . . . .
...

0 0 −1 1

 . (8)

Note that H is a band matrix with unit determinant and the density in (7) can be
evaluated quickly using band matrix routines—e.g., using methods similar to those in
Chan and Grant (2014a). We also show in the Appendix that the observed-data likelihood
has the following expression:

p(y |σ2) =

∫
f(y | τ , σ2)p(τ |σ2)dτ = (2πσ2)−

T
2 |Su|−

1
2 |Kτ |−

1
2 e−

1
2σ2

(y′y−y′K−1
τ y),

where Kτ = IT + H′S−1u H. Lastly, if we assume an inverse-gamma prior for σ2, i.e.,
σ2 ∼ IG(ν0, S0), one can show that the marginal likelihood of the model (4)–(5) has the
following analytical expression (see Appendix for derivations):

p(y) =

∫
f(y, τ |σ2)p(σ2)d(τ , σ2)

= (2π)−
T
2 |Su|−

1
2 |Kτ |−

1
2
S0

ν0Γ
(
T
2

+ ν0
)

Γ(ν0)

(
S0 +

y′y − y′K−1τ y

2

)−(T2 +ν0)
.

(9)

Again both the observed-data and marginal likelihoods can be evaluated quickly using
band matrix routines. We set the hyperparameters to be ν0 = 5 and S0 = 4.

For the GDo estimator based on the observed-data likelihood, the tuning function f
is a single-variable function that depends only on σ2. We use a univariate truncated
normal density suggested by Geweke (1999) (see the discussion in Section 2) and denote
it as fσ2 . For the GDc estimator based on the complete-data likelihood, the tuning
function f needs to be a (T + 1)-dimensional function—it depends on σ2 and τ . Using
a multivariate truncated normal density as suggested in Geweke (1999) might not be
feasible as the covariance matrix alone typically involves tens of thousands of parameters.
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Here we follow the proposal in Justiniano and Primiceri (2008). Specifically, we use
f(σ2, τ ) = fσ2(σ2)p(τ |σ2), where fσ2 is a univariate truncated normal density discussed
above, and p(τ |σ2) is the prior density of τ given in (10). Using the prior density as
part of the tuning function seems reasonable since it encapsulates our prior belief about
τ . In addition, this choice simplifies the computation. The GDc estimator in (3) now
becomes

GDc =

{
1

R

R∑
i=1

fσ2(σ2
i )

p(y |σ2
i , τ i)p(σ

2
i )

}−1
,

where (σ2
1, τ 1), . . . , (σ

2
R, τR) are posterior draws.

3.2 Data and Empirical Results

Unobserved components models have been widely used to analyze inflation data (see,
e.g., Stock and Watson, 2007; Chan, 2013; Clark and Doh, 2014). We fit the unobserved
components model in (4)-(5) using US and UK annualized quarterly CPI inflation rates.
The US sample is obtained from the Federal Reserve Bank of St. Louis economic database
and runs from 1948Q1 to 2013Q4; the UK data are from 1955Q1 to 2013Q4 and are
obtained from the OECD economic database.

It can be shown that (τ , σ2 |y) has a normal-inverse-gamma distribution and hence inde-
pendent draws from the posterior distribution can be easily obtained (see Appendix for
details). Posterior analysis is based on R independent draws from the posterior distribu-
tion, divided into 10 batches. For each fixed g, we compute the log marginal likelihood
of the model in three ways: the analytical expression given in (9), the GDo and GDc

estimators based on, respectively, the observed-data and the complete-data likelihoods.
The results for the US are reported in Table 1.

Table 1: Log marginal likelihoods based on analytical results, the Gelfand-Dey estimators
using the observed-data likelihood (GDo) and the complete-data likelihood (GDc) for US
data. Numerical standard errors are in parenthesis.

g = 0.8 g = 0.9 g = 1 g = 1.1 g = 1.2 g = 1.3
analytical result -592.141 -591.994 -591.936 -591.940 -591.990 -592.073
GDo (R = 50000) -592.140 -591.995 -591.935 -591.941 -591.991 -592.070

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
GDc (R = 50000) -503.28 -498.89 -494.62 -487.91 -485.08 -481.52

(1.09) (0.97) (1.32) (0.92) (0.77) (1.03)
GDc (R = 107) -510.64 -506.51 -502.70 -498.19 -493.53 -489.79

(0.49) (0.50) (0.95) (1.18) (0.44) (0.91)

A few observations can be drawn from this exercise. Firstly, it is clear that the GDo

estimates based on the observed-data likelihood are essentially identical to the analytical
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results, whereas the GDc estimates based on the complete-data likelihood are substan-
tially different. For example, when g = 1 and R = 50000, the GDc estimate is around
−494.6 with a numerical standard error of 1.32, but the true value is around −591.9—a
difference of 97.3 in the logarithm scale. When we increase the number of replications
to 10 million (R = 107), the difference between the estimate and the true value becomes
smaller, but remains substantial (−502.7 versus −591.9).1 In principle the Gelfand-Dey
estimator based on the complete-data likelihood estimator is simulation consistent, but
in practice the finite sample bias can remain huge even for tens of millions of replications.

It is also worth mentioning that when the GDc estimator fails, its numerical standard
error is also severely underestimated. For example, for the case g = 1 and R = 50000, the
difference between the estimate and the true value is 97.3, but the estimated numerical
standard error is only 1.32. A researcher using GDc with this markedly underestimated
numerical standard error is likely to be led astray. To guard against this problem, we
suggest the following diagnostics: if the numerical standard error is correctly estimated,
doubling the simulation size2 should reduce the numerical standard error by

√
2. If this

does not happen, it is a warning sign that the numerical standard error might be under-
estimated. In our example when the simulation size increases from 50000 to 10 million
(two-hundredfold), the numerical standard error should be about 0.093 (1.32/

√
200), but

instead the estimate is 0.95—this inconsistency indicates a problem.

On the other hand, the numerical standard errors for estimates based on the observed-
data likelihood are between 500-1000 times smaller than those based on the complete-data
likelihood. Moreover, the former are still wide enough such that the difference between
the estimate and the true value is within two times the numerical standard error. Finally,
GDc most prefers the model with g = 1.3, even though the best model is g = 1.

Table 2: Log marginal likelihoods based on analytical results, the Gelfand-Dey estimators
using the observed-data likelihood (GDo) and the complete-data likelihood (GDc) for UK
data. Numerical standard errors are in parenthesis.

g = 0.05 g = 0.1 g = 0.15 g = 0.2 g = 0.25 g = 0.3
analytical result -673.362 -672.055 -672.515 -673.432 -674.489 -675.575
GDo (R = 50000) -673.361 -672.055 -672.514 -673.432 -674.490 -675.575

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
GDc (R = 50000) -653.74 -647.37 -644.00 -640.35 -638.75 -636.24

(0.58) (0.76) (0.67) (0.68) (0.87) (0.67)
GDc (R = 107) -656.28 -650.60 -647.44 -645.00 -642.84 -640.32

(0.36) (0.45) (0.47) (0.36) (0.49) (0.29)

1For a logit regression with random effects, Frühwirth-Schnatter and Wagner (2008) compute its
marginal likelihood using the Chib’s method (Chib, 1995) based on the complete-data likelihood. They
find that “this estimator is extremely inaccurate” and “an upward bias seems to be present,” similar to
what we find in this example.

2When the replications are not independent, e.g., when they are obtained from Markov chain Monte
Carlo methods, one should use the effective sample size instead—i.e., the simulation size adjusted by the
inefficiency factor.
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We repeat the exercise using UK inflation data and the results are reported in Table 2.
The general conclusions remain the same: the estimates based on the observed-data
likelihood are virtually the same as the analytical results, whereas those based on the
complete-data likelihood have a substantial finite sample bias, even when the number of
replications is 10 million. In addition, the numerical standard errors associated with GDc

also seem to be severely underestimated.

4 Concluding Remarks

By fitting a new unobserved components model using US and UK inflation data, we
show that the Gelfand-Dey estimates based on the complete-data likelihood can be very
different from the analytical results. Given this finding, we argue against the use of the
complete-data likelihood in conjunction with the Gelfand-Dey estimator.

An alternative is to use the Gelfand-Dey estimator based on the observed-data likelihood.
Some recent papers, such as McCausland (2012), Chan and Grant (2014a) and Chan and
Grant (2014b), have provided fast routines to evaluate the observed-data likelihood for
various latent variable models. Frühwirth-Schnatter and Wagner (2008) describe a differ-
ent approach—based on the auxiliary mixture sampling in conjunction with importance
sampling and bridge sampling—that can be used to compute the marginal likelihood
when the observed-data likelihood is not readily available.

Appendix

In this appendix we provide the details of the derivation of the complete-data, observed-
data and marginal likelihoods of the unobserved components model in (4)–(5).

We first derive the prior density of the states p(τ |σ2). To that end, we stack the state
equation (5) over t:

Hτ = u,

where u = (u1, . . . , uT )′ ∼ N (0, σ2Su), Su = diag(Vτ , g, . . . , g) and H is as defined in (8).

It follows that (τ |σ2) ∼ N (0, σ2 (H′S−1u H)
−1

), and hence

p(τ |σ2) = (2πσ2)−
T
2 |Su|−

1
2 e−

1
2σ2

τ ′H′S−1
u Hτ . (10)

The complete-data likelihood is simply the product of the densities in (6) and (10):

p(y, τ |σ2) = p(y | τ , σ2)p(τ |σ2) = (2πσ2)−T |Su|−
1
2 e−

1
2σ2

((y−τ )′(y−τ )+τ ′H′S−1
u Hτ).
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Moreover, after some computations, the observed-data likelihood is obtained as follows:

p(y |σ2) =

∫
p(y, τ |σ2)dτ

= (2πσ2)−T |Su|−
1
2

∫
e−

1
2σ2

((y−τ )′(y−τ )+τ ′H′S−1
u Hτ)dτ

= (2πσ2)−T |Su|−
1
2

∫
e−

1
2σ2

(y′y+τ ′τ−2τ ′y+τ ′H′S−1
u Hτ)dτ

= (2πσ2)−T |Su|−
1
2

∫
e−

1
2σ2

(y′y+τ ′Kττ−2τ ′y)dτ

= (2πσ2)−T |Su|−
1
2 e−

1
2σ2

(y′y−y′K−1
τ y)

∫
e−

1
2σ2

(τ−K−1
τ y)′Kτ (τ−K−1

τ y)dτ

= (2πσ2)−
T
2 |Su|−

1
2 |Kτ |−

1
2 e−

1
2σ2

(y′y−y′K−1
τ y),

where Kτ = IT + H′S−1u H. Next, we derive an analytical expression of the marginal
likelihood. Recall that the prior for σ2 is IG(ν0, S0) with density

p(σ2) =
S0

ν0

Γ(ν0)
(σ2)−ν0−1e−

S0
σ2 . (11)

Hence, the joint density p(y, τ , σ2) is simply the product of the complete-data likelihood
and the prior in (11):

p(y, τ , σ2) = (2π)−T
S0

ν0

Γ(ν0)
|Su|−

1
2

(
1

σ2

)T+ν0+1

e
− 1
σ2

(
S0+

(y−τ)′(y−τ)+τ ′H′S−1
u Hτ

2

)

= (2π)−T
S0

ν0

Γ(ν0)
|Su|−

1
2

(
1

σ2

)T+ν0+1

e
− 1
σ2

(
S+

(τ−K−1
τ y)′Kτ (τ−K−1

τ y)
2

)
, (12)

where S = S0 + (y′y − y′K−1τ y)/2 and Kτ = IT + H′S−1u H.

It follows that the joint posterior distribution of (τ , σ2) is a normal-inverse-gamma dis-
tribution (τ , σ2 |y) ∼ N -IG(K−1τ y,Kτ , T/2 + ν0, S) with density function

p(τ , σ2 |y) ∝ p(y, τ , σ2) ∝
(

1

σ2

)T+ν0+1

e
− 1
σ2

(
S+

(τ−K−1
τ y)′Kτ (τ−K−1

τ y)
2

)
.

A draw from p(τ , σ2 |y) can be obtained in two steps. First, sample (σ2 |y) ∼ IG(T/2 +
ν0, S). Then, given the σ2 drawn, sample (τ |y, σ2) ∼ N (K−1τ y, σ2K−1τ ). Since the
precision matrix Kτ/σ

2 is a band matrix, the precision sampler in Chan and Jeliazkov
(2009) can be used to sample τ efficiently.

Finally, the marginal likelihood can be obtained by integrating the expression in (12)
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with respect to τ and σ2. To that end, let c1 = (2π)−T |Su|−
1
2S0

ν0/Γ(ν0). Then,

p(y) =

∫
p(y, τ , σ2)d(τ , σ2)

= c1

∫ (
1

σ2

)T+ν0+1

e
− 1
σ2

(
S+

(τ−K−1
τ y)′Kτ (τ−K−1

τ y)
2

)
d(τ , σ2)

= c1(2π)
T
2 |Kτ |−

1
2 Γ

(
T

2
+ ν0

)
S−(

T
2
+ν0)

= (2π)−
T
2 |Su|−

1
2 |Kτ |−

1
2
S0

ν0Γ
(
T
2

+ ν0
)

Γ(ν0)

(
S0 +

y′y − y′K−1τ y

2

)−(T2 +ν0)
.
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