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Abstract

We present a new procedure for nonparametric Bayesian estimation of regression

functions. Speci�cally, our method makes use of an idea described in Frühwirth-

Schnatter and Wagner (2010) to impose linearity exactly (conditional upon an unob-

served binary indicator), yet also permits departures from linearity while imposing

smoothness of the regression curves. An advantage of this approach is that the

posterior probability of linearity is essentially produced as a by-product of the pro-

cedure. We apply our methods in both generated data experiments as well as in

an illustrative application involving the impact of BMI (body mass index) on labor

market earnings.
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1 Introduction

Applied work in economics is increasingly characterized by a need / desire to �exibly

represent various relationships: adaptable modeling of error distributions, �exible pa-

rameterizations of distributions describing the nature of parameter heterogeneity, and

the modeling of regression functions without imposing rigid and potentially inappropri-

ate parametric forms. In this paper we continue in this spirit and focus speci�cally on

methods for modeling regression functions.

We describe a Bayesian approach for the estimation of such relationships, and the methods

we introduce share similarities to those previously employed in the literature. One strand

of this research - very closely related to what we describe here - introduces priors that

impose similarity in local values of the regression functions, thereby producing smoothed,

although potentially nonlinear, regression curves. Contributors to this literature include

Dale Poirier, who we honor with this volume, as well as a number of other authors (e.g.,

Koop and Poirier (2004), Koop et al. (2005), Koop and Tobias (2006), Chib and Greenberg

(2007), Kline and Tobias (2008) and Chib et al. (2009)). Alternate procedures make use of

spline / basis function methods, often taking care to determine the number and location

of knots as well as the selection of variables to be included in such representations (e.g.,

Smith and Kohn (1996), Smith and Kohn (2000), Chib and Greenberg (2010), Kohn et al.

(2001), Chib and Greenberg (2013)).

The methods we introduce in this paper can be interpreted as a version of a smoothness

prior. However, unlike existing applications of such methods, we separately consider the

case of a linear model via the introduction of a latent indicator variable; when this variable

equals zero, the model imposes linearity, and when it is one, a traditional smoothness

prior is imposed. This idea adapts a similar recommendation made in the novel work of

Frühwirth-Schnatter and Wagner (2010) in the context of state-space models.

We argue that there are several advantages to this method. We show in generated data

experiments that the methods, with a given prior, can perform well when the true regres-

sion curve is either linear or nonlinear. Results are, however, not surprisingly potentially

dependent on the prior - strong priors can either oversmooth nonlinear relationships or

undersmooth linear (or nearly linear) ones. Unlike other related approaches, we employ

a truncated Gaussian prior for our smoothing parameter rather than traditional inverse

gamma speci�cations that can be undesirably (and unwittingly) informative. Finally,
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objects of interest - namely the posterior probability of linearity - are directly produced

as a by-product of our algorithm. Tests for linearity using other approaches, by compar-

ison, may often require marginal likelihood calculation or, perhaps, the calculation of a

Savage-Dickey density ratio. In contrast, our method directly calculates such a statistic

within the scheme for posterior simulation and directly reports evidence of linearity /

nonlinearity under the priors employed.

The outline of this paper is as follows. Section 2 describes the model, our proposed

method for estimating the regression function and the associated posterior simulator. Al-

though this presentation is o�ered for just a univariate nonparametric regression problem,

the techniques described easily adapt to handle, for example, partially linear speci�ca-

tions, additive models, or systems-of-equations analyses with several unknown regression

functions. Section 3 presents some generated data experiments, while an illustrative

application is given in section 4. The paper concludes with a summary in section 5.

2 The Model, Parameterization and Posterior Simula-

tor

To �x ideas, consider the following univariate nonparametric regression:

yi = f(xi) + εi, i = 1, . . . , n, (1)

with (ε |X) ∼ N (0, σ2In). We �x ideas on the baseline speci�cation in (1), although we

note that the modularity of MCMC implies that methods described below can be easily

adapted to more general settings, including partially linear models, limited dependent

variable speci�cations and systems of equations analysis.

Suppose there are k ≤ n distinct xi values in the sample and denote these as x∗1, . . . , x
∗
k

with x∗1 < · · · < x∗k. Treat each functional value f(x∗i ) as a parameter to be estimated,

and let θi = f(x∗i ). Next, stack the k functional values {θi}ki=1 into a vector as follows:

θ = (θ1, . . . , θk) = (f(x∗1), . . . , f(x∗k))
′. Finally, de�ne D as the n × k selection matrix

that maps each observation to its corresponding functional value f(x∗i ). Each row of D

contains one and only one unit entry and all other values are zero, with the unit entry

positioned to select the appropriate f(x∗i ).

With this construction, the nonparametric regression model can be written in typical
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regression form:

y = Dθ + ε, (ε |X) ∼ N (0, σ2In). (2)

A proper prior can be employed for θ to smooth the regression curve; we consider a prior

that expresses the view that adjacent values of θ should be �close.� To this end, we de�ne

∆j = x∗j − x∗j−1, j = 2, 3, . . . , k, and construct a k × k matrix G as follows:

G =



1 0 0 0 · · · 0 0 0
0 1 0 0 · · · 0 0 0

∆−12 −(∆−12 + ∆−13 ) ∆−13 0 · · · 0 0 0
0 ∆−13 −(∆−13 + ∆−14 ) ∆−14 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · ∆−1k−1 −(∆−1k−1 + ∆−1k ) ∆−1k


.

Note that Gθ is a k×1 vector whose �rst two entries are [f(x1) f(x2)] and the remaining

entries are di�erences in pointwise slopes of the form (Gθ)j = f ′(xj) − f ′(xj−1), j =

3, 4, . . . , k, where f ′(xj) ≡ [f(xj)− f(xj−1)]/[xj −xj−1]. When the �nal k− 2 elements of

Gθ are set to zero, the model becomes linear, with the �rst two elements of Gθ pinning

down the slope and intercept of the line.

We proceed by employing a prior on Gθ that serves to smooth the regression curve. As

a starting point, consider a Gaussian prior on Gθ given as

(Gθ | a, τ 2) ∼ N (µ̃a, τ
2Ik)⇐⇒ Gθ = µ̃a + u, u ∼ N (0, τ 2Ik), (3)

where a = (a1, a2)
′ and µ̃a = (a1, a2, 0, . . . , 0)′ with a1 and a2 being unknown parameters.

The prior in (3) thus centers the model over a linear speci�cation, with a1 and a2 governing

the slope and intercept of the line; the parameter τ 2 controls how tightly the model is

centered over a linearity.

As described below, priors are also employed over the hyperparameters a1, a2 and τ 2.

Of course, in practice, the prior employed on the parameter τ 2 will have a large impact

on the smoothness of the function f , and is akin to the familiar bandwidth parameter

used in classical kernel-based regression. In the limiting case where τ 2 = 0, the model is

linear, and previous applications of this method have interpreted �small� τ as evidence

in favor of linearity. Large values of τ , on the other hand, can produce curves that are

erratic and essentially connect the scatterplot of data points.

Our method departs from previous applications of the traditional smoothness prior ap-

proach in two ways: First, we separately consider the case of a linear speci�cation, fol-

lowing an idea described in Frühwirth-Schnatter and Wagner (2010) in the context of
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state-space models. In particular, we employ a variant of the prior in (3) and instead

specify:

Gθ = µ̃a + dτv, v ∼ N (0, Ik), (4)

where d ∈ {0.1} is a binary variable, to be estimated in the model. When d = 0, note that

Gθ = µ̃a, thus reproducing the linear model exactly. The prior in (4) can be expressed

equivalently as:

(θ | a, d, τ) ∼
{
δθ(µa) if d = 0
N [µa, τ

2(G′G)−1] if d = 1
⇐⇒ θ = µa + dτγ, (5)

where δx(z) is a delta function, equal to one when x = z and is otherwise zero, µa =

G−1µ̃a and γ = G−1v ∼ N (0, (G′G)−1).

Our second departure from the traditional approach relates to the prior employed on τ : we

employ a truncated Gaussian prior instead of the more typical inverse-gamma speci�ca-

tion. Frühwirth-Schnatter and Wagner (2010) argue that the conventional inverse-gamma

prior for the smoothing parameter τ 2 is often too informative and distorts information

from the likelihood. Instead, they adopt a normal prior for τ , which implies a gamma

prior G(0.5, 0.5/Vτ ) on the variance τ 2. The sign of τ , however, is not identi�ed in their

scheme.

Bounding the prior away from zero via a truncated normal prior in our setting allows for

an approximate separation of the linear and nonlinear alternatives; if either an inverse

gamma or truncated normal prior is employed, and τ ≈ 0, the model is essentially linear,

thus creating a redundancy where a linear model is e�ectively reproduced when either

d = 0 or d = 1, τ ≈ 0. By specifying our prior in this way, the d = 1 regime places most

of its prior mass over values of τ that imply departures from linearity.

The model is completed upon specifying priors for the remaining parameters. These are

described below:

a = (a1, a2)
′ ∼ N (a0,Va), (6)

σ2 ∼ IG(νσ2 , Sσ2), (7)

d ∼ Bern(p) (8)

τ ∼ T N (τ ,∞)(µτ , Vτ ), (9)

with a0 = 0,Va = 100I2, νσ2 = 5, Sσ2 = 4, b0 = c0 = 0.5, µτ = 0 and Vτ = 0.1. In the

above, T N (a,b)(µ, σ
2) denotes a normal distribution with mean µ and variance σ2 that
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is truncated to the interval (a, b), Bern(p) denotes a Bernoulli distribution with success

probability p and B(a, b) denotes a Beta distribution with parameters a and b.

2.1 Posterior Simulation

The joint posterior distribution associated with this model follows from the likelihood

implied by (2) and priors in (5) and (6) - (9). Speci�cally,

p(θ, d, τ, a, σ2 |y) ∝ φ
(
y;Dθ, σ2In

)
f(θ | a, d, τ)f(d | p)f(a)f(σ2)f(τ). (10)

Posterior simulation is accomplished via the Gibbs sampler, and involves sequentially

sampling from:

1. f(θ |y, d, τ, σ2, a) = f(θ |y, d, τ, σ2, a);

2. f(d, τ |y,θ, σ2, a) = f(d |y,θ, σ2, a)f(τ |y,θ, d, σ2, a);

3. f(σ2 |y,θ, d, τ, a) = f(σ2 |y,θ);

4. f(a |y,θ, d, τ, σ2) = f(a |y,θ, d, τ, σ2).

We describe each of these steps, in order, below.

Step 1. To implement Step 1, �rst note (5) implies θ becomes degenerate when d = 0,

precluding the adoption of what might be considered a �standard� posterior simulator. To

sidestep this problem, we follow the idea discussed in Frühwirth-Schnatter and Wagner

(2010) and will, instead, sample γ conditional on the data and other parameters, and use

the sampled value of γ to calculate θ.

To that end, we substitute (5) into (2) to get:

y = Dµa + dτDγ + ε, (ε |X) ∼ N (0, σ2In),

where µa = G−1µ̃a with µ̃a = (a1, a2, 0, . . . , 0)′, and γ ∼ N (0, (G′G)−1). Using standard

results from linear regression, we have,

(γ |y, d, τ, σ2, a) ∼ N (γ̂,K−1γ ), (11)

where

Kγ = G′G +
dτ 2

σ2
D′D, γ̂ =

dτ

σ2
K−1γ D′(y −Dµa).
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One di�culty of drawing from the above Gaussian distribution is that γ is typically

high-dimensional. Consequently, the conventional sampling approach that requires the

Cholesky factor of the covariance matrix K−1γ is time-consuming - perhaps prohibitively

so - particularly when k ≈ n. However, since both G and D are band matrices, so is the

precision matrix Kγ . Therefore, one can e�ciently sample from N (γ̂,K−1γ ) using band

matrix routines as proposed in Chib, Greenberg, and Jeliazkov (2009), and we employ

those here.

Finally, given the draw γ, we can then obtain a draw of θ using (5), given current values

of µa, d and τ :

θ = µa + dτγ. (12)

Step 2. Since d and τ enter the likelihood multiplicatively, we sample them jointly to

improve e�ciency. To that end, we �rst sample the indicator d ∈ {0, 1} marginally of

τ (yet conditioned on the remaining model parameters), followed by drawing τ from its

complete posterior conditional distribution. The latter of these two steps is easy: again

using standard linear regression results, we have,

(τ |y,θ, d, σ2, a) ∼ T N (τ ,∞)(τ̂ , K
−1
τ ), (13)

where

Kτ = V −1τ +
d

σ2
γ ′D′Dγ, τ̂ = K−1τ

[
d

σ2
γ ′D′(y −Dµa) + V −1τ µτ

]
. (14)

To sample d marginal of τ , �rst note that

p(d | a,θ, σ2y) ∝
[∫ ∞

τ

f(y | d, τ, a,θ, σ2)f(τ)dτ

]
p(d | p).

In the appendix we show that∫ ∞
τ

f(y | d, τ, a,θ, σ2)f(τ)dτ =(2πσ2)−
n
2

1− Φ((τ − τ̂)Kτ )

1− Φ((τ − µτ )V −1τ )
V
− 1

2
τ K

− 1
2

τ

× e−
1

2σ2
(y−Dµa)

′(y−Dµa)− 1
2
V −1
τ µ2τ+

1
2
Kτ τ̂2 ,

(15)

where τ̂ and Kτ are de�ned in (14). When d = 0, Kτ = V −1τ and τ̂ = µτ , and it follows

that

Pr(d = 0 | a,θ, σ2y) ∝ (1− p)(2πσ2)−
n
2 exp

(
− 1

2σ2
(y −Dµa)′(y −Dµa)

)
. (16)
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Similarly,

Pr(d = 1 | a,θ, σ2y) ∝p(2πσ2)−
n
2 V
− 1

2
τ Kτ (1)−

1
2

1− Φ((τ − τ̂(1))Kτ (1))

1− Φ((τ − µτ )V −1τ )

× e−
1

2σ2
(y−Dµa)

′(y−Dµa)− 1
2
V −1
τ µ2τ+

1
2
Kτ (1)τ̂(1)2 ,

(17)

where τ̂(1) and Kτ (1) denote, respectively, τ̂ and Kτ evaluated at d = 1. A draw can

easily be obtained from this conditional posterior, by �rst normalizing the probabilities

in (16) and (17) and then sampling from the resulting two-point distribution.

Step 3. Sampling σ2 from its full conditional distribution is standard. Speci�cally, let

ε = y −Dθ. Then,

(σ2 |y,θ) ∼ IG

(
νσ2 +

n

2
, Sσ2 +

1

2

n∑
i=1

ε2i

)
, (18)

where εi is the ith element of ε.

Step 4. To derive the conditional distribution of a, �rst rewrite (5) as θ = Xaa + dτγ

and substitute it into (2) to get:

y = DXaa + dτDγ + ε, (ε |X) ∼ N (0, σ2In),

where Xa = G−1
(
I2
0

)
. Then, using standard linear regression results, we have

(a |y,θ, d, τ, σ2) ∼ N (â,K−1a ), (19)

where

Ka = V−1a +
1

σ2
X′aD

′DXa, â = K−1a

(
V−1a a0 +

1

σ2
X′aD

′(y − dτDγ)

)
.

Posterior simulation proceeds by sampling from (11), drawing from the binary distribution

obtained by normalizing (16) and (17), drawing the smoothing parameter from (13) and

then sampling from (18) and (19).

3 Generated Data Experiments

In this section we perform a few generated data experiments. These experiments are

conducted with the goals of: (a) providing evidence that the model and associated pos-

terior simulator for model �tting perform well at recovering parameters of the true data
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generating process when those are known, (b) showing that the methods generally accom-

modate both linear and nonlinear relationships when either is present in the data, and

(c) arguing for the value of an automatically-produced posterior probability of linearity,

as measured by Pr(d = 0 |y), and noting how some degree of caution and care should be

given in that interpretation.

In the �rst set of generated data experiments, we simulate n = 200 observations separately

from both linear and nonlinear speci�cations. Speci�cally, we consider two models:

yi = .15xi+.3 exp[−4(xi+1)2]+.7 exp[−16(xi−1)2]+εi, xi ∼ U [−2, 2], εi ∼ N (0, .01)

and

yi = 2 + xi + εi, xi ∼ U [0, 20], εi ∼ N (0, 20),

with the nonlinear speci�cation taken from Fan and Gijbels (1996) and DiNardo and

Tobias (2001).

The sampler in both cases is run for 31,000 iterations, with the �rst 1,000 of those

discarded as the burn-in period. We do not discuss convergence diagnostics in detail

here, other than to note that the sampler, perhaps not surprisingly given its similarity

in structure to a linear regression, converges very quickly to explore the joint posterior

distribution, with the joint sampling of (τ, d| · y) o�ering a considerable improvement

in mixing performance. Posterior simulation in both cases takes under 11 seconds on a

reasonably standard PC, noting that D in this case is a 200× 200 matrix.

In both experiments we choose hyperparameters, as described below (9) and just before

section 2.1. Prior hyperparameter choices that have the largest in�uence on posterior

results are those made regarding τ in (9). In this capacity, we select µτ = 0, Vτ =

.1 and τ = .05, and employ this prior for both the linear and nonlinear experiment.

Estimation results are provided in Figure 1. As one can see from the �gure, the point

estimate (posterior mean) of the function f adapts under this prior to accommodate

both the nonlinear (upper graph) and linear (lower graph) speci�cations. Finally, for

each experiment, we also calculate the posterior probability of linearity, as measured by

P̂ r(d = 0 |y) =
1

30, 000

30,000∑
i=1

di,

where di represents the ith post-converge draw produced from our simulator. In the

nonlinear experiment, each of the posterior simulations yield di = 1, so that the estimated
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probability of linearity is exactly zero. In the linear experiment, 72 of the 30,000 posterior

simulations were associated with di = 1, yielding a posterior probability of linearity equal

to .998.
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Figure 1: Results of Linear and Nonlinear Generated Data Experiments.

We move on to present a few additional generated data experiments. In these exper-

iments, we generate data when f(x) is quadratic and look to determine how well our
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model performs at detecting the presence of departures from linearity, when di�erent

degrees of nonlinearity are present in the data. The experiments that follow are sampling

experiments: we generate 200 observations from a quadratic model 100 di�erent times.

For each 200-observation data set, we record our estimate (posterior mean) of E(d |y),

Std(d |y) and whether or not a classical test rejects, at the 5% level, the null hypoth-

esis that the quadratic coe�cient equals zero. Data are generated from the following

speci�cation:

yi = α0 + α1xi + α2x
2
i + εi, xi

iid∼ U [0, 20], (ε |X) ∼ N (0, 20I200).

In the experiments, α0 = 2, α1 = 1 and α2 ∈ {0, .01, .03, .05, .10}. Results from these

sampling experiments are presented in the table below:

Table 1: Results of Sampling Experiments Across Di�erent Degrees of Nonlinearity

α2 = 0 α2 = .01 α2 = .03 α2 = .05 α2 = .10
̂Ey |α[Pr(d = 1 |y)] .005 .018 .172 .512 .999
̂Ey |α[Std(d = 1 |y)] .058 .078 .257 .309 .022

Reject H0,α=.05 : α2 = 0 .03 .15 .60 1 1

As suggested by results in the table, our algorithm performs well at identifying a linear

speci�cation when the model is, in fact, linear: the (sampling) average posterior probabil-

ity that d = 0 when α2 = 0 is .005. This, in fact, outperforms the classical test which, by

construction, will reject the null when true 5 percent of the time. Similarly, the average

posterior standard deviation of .058 indicates that the marginal posterior of d tends to be

reasonably tightly concentrated about zero in these cases. As α2 increases, and commen-

surately the degree of nonlinearity increases, the model begins to detect these departures:

when α2 is as large as .10, the marginal posterior of d becomes nearly concentrated about

d = 1.

Further inspection of the table shows that in the intermediate cases the model has di�-

culty, as expected, in detecting small degrees of nonlinearity. When α2 = .05, for example,

the (average) posterior probability of linearity is .512; these results essentially leave the

researcher positioned uncomfortably in the middle of supporting a linear or nonlinear

speci�cation. In contrast, the classical results reject each null hypothesis that α2 = 0

in this experiment, suggesting a greater degree of power in the classical test than the

Bayesian counterpart. While one could argue that the classical test both assumes cor-

rect speci�cation in the unrestricted model and the comparison between two parametric
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alternatives in the classical case and a linear versus a nonparametric one in the Bayesian

case are answering di�erent questions, the degree of discrepancy between the approaches

may remain unsettling to some.

In this regard we refer, again, the important role of the prior in these calculations. Our

speci�cation seeks to interpret d = 0 as the linear case; in forming the alternative model,

large values of τ may produce a prior that places a lot of mass over speci�cations that

exhibit high degrees of nonlinearity. It may be the case that the data will support the

d = 0 (linear) regime when nonlinearities are, in fact, present, if the alternative when

d = 1 steers the analysis toward something that is excessively nonlinear. To this end, we

repeat the sampling experiment with α2 = .05, this time under a prior where τ = .001

and Vτ = .05. In this case, the average sampling probability that d = 1 jumps to .96,

and the average posterior standard deviation of d is .12. These results move signi�cantly

closer to the classical procedure, where linearity was rejected in each case.

The movement of the prior toward �smaller� values of τ is not, however, without cost.

The linear model can be exactly reproduced within the d = 0 regime or approximately

reproduced when (d = 1, τ ≈ 0). This, in turn, creates a practical identi�cation problem

and may call into question the use of Pr(d = 1 |y) as the posterior probability of linearity.

Indeed, we �nd that this is the case in an additional sampling experiment: Keeping the

same prior with τ = .001 and Vτ = .05 but now setting α2 = 0 (i.e., linearity), we obtain
̂Ey |Γ[Pr(d = 1 |y)] = .20, and ̂Ey |Γ[Std(d = 1 |y)] = .37. Although something as simple

as a plot of posterior results may still lead the researcher toward a linear conclusion,

simple use of d as evidence in favor of linearity / nonlinearity may lead the researcher

astray. As a result, we suggest adoption of a prior that works to di�erentiate the linear

and nonlinear alternatives. The downside to this approach may be that probabilities

of nonlinearity are conservative if the prior puts too much distance between the linear

speci�cation and nonlinear alternatives. The methods are not fully automatic, and care

must be taken with the choice of prior in these �intermediate� cases.

4 Illustrative Example: The E�ect of BMI on Earnings

In this section we use our methods to brie�y investigate the impact of BMI, or body

mass index, on labor market earnings. The data that we employ is the same as that

analyzed by Kline and Tobias (2008), which is taken from the 1970 British Cohort Study.
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This data set tracks outcomes for all people born in Great Britain between April 5 and

April 11, 1970; we use labor market outcomes for those individuals present during the

1999-2000 interview wave, when the respondents were between 29 and 30 years of age.

The data set consists of 4,343 observations in total (2,561 observations for men and 1,782

for women).

The basic model relates log wages (in pounds) to a variety of demographic variables.

These include discrete education controls that consist of a completion of high school

degree indicator (HighSchool), a separate Alevel indicator (denoting that the respondent

passed at least one Alevel exam) and Degree (indicating that the respondent completed

a college degree program). In addition, we include a marriage indicator, a quadratic in

months of tenure at the current job and a quadratic in potential labor market experience.

Our primary variable of interest is BMI, or body mass index, de�ned as weight (in kilo-

grams) divided by the square of height (in meters). In the sample we employ, we in-

vestigate how BMI relates to log earnings over a support of [18,36]; �normal weight� is

typically de�ned by BMI values in the interval [18.5, 25], while values in excess of 30 are

considered obese. We allow the the relationships between BMI and earnings to di�er

across gender, and consider a speci�cation of the following form:2

logwi = f1(BMIi) +mif2(BMIi) + Xiβ + εi, (ε |X, BMI) ∼ N (0, σ2In).

In the above mi is a binary variable, denoting if the respondent is male: the conditional

mean function for men is therefore given by f1 + f2, while the conditional mean function

for women is f1. The variables inX include those mentioned above: categorical education

variables, experience and tenure variables and a marriage indicator.

The data set yields 1,268 unique BMI values, thus creating a reasonably high-dimensional

matrix D. Typically this introduces some computational challenges, given the need to

calculate a high-dimensional inverse at each iteration, but these typical impediments are

be mitigated here using band matrix calculations, as described previously. Since the

model in this application introduces two regression functions, we introduce two priors

to smooth the respective curves. Priors of the form in (5) are employed to smooth each

regression function, and we denote the associated binary variables as d1, d2 and τ1, τ2,

corresponding to the functions f1 and f2 and associated function vectors θ1 and θ2.

2Kline and Tobias (2008) consider the potential endogeneity of BMI and use parental BMI as instru-
ments. We do not consider the endogeneity problem here simply to �x ideas on implementation of our
approach to nonparametric regression. Kline and Tobias (2008) also run separate analyses for men and
women; we pool the results in our speci�cation but allow for di�erent regression functions across gender.
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Estimation results are presented in Figure 1 and Table 2. These results are obtained

after running the posterior simulator for 31,000 iterations and discarding the �rst 1,000

of those draws. For these results, we employ a prior that sets µτ = 0, τ = .0001 and

Vτ = .1. Computations are produced, again, on a standard PC, and are completed in a

little under 2.5 minutes.

Table 2 reveals evidence of a quadratic relationship in job tenure and experience, a mono-

tonic relationship in educational attainment and shows that married individuals earn

about 4.6 percent more than those who are not married. Posterior statistics associated

with d1 and d2 provide strong evidence of a linear conditional mean for women (as the

posterior probability of linearity is approximately .992 and is robust to a variety of prior

choices), and modest evidence of nonlinearity for males, given that Pr(d2 = 1 |y) ≈ .78.

Table 2: Parameter posterior means, standard deviations and probabilities begin positive
for the BMI example.

Wage Equation

Variable E(· |y)
√
Var(· |y) Pr(· > 0 |y)

JobTenure 0.025 0.0053 1.00
JobTenure2 -0.001 0.0004 0.001
Experience 0.029 0.010 0.997
Experience2 -0.001 0.0006 0.051
FamilyIncome 0.001 0.0001 1.00
HighSchool 0.068 0.015 1.00
ALevel 0.310 0.034 1.00
Degree 0.408 0.031 1.00
Married 0.046 0.012 1.00

Other Parameters

Variable E(· |y)
√
Var(· |y) Pr(· > 0 |y)

τf 0.179 0.137 1.00
τm 0.041 0.097 1.00
df 0.008 0.089 0.008
dm 0.783 0.412 0.783
σ2 .149 .003 1.00

Figure 2 plots the estimated regression functions for both men and women across the

BMI support. In the �gure, we also present 95% posterior probability intervals, but do

so only for males simply for the sake of clarity and to minimize clutter within the graph.

Interestingly, the shape of the estimated log earnings - BMI relationship is negative and
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linear for women: women appear to be penalized for increments to BMI throughout the

support of the BMI distribution. For men on the other hand, expected log earnings

actually increase with BMI over the left-tail of the ability distribution, but then decline,

with the location of the downturn approximately near the upper limit of the �normal

weight� category. This pattern is consistent with some previous �ndings in the literature:

Cawley (2004), for example, �nds a negative impact of BMI on the wages of white women,

while McLean and Moon (1980) �nd evidence of a BMI wage premium for men, which

they term, and the literature has since adopted, the �portly banker e�ect�. Such a positive

e�ect for men is also documented more recently by Majumder (2013).
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Figure 2: Estimated Regression Functions for Men and Women.

With a little further investigation, we can put this positive marginal e�ect for males into

context. To this end, let us focus our attention on estimation of the average derivative,

de�ned as Ex[f
′(x)] ≈ 1

n

∑
i f
′(xi). Each posterior simulation of θ1 and θ2 can be used
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to obtain a simulated value of this average derivative, as follows:

̂AvgDeriv(θ) =
1

n

m−1∑
i=1

ni

[
θi+1 − θi

BMIi+1 −BMIi

]
. (20)

In the above formula, recall that m denotes the number of distinct BMI values in the

sample. The variable ni recognizes that some BMI values occur with multiplicity in the

data, since some individuals have exactly the same height and weight measurements.

Finally, n =
∑ni

i=1 denotes the total number of observations in the data, excluding those

possibly clustered at the smallest observed value. It is understood that the average

derivative in (20) is calculated in this way for both females and males, with the θ1

simulations used to calculate the former and (θ1 + θ2) used to calculate the latter. The

average derivative in (20) is a function of θ, and thus a posterior distribution associated

with this average derivative can be obtained via simulation: this quantity is calculated

for each post-convergence draw, from which a variety of statistics can be obtained.

Interestingly, we note that the average derivative for women has a posterior mean of

-.009, (i.e., every point increase in BMI for women leads to an expected earnings de-

crease of slightly less than .1 percent), and its calculated value is negative for every post-

convergence simulation, i.e., ̂Pr(AvgDeriv(θ1) > 0 |y) = 0. For men, the posterior mean

of the average derivative is .0018 - consistent with the so-called �portly banker e�ect� -

and approximately 70 percent of the post-convergence simulations of AvgDeriv(θ1 + θ2)

are positive. Our results, thus re�ne this conventional wisdom and suggest that this

overall positive pattern is driven by earnings increases associated with BMI increments

throughout the �normal weight� range only; once a male has a BMI in excess of 26, he

actually experiences a penalty in the labor market for further increases to BMI. Said

di�erently: our banker would not be happy at all should he �nd himself portly, although

he is certainly happy to push the upper limit of the normal-weight range. Finally, we

note that Pr(AvgDeriv(θ1 + θ2) > AvgDeriv(θ1) |y) ≈ .99, providing strong evidence

that the functions relating BMI to expected log earnings di�er across men and women.

5 Conclusion

We presented a new approach for Bayesian nonparametric estimation of regression func-

tions. The novelty of our approach is to permit, within the context of a standard posterior

simulator, separate consideration of a linear speci�cation and to deliver the posterior prob-
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ability of linearity as a by-product of a standard Gibbs algorithm. The priors we employ

allow linearity to be treated as a separate case within the model itself; a separate prior

is then placed over an additional component that places most of its mass over nonlinear

alternatives. Results, of course, are sensitive to the prior employed (just as the degree of

smoothing is sensitive to bandwidth choice in kernel-based regression), and care must be

taken to both di�erentiate the model components - if Pr(d = 0 |y) is to be interpreted as

a posterior probability of linearity - yet not di�erentiate them excessively so that highly

nonlinear alternatives will seldom �nd support for the data.

We applied our methods in generated data experiments. Those results suggested that

our algorithm performs well, and generally adapts to re�ect the curvature of the true

regression function. In addition, we applied our methods to investigate the impact of

BMI on (log) wages. In so doing, we �nd that the BMI - log wage pro�le for women

is linear and negative. For men, however, we �nd the opposite result: the overall slope

(i.e., average derivative) is weakly positive, consistent with the so-called �portly banker

e�ect� in this literature. However, this positive slope is completely driven by an increasing

relationship in the left tail of the BMI distribution only. For men, marginal increments

to BMI, when BMI is greater than 26, are negative.
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Technical Appendix

In this appendix we show the derivation of the analytical expression given in (15).∫ ∞
τ

f(y | d, τ, a,θ, σ2)f(τ)dτ

=

∫ ∞
τ

(2πσ2)−
n
2 e−

1
2σ2

(y−Dµa−dτDγ)′(y−Dµa−dτDγ) × (2πVτ )
− 1

2 e−
1

2Vτ
(τ−µτ )2

1− Φ((τ − µτ )V −1τ )
dτ

=
(2πσ2)−

n
2 (2πVτ )

− 1
2

1− Φ((τ − µτ )V −1τ )
e−

1
2σ2

(y−Dµa)
′(y−Dµa)− 1

2Vτ
µ2τ ×

∫ ∞
τ

e−
1
2(τ2Kτ−2τKτ τ̂)dτ, (21)

where Kτ and τ̂ are given in (14). Next, we complete the square to get

τ 2Kτ − 2τKτ τ̂ = (τ − τ̂)2Kτ −Kτ τ̂
2,

and it follows that∫ ∞
τ

e−
1
2(τ2Kτ−2τKτ τ̂)dτ = (2πK−1τ )

1
2 e

1
2
Kτ τ̂2(1− Φ((τ − τ̂)Kτ )).

Substituting this expression back to (21) we get∫ ∞
τ

f(y | d, τ, a,θ, σ2)f(τ)dτ =(2πσ2)−
n
2

1− Φ((τ − τ̂)Kτ )

1− Φ((τ − µτ )V −1τ )
V
− 1

2
τ K

− 1
2

τ

× exp

(
− 1

2σ2
(y −Dµa)′(y −Dµa)− 1

2
V −1τ µ2

τ +
1

2
Kτ τ̂

2

)
as claimed.
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