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Abstract

This paper reconciles two widely used trend-cycle decompositions of GDP that give

markedly different estimates: the correlated unobserved components model yields

output gaps that are small in amplitude, whereas the Hodrick-Prescott (HP) filter

generates large and persistent cycles. By embedding the HP filter in an unobserved

components model, we show that this difference arises due to differences in the way

the stochastic trend is modeled. Moreover, the HP filter implies that the cyclical

components are serially independent—an assumption that is decidedly rejected by

the data. By relaxing this restrictive assumption, the augmented HP filter provides

comparable model fit relative to the standard correlated unobserved components

model.
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1 Introduction

The estimation of the output gap—the deviation of the output of an economy from its po-

tential or trend output—is an important problem for both academics and policymakers.

A particularly important task is to reconcile the differences between estimation methods,

given that different approaches provide vastly different results. Morley, Nelson, and Zivot

(2003) make an important contribution to such reconciliations. They show that the dif-

ference between two widely used trend-cycle decompositions—the Beveridge and Nelson

(1981) decomposition and the unobserved components (UC) model of Watson (1986)—is

entirely due to one restriction imposed in the UC model: the correlation between the

innovations to the trend and cycle is assumed to be zero. When this restriction is re-

laxed, they find that the two trend-cycle decompositions are identical. In particular, both

methods yield output gaps that are noisy and small in amplitude.

However, output gap estimates produced by the popular Hodrick and Prescott (1980,

1997) decomposition are often large and highly persistent. For example, the Hodrick-

Prescott (HP) filter gives an estimate of the US output gap that is as large as −3% at the

trough of the Great Recession. In contrast, the corresponding estimate from the correlated

UC model of Morley et al. (2003) is close to zero. To reconcile the differences, Kamber,

Morley, and Wong (2016) investigate how one can generate large cyclical components

using the Beveridge-Nelson decomposition, which typically gives small and noisy cycles.

They find that by setting the noise-to-signal ratio to be large, instead of estimating it from

the data, the cycles obtained are large and the timing of troughs matches the chronology

dated by the National Bureau of Economic Research (NBER).

We take an alternative modeling approach to reconciling the small versus large output

gaps generated by different methods. In particular, we address the question of how best

to model the trend output and the implications of different specifications on the estimates

of the output gap and potential output growth. We start by embedding the HP filter in

an UC model similar to that in Morley et al. (2003)—but instead of a random walk output

trend, the trend follows a second-order Markov process.1 By formulating an econometric

model for the HP filter and comparing it to other popular UC models, we aim to identify

the source of differences in the estimated output gaps.

1The idea of embedding the HP filter in an unobserved components model can be traced back to
Harvey and Jaeger (1993). However, they consider an unobserved components model where all the
innovations are independent. In contrast, the main purpose of this paper is to reconcile the output gaps
obtained from the HP filter and the correlated UC model of Morley et al. (2003).
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Under the UC framework, we show that the HP filter implicitly makes three assumptions:

1) shocks to the trend growth and cyclical components are uncorrelated; 2) the noise-

to-signal ratio is fixed; and 3) the cyclical components are serially uncorrelated. We

then construct a series of “augmented HP filters”—UC models that progressively relax

these assumptions. By formally comparing these models, we can identify which of these

modeling assumptions are not supported by the data.

The aim of this paper is similar to Perron and Wada (2009) and Grant and Chan (2016)

in that we assess the support of different trend output specifications. However, while

they focus on random walk trend output models with a deterministic break in the growth

rate, we consider models with both stochastic trend output and stochastic growth. Within

this broader framework, we assess the support of the level shocks to trend output in the

presence of a stochastic growth rate.

The estimation results, using US real GDP data, show that the output gap estimated

under the UC model with a second-order Markov trend specification is substantially

larger in magnitude than that obtained from the correlated UC model of Morley et al.

(2003). Given that the HP filter can be embedded into this model, this suggests that

the difference between the output gaps obtained from the correlated UC model and the

HP filter arises due to differences in the way trend output is modeled. Furthermore, by

comparing the augmented HP filters, we show the implicit assumption that the cyclical

components are serially uncorrelated is decidedly rejected by the data.

Unlike the correlated UC model, which assumes a constant trend growth rate, the second-

order Markov trend specification allows for time-varying trend growth. In the application,

we show that there is substantial time variation in the trend output growth rate. Specif-

ically, the annualized trend growth rate fluctuates between 3.5% and 4% from 1950 to

1970; remains stable at about 3% from the mid-1970s to 2000; and starts a gradual decline

to about 1.7% in the middle of the Great Recession. These estimates are comparable to

those reported in Perron and Wada (2009) and Grant and Chan (2016)—all obtained

using UC models with breaks in the trend growth rate.

In contrast, the annualized trend growth rate implied by the HP filter displays conspicuous

cyclical patterns: e.g., it drops from about 4% in 1985 to about 2.4% in 1990, only to

rebound again to 4% in 1997. Due to the implicit assumption of the HP filter that

the cyclical components are serially independent, part of the business cycle variation is

absorbed by the time-varying trend growth, resulting in its counter-intuitive large time-

variation.
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In this paper we focus on the trend-cycle decomposition of real GDP, but our new mod-

eling approach has broader implications. The HP filter continues to be popular, despite

concerns that using it to remove low-frequency movements in the data may lead to poor

model fit and forecasts (see, e.g., Morley and Piger, 2012; Baştürk, Çakmakli, Ceyhan,

and Van Dijk, 2014; Canova, 2014, among many others). It is therefore useful to pro-

vide an alternative model-based approach that generalizes the HP filter to accommodate

salient features of the data. In addition, using a model-based approach also allows us to

formally assess the model fit and compare it with other models.

2 UC Model with a Smoother Trend

The trend-cycle decomposition of aggregate output is motivated by the idea that it can

be usefully viewed as the sum of two separate components, namely, a nonstationary

component that represents the trend and a transitory deviation from the trend. Based

on the correlated unobserved components model of Morley et al. (2003), consider the

decomposition of the log real GDP yt:

yt = τt + ct, (1)

where τt is the trend and ct is the stationary, cyclical component. The nonstationary

trend τt is modeled as a random walk with drift, whereas the cyclical component ct is

modeled as a zero mean stationary AR(p) process:

ct = φ1ct−1 + · · ·+ φpct−p + uc
t , (2)

τt = µ+ τt−1 + ũτ
t , (3)

where the innovations uc
t and ũτ

t are jointly normal

(
uc
t

ũτ
t

)
∼ N

(
0,

(
σ2
c ρσcσ̃τ

ρσcσ̃τ σ̃2
τ

))
. (4)

Note that the innovation ũτ
t impacts the level of the trend output τt. Following Morley

et al. (2003), we refer to this model as UCUR. The drift µ can be interpreted as the

average growth rate of trend output. Morley et al. (2003) show that the trend-cycle

decomposition from this correlated unobserved components model is equivalent to the

one obtained from the Beveridge and Nelson (1981) decomposition using an unrestricted
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ARIMA model—both attribute most of the variance in output to the variation in trend

and the cyclical component is small in amplitude.

A limitation of the model is that the trend growth rate µ is a constant, which is not

supported by the data. For example, using US real GDP from 1947Q1 to 1998Q2, Perron

and Wada (2009) find a break in trend growth at 1973Q1. Using more recent data,

Luo and Startz (2014) and Grant and Chan (2016) find a break at 2006Q1 and 2007Q1,

respectively. One way to relax this restrictive assumption is to allow for a time-varying

growth rate, as considered in Harvey (1985) and Clark (1987), replacing (3) by

τt = µt + τt−1 + vτt , (5)

µt = µt−1 + vµt . (6)

Under this model, the innovation vτt affects the level of the trend output τt—it plays the

role of ũτ
t in the UCUR model—whereas vµt changes the trend growth µt. While this vari-

ant allows for a time-varying growth rate, Perron and Wada (2009, p. 751) conclude that

“this generalization leaves the trend-cycle decompositions virtually unchanged”. That is,

if the innovations are correlated, this extension is unable to generate output gaps as large

as those from the Hodrick-Prescott (HP) filter.

2.1 An Alternative Specification for the Trend Component

Here we consider an alternative unobserved components model that has a different trend

specification, with the goal of providing a formal modeling framework for the HP filter.

To keep our specification as similar as possible to Morley et al. (2003), we only modify

the state equation for τt. In particular, instead of the random walk process with drift

in (3), we consider the following second-order Markov process:2

∆τt = ∆τt−1 + uτ
t , (7)

2Note that (7) can be written as τt = 2τt−1 − τt−2 + uτ

t
, hence it is a second-order Markov process.

Although formulated differently, this trend specification can be shown to be equivalent to the one in
Harvey, Trimbur, and Van Dijk (2007). The cyclical component in their model, however, is different
from ours and the associated cycle estimates from both models are drastically different. For example,
their estimated trend growth rate of US GDP does not exhibit any discernible long-term trend over the
period from 1950s to 2006, whereas ours shows a gradual downward trend.
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where ∆ is the first difference operator such that ∆xt = xt − xt−1. As before we assume

the innovations uc
t and uτ

t are jointly normal

(
uc
t

uτ
t

)
∼ N

(
0,

(
σ2
c ρσcστ

ρσcστ σ2
τ

))
. (8)

We refer to this model as UCUR-2M. Since ∆τt can be interpreted as the trend output

growth at time t, the specification in (7) implies that the growth rate follows a random

walk. As such, by construction the UCUR-2M model incorporates a stochastic trend

growth rate, in contrast to the constant trend growth rate implied by (3). The former

specification is more flexible and can accommodate breaks in trend output growth found

in some recent studies such as Perron and Wada (2009) and Luo and Startz (2014).

We emphasize that UCUR-2M differs from the correlated unobserved components model

in Morley et al. (2003) in only the state equation for τt. That is, the proposed model is

defined by (1), (2), (7) and (8). In addition, we follow Morley et al. (2003) and set p = 2.

Furthermore, the initial values τ−1 and τ0 are treated as parameters to be estimated, and

for simplicity we assume that c−1 = c0 = 0.

It is instructive to compare the second-order Markov transition for the trend in (7) to

the specification in (5)-(6), which also allows for a time-varying growth rate. After some

algebra, one can show that the latter specification implies

∆τt −∆τt−1 = vµt + vτt − vτt−1,

i.e., the change in trend growth follows a moving average process. The specification in (7)

can therefore be viewed as a limiting case when the variance of vτt goes to zero. That is,

the UCUR-2M model classifies all permanent shocks as shocks to the trend growth.

2.2 Augmented HP Filters

The Hodrick-Prescott decomposition is based on the smoothing problem initiated by

Bohlmann (1899) but often credited to Whittaker (1923). Given a positive integer q and

a smoothing parameter λ, the trend is the solution of the following minimization problem:

argmin
τ

[
T∑

t=1

(yt − τt)
2 + λ

T∑

t=1

(∆qτt)
2

]
.
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When q = 2, the solution to this smoothing problem is the HP trend, which we denote as

τ̂HP. Here λ is a fixed constant that penalizes variability in the trend component. The

larger the value of λ, the smoother is the associated HP trend τ̂HP. Hodrick and Prescott

(1980, 1997) highlight that λ may be viewed as the noise-to-signal ratio under certain

restrictive conditions—namely, that “the cyclical components and the second differences

of the [trend] components were identically and independently distributed.” They then

suggest setting λ = 1600 for US quarterly data.

In Appendix B we show that the UCUR-2M model nests the HP filter as a special case

by fixing the parameters to certain values. We summarize this result in the following

proposition.

Proposition 1. Consider the unobserved components model with a second-order Markov

transition defined by (1), (2), (4) and (7). The Hodrick-Prescott trend τ̂HP is the posterior

mean of τ by fixing ρ = 0, φ = 0 and λ = σ2
c/σ

2
τ .

To evaluate the support from data for each of the three assumptions underlying the HP

filter, we construct a series of nested augmented HP filters as follows. Starting from the

HP filter with λ = 1600, we first allow the AR coefficients φ to be estimated rather than

setting to zero—it amounts to allowing the cyclical components to be serially correlated.

We call this version HP-AR. Then, we further allow λ to be estimated, and this version

is called UC-2M. Finally, we have the fully flexible UCUR-2M where ρ, φ, σ2
c and σ2

τ are

all estimated from the data. Results from these models are presented in the next section.

3 Empirical Results

In this section we report the cycle estimates and other parameters of interest under the

unobserved components model with a second-order Markov trend transition (UCUR-2M).

We compare these estimates with those obtained under standard benchmarks to assess

the impact of different trend specifications. In particular, we present results from the

correlated unobserved components (UCUR) model of Morley et al. (2003). Moreover,

given the findings in Perron and Wada (2009), Luo and Startz (2014) and Grant and

Chan (2016), we also consider a version in which the trend growth rate has a break at t0.

More precisely, we replace (3) with

τt = µ(t < t0) + γ1(t > t0) + τt−1 + ũτ
t ,
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where 1(A) is the indicator function that takes the value 1 if the condition A is true and 0

otherwise. In other words, the stochastic trend τt has a growth rate of µ before the break

t0 and a growth rate of γ after the break. We set the break date at 2007Q1 and refer to

this model as UCUR-07.

We also present results from the unobserved components model with a random walk

growth rate as in Clark (1987), which we denote as UC-LS for unobserved components

model with a local slope. Finally, we include also the augmented HP filters HP-AR (HP

filter with correlated cycles) and UC-2M (HP filter with correlated cycles and free λ).

We use US quarterly real GDP from 1947Q1 to 2014Q4 for our analysis. The data are

sourced from the Federal Reserve Bank of St. Louis economic database, and the series is

then transformed by taking the logs and multiplying by 100. Each set of results below is

based on 100000 posterior draws after a burn-in period of 10000.

3.1 Parameter Estimates and Model Comparison

Figure 1 presents the contour plot of the bivariate posterior density p(φ1, φ2 |y) under

the UCUR-2M model.3 It is evident that most of the mass of this density is concentrated

around (1.3,−0.4) and there is no mass near the origin.

1 1.2 1.4 1.6 1.8 2
−1

−0.8

−0.6

−0.4

−0.2

0

φ
1

φ 2

φ
1
+φ

2
=1

Figure 1: Contour plot of the bivariate posterior density p(φ1, φ2 |y) under UCUR-2M.

This can be viewed as evidence that the assumption φ = 0 implied by the HP filter is

3Posterior draws of φ = (φ1, φ2)
′ are first obtained using the MCMC sampler. These draws are then

used to compute the density using the kernel density estimator of Botev, Grotowski, and Kroese (2010).
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strongly rejected by the data. (Below we also perform a formal model comparison.) It is

also worth noting that one of the stationarity restrictions, namely, φ1 + φ2 < 1, appears

to be binding, reflecting the fact that the cyclical components are highly persistent.

Next, we report in Table 1 the parameter estimates under the UCUR-2M model, as well as

estimates from the other six models for comparison. Consistent with the contour plot in

Figure 1, the posterior means of φ1 and φ2 under UCUR-2M are estimated to be 1.31 and

−0.37 respectively with small standard errors. Moreover, the estimates of φ1 and φ2 are

similar across all models that have a serially correlated cyclical component, highlighting

that the cycles are highly persistent regardless of how the trend is modeled.

Table 1: Estimated posterior means for selected models. Numerical standard errors are
in parentheses.

UCUR URUR-07 UC-LS UCUR-2M UC-2M HP-AR HP
µ 0.78 0.84 – – – –

(0.08) (0.08)
γ – 0.37 – – – –

(0.20)
φ1 0.95 1.10 1.44 1.31 1.32 1.33 –

(0.34) (0.36) (0.11) (0.07) (0.06) (0.06)
φ2 −0.36 −0.44 −0.50 −0.37 −0.37 −0.37 –

(0.18) (0.18) (0.11) (0.06) (0.06) (0.06)
σ2
c 1.12 0.90 0.50 0.76 0.76 0.77 2.30

(0.55) (0.49) (0.18) (0.07) (0.07) (0.07) (0.15)
σ̃2
τ 1.85 1.42 0.22 – – – –

(0.49) (0.59) (0.15)
σ2
τ – – 0.0028 0.0018 – –

(0.002) (0.002)
σ2
µ 0.0018 – –

(0.002)
ρ −0.87 −0.76 −0.01 – – –

(0.07) (0.25) (0.55)

Under UCUR-2M the estimate of σ2
τ is 0.0028. This means that the estimated standard

deviation of the shock to the trend growth is about 0.052. Given the Gaussian state

equation, this implies that the difference ∆τt − ∆τt−1 is within (−0.1, 0.1) with about

probability 0.95. That is, the annualized quarterly change in trend growth is between

−0.4% and 0.4% with about probability 0.95.

In addition, the estimate of σ2
c is 0.76, giving an estimate for the noise-to-signal ratio of
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about 271, which is smaller than the typical value of λ = 1600 used in the HP filter. How-

ever, the standard error associated with the estimate of σ2
τ is relatively large, indicating

substantial parameter certainty and it is not immediately apparent that λ is statistically

different from 1600. Below we formally test the hypothesis that λ = 1600. Finally, we

note that under UCUR-2M, the estimated ρ is close to 0 with a large standard error,

indicating that the innovations to the cyclical components and the trend growth rate are

uncorrelated. Indeed, as the plot of the prior and posterior densities of ρ in Appendix

C shows, even though the posterior of ρ is relatively flat, it has more mass around 0

compared to the prior.

We now compare the seven models in fitting US real GDP in a formal Bayesian model

comparison using the marginal likelihood. The marginal likelihood can be interpreted as

a density forecast of the data under the model evaluated at the actual observed data.

Hence, if the observed data are likely under the model, the associated marginal likelihood

would be “large”. For a more detailed discussion, see, e.g., Koop (2003) and Geweke and

Amisano (2011). The marginal likelihoods are computed using the adaptive importance

sampling method proposed in Chan and Eisenstat (2015). The results are reported in

Table 2.

Table 2: Log marginal likelihoods of competing models. Numerical standard errors are
in parentheses.

HP HP-AR UC-2M UCUR-2M UC-LS UCUR UCUR-07
−601.1 −368.4 −369.8 −369.8 −370.1 −365.0 −364.0
(0.37) (0.01) (0.01) (0.02) (0.04) (0.03) (0.04)

According to the marginal likelihood, the HP filter is by far the worst model. This sup-

ports the conclusion in Morley and Piger (2012, p.214) that the HP filter is “strongly at

odds with the data.” By simply relaxing the assumption φ = 0, the HP-AR model sub-

stantially improves the model-fit over the HP filter. This is consistent with the estimation

results above, which indicate that the cyclical component is highly persistent.

Beyond allowing for a serially correlated cyclical component, there is little gain in relaxing

the assumptions λ = 1600 or ρ = 0. Specifically, HP-AR is nested within UC-2M with

λ = 1600, but the marginal likelihood of the latter is in fact worse than that of the

former. This is an example where a more flexible model does worse—this shows that

the marginal likelihood has a built-in penalty for model complexity. Similarly, UC-2M is

nested within UCUR-2M with ρ = 0, but the marginal likelihoods for the two models are
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the same, suggesting equal evidence in support of and against the hypothesis ρ = 0.

Recall that UC-LS includes UC-2M as a limiting case when the variance of the level shock

to the trend becomes zero. The marginal likelihood indicates that the more restricted UC-

2M does slightly better, showing that the data favor the second-Markov trend specification

over the more general specification where the trend has a random walk growth rate.

Finally, the UCUR-07 model with a break in 2007Q1 is the best model, followed by

UCUR and HP-AR. The data generally prefer UCUR or UCUR-07 over HP-AR, but the

evidence is not overwhelming. As we show in the next section, UCUR-07 and UCUR

give small output gaps, whereas those from HP-AR are much larger in magnitude. If the

researcher prefers to have larger output gaps, the HP-AR model seems to be the best

choice—it produces a more persistent output gap at only a slight cost of model fit.

3.2 Output Gap Estimates

Figure 2 plots the estimates of the output gap ct under the UCUR and UCUR-07 models.

It is evident that the estimates from both models are remarkably similar until the mid-

2000s, when the UCUR-07 model allows for a break in trend growth in 2007Q1.

1950 1960 1970 1980 1990 2000 2010
−8

−6

−4

−2

0

2

4

6

UCUR−07

UCUR

Figure 2: Estimates of the output gap ct under UCUR and UCUR-07. The shaded regions
are the NBER recession dates.

This finding contrasts with the results in Perron and Wada (2009), who find that when

a break is allowed for, the estimates from correlated UC models with and without a

break differ substantially. One source of difference is that their output gap estimates are

computed given the maximum likelihood estimates, thus ignoring parameter uncertainty.
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In contrast, ours take into account parameter uncertainty by averaging the output gap

estimates over posterior draws of the model parameters.

The output gap estimates in Figure 2 generally coincide with the NBER recession dates,

but they are relatively small. For example, the trough of the 1981-1982 recession is only

about −3%; during the Great Recession the output gap estimates are about −1.3% for

the UCUR-07 model and close to 0 for the UCUR.

The corresponding estimates under the UCUR-2M model are reported in Figure 3. It is

clear that the plot of the output gap has a similar shape as that in Figure 2; it traces

the NBER recession dates closely as well. The main difference is that the new output

gap estimates are noticeably larger. For instance, the trough of the 1981-1982 recession

is now at about −7% and the trough in the Great recession is about −4%.

1950 1960 1970 1980 1990 2000 2010
−8

−6

−4

−2

0

2

4

6

 

 
HP
HP−AR
UCUR−2M
CBO

Figure 3: Estimates of the output gap ct under UCUR-2M, HP-AR and the HP filter, as
well as the estimates from the Congressional Budget Office. The shaded regions are the
NBER recession dates.

For comparison, we also plot the output gap estimates under the HP-AR model and esti-

mates from the Congressional Budget Office (CBO). The three estimates are remarkably

similar before late 1990s. For example, at the trough of the 1980s recession, all three

estimates are between −7% and −8%. However, they diverge in the late 1990s—the two

UC models give sizable positive output gaps throughout the 2000s whereas the estimates

from the CBO are much smaller.

Compared to the HP filter, the output gap estimates under the UCUR-2M model are

typically larger and more persistent. For instance, the HP filter estimates drop to 0

in 2011-2012, whereas the UCUR-2M model shows a persistent output gap—it remains
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around −0.9% at 2014Q4. This difference is due to the assumption that the cyclical

components are independent under the HP filter, i.e., φ = 0. In contrast, when we allow

φ to be estimated as in the UCUR-2M model, the estimates are far from zero. This in

turn makes the output gap estimate under the UCUR-2M model more persistent.

3.3 Trend Output Growth Estimates

Next, we present the estimated annualized trend output growth rate under UCUR-2M—

the posterior means of 4∆τt = 4(τt − τt−1)—in Figure 4. It is evident that there is

substantial time variation in trend growth over the past six decades. In particular, the

annualized trend growth rate fluctuates between 3.5% and 4% from the beginning of

the sample until 1970. It then begins a steady decline and reaches about 3% in the

mid-1970s. These estimates are similar to those in Berger, Everaert, and Vierke (2016),

who find substantial time variation in trend output growth using a trivariate unobserved

components model of output, inflation and unemployment rate.

1950 1960 1970 1980 1990 2000 2010
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HP
HP−AR
UCUR−2M
CBO

Figure 4: Estimates of the annualized growth in trend 4∆τt under the UCUR-2M model
and HP filter. The shaded regions are the NBER recession dates.

The estimated trend growth rate remains stable at about 3% from the mid-1970s until

2000, when it starts another gradual decline to about 1.7% in the middle of the Great

Recession. These results are similar to the estimated trend growth rates reported in

Grant and Chan (2016)—they find that the trend growth rate drops from 3.4% before

2007 to about 1.5% afterward. Our estimate is also in line with the forecast of US

potential output growth of 1.5% to 1.55% from 2007 to 2032 given in Gordon (2014).
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The estimates under HP-AR are also similar, although they tend to be smoother than

those under UCUR-2M.

For comparison we also plot the annualized trend growth rate implied by the HP filter

and the estimates from the CBO in Figure 4. The most prominent feature of the HP

filter estimates is the apparent cyclical pattern, where the fluctuations are much more

pronounced than the two UC models as well as the CBO estimates. For instance, the

growth rate under the HP filter drops from about 4% in 1985 to about 2.4% in 1990, only

to rebound again to 4% in 1997.

This large variation in trend growth might not be surprising as the HP trend preserves

any movements whose corresponding frequency is below a certain level. When the cyclical

components are very persistent, some of the variation becomes part of the trend compo-

nent by the definition of the HP filter. Hence, this result is quite natural from the view

point of spectral analysis, as summarized and documented in King and Rebelo (1993)

and Harvey and Jaeger (1993). In contrast, when we allow the cyclical components to

be correlated via an AR(2) process in the UCUR-2M model, the estimated trend growth

rate is much smoother and picks up only some very low-frequency movement.

4 Concluding Remarks and Future Research

We formulate a new correlated unobserved components model with a second-order Markov

process and show one can recover the HP trend as a special case. Using this model-based

approach, we directly compare the HP filter with other popular unobserved components

models and shed light on the source of differences in the cycle estimates. We show that

by relaxing the implicit assumption that the cyclical components are independent under

the HP filter, the new model provides comparable model fit relative to the standard

correlated unobserved components model.

Many recent papers, including Carriero, Kapetanios, and Marcellino (2009), Banbura,

Giannone, and Reichlin (2010) and Koop (2013), have demonstrated the gains of incor-

porating the information content in a large number of macroeconomic variables. For

future research, it would be interesting to embed the proposed UC model in a large

Bayesian vector autoregression to assess if other macroeconomic variables provide addi-

tional information about the output gap.
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Online Appendix

Appendix A: Estimation Details

This appendix discusses the priors and provides the estimation details of the unobserved

components model with a second-order Markov trend specification. The sampler dis-

cussed is based on the posterior simulator developed in Grant and Chan (2016) for fitting

the correlated unobserved components model in Morley et al. (2003). A key novel feature

of our approach is that it draws on recent advances in band matrix algorithms devel-

oped in Chan and Jeliazkov (2009), McCausland, Miller, and Pelletier (2011) and Chan

(2013), which are shown to be more efficient than the conventional Kalman filter-based

algorithms.

We assume proper but relatively noninformative priors for the model parameters φ =

(φ1, φ2)
′, σ2

c , σ
2
τ , ρ, τ0 and τ−1. In particular, we assume independent priors for φ, τ0 and

τ−1:

φ ∼ N (φ0,Vφ)1(φ ∈ R), τ0, τ−1 ∼ N (τ00, Vτ ),

where R is the stationarity region. The prior on the AR coefficients φ affects how

persistent the cyclical components are. We assume relatively large prior variance Vφ = I2

so that a priori φ can take on a wide range of values. The prior mean is assumed to be

φ0 = (1.3,−0.7)′, which implies that the AR(2) process has two complex roots. The prior

mean is similar to the values reported in, e.g., Morley et al. (2003). On the other hand,

the hyperparameters Vτ and τ00 are relatively unimportant provided that Vτ is sufficiently

large, as they only affect the initial values. We set Vτ = 100 and τ00 = 750.

Next, we assume the priors on σ2
c , σ

2
τ and ρ to be uniform:

σ2
c ∼ U(0, bc), σ2

τ ∼ U(0, bτ ), ρ ∼ U(−1, 1).

Since the correlation coefficient ρ is bounded between −1 and 1, the uniform prior on

(−1, 1) is a natural choice. The priors on σ2
c and σ2

τ affect the size of the shocks to

the cycle and the trend growth rate, respectively. From estimates of similar parameters

reported in Morley et al. (2003), the upper bounds bc = 3 and bτ = 0.01 seem to be

sufficiently large.

Next, we provide the details of the posterior sampler. To that end, stack y = (y1, . . . , yT )
′

and τ = (τ1, . . . , τT )
′. Then, posterior draws can be obtained by sequentially sampling
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from the following densities: 1. p(τ |y,φ, σ2
c , σ

2
τ , ρ, τ0, τ−1); 2. p(φ |y, τ , σ2

c , σ
2
τ , ρ, τ0, τ−1);

3. p(σ2
c |y, τ ,φ, σ

2
τ , ρ, τ0, τ−1); 4. p(σ

2
τ |y, τ ,φ, σ

2
c , ρ, τ0, τ−1); 5. p(ρ |y, τ ,φ, σ

2
c , σ

2
τ , τ0, τ−1);

6. p(τ0, τ−1 |y, τ ,φ, σ
2
c , σ

2
τ , ρ).

To implement Step 1, let c = (c1, . . . , cT )
′, and similarly define uc and uτ . Then, we

rewrite the system (1), (2) and (7) in the following matrix form:

y = τ + c,

Hφc = uc,

H2τ = α̃+ uτ ,

where α̃ = (2τ0 − τ−1,−τ0, 0, . . . , 0)
′ and

H2 =




1 0 0 0 · · · 0

−2 1 0 0 · · · 0

1 −2 1 0 · · · 0

0 1 −2 1 · · · 0
...

. . . . . . . . . . . . 0

0 · · · 0 1 −2 1




, Hφ =




1 0 0 0 · · · 0

−φ1 1 0 0 · · · 0

−φ2 −φ1 1 0 · · · 0

0 −φ2 −φ1 1 · · · 0
...

. . . . . . . . . . . . 0

0 · · · 0 −φ2 −φ1 1




.

Note that both H2 and Hφ are band matrices with only a few nonzero elements arranged

around the main diagonal. Further, since both are square matrices with unit determinant,

they are invertible. Hence, given the parameters φ, σ2
c , σ

2
τ , ρ, τ0 and τ−1, it follows from (4)

that we have

(
c

τ

)
∼ N

((
0

α

)
,

(
σ2
c (H

′

φHφ)
−1 ρσcστ (H

′

2Hφ)
−1

ρσcστ (H
′

φH2)
−1 σ2

τ (H
′

2H2)
−1

))
,

where α = H−1
2 α̃. Using the properties of the Gaussian distributions (see, e.g., Kroese

and Chan, 2014, Chapter 3.6), the marginal distribution of τ (unconditional on c) is

(τ | σ2
τ , τ0, τ−1) ∼ N (α, σ2

τ (H
′

2H2)
−1),

and the conditional distribution of y given τ and other parameters is given by

(y | τ ,φ, σ2
c , σ

2
τ , ρ, τ0, τ−1) ∼ N

(
H−1

φ a+H−1
φ Bτ , (1− ρ2)σ2

c (H
′

φHφ)
−1
)
,

16



where

a = −
ρσc

στ

H2α, B = Hφ +
ρσc

στ

H2.

Therefore, the prior density of τ and the conditional likelihood are given by

p(τ | σ2
τ , τ0, τ−1) = (2πσ2

τ )
−

T
2 e

−
1

2σ2
τ
(τ−α)′H′

2H2(τ−α)
(9)

p(y | τ ,φ, σ2
c , σ

2
τ , ρ, τ0, τ−1) = (2πσ2

y(1− ρ2))−
T
2 e

−
1

2(1−ρ2)σ2
c
(Hφy−a−Bτ )′(Hφy−a−Bτ )

. (10)

Then, by standard linear regression results (see, e.g., Kroese and Chan, 2014, p.237-240),

we have

(τ |y,φ, σ2
c , σ

2
τ , ρ, τ0, τ−1) ∼ N (τ̂ ,K−1

τ ), (11)

where

Kτ =
1

σ2
τ

H′

2H2 +
1

(1− ρ2)σ2
c

B′B, τ̂ = K−1
τ

(
1

σ2
τ

H′

2H2α+
1

(1− ρ2)σ2
c

B′(Hφy − a)

)
.

Since H2, Hφ and B are all band matrices, so is the precision matrix Kτ . As such, the

precision sampler of Chan and Jeliazkov (2009) can be used to sample τ efficiently.

To sample φ in Step 2, recall that uc and τ are jointly normal:

(
uc

τ

)
∼ N

((
0

α

)
,

(
σ2
c IT ρσcστ (H

′

2)
−1

ρσcστH
−1
2 σ2

τ (H
′

2H2)
−1

))
, (12)

where α = H−1
2 α̃ with α̃ = (2τ0−τ−1,−τ0, 0, . . . , 0)

′. Hence, the conditional distribution

of uc given τ and other parameters is

(uc | τ , σ2
c , σ

2
τ , ρ, τ0, τ−1) ∼ N

(
ρσc

στ

H2(τ −α), (1− ρ2)σ2
c IT

)
.

Next, we write (2) as

c = Xφφ+ uc,

where Xφ is a T×2 matrix consisting of lagged values of ct. Then, by standard regression

results, we have

(φ |y, τ , σ2
c , σ

2
τ , ρ, τ0, τ−1) ∼ N (φ̂,K−1

φ )1(φ ∈ R),

17



where

Kφ = V−1
φ +

1

(1− ρ2)σ2
c

X′

φXφ,

φ̂ = K−1
φ

(
V−1

φ φ0 +
1

(1− ρ2)σ2
c

X′

φ

(
c−

ρσc

στ

H2(τ −α)

))
.

A draw from this truncated normal distribution can be obtained by the acceptance-

rejection method, i.e., keep sampling from N (φ̂,K−1
φ ) until φ ∈ R.

To implement Steps 3 to 5, we first derive the joint density of uc and uτ . To that end,

note that given σ2
c , σ

2
τ and ρ, we can factor the joint distribution of (uc

t , u
τ
t ) as:

uτ
t ∼ N (0, σ2

τ ), (uc
t | u

τ
t ) ∼ N

(
ρσc

στ

uτ
t , (1− ρ2)σ2

c

)
.

Hence, the joint density of uc and uτ is given by

p(uc,uτ | σ2
c , σ

2
τ , ρ) ∝ (σ2

τ )
−

T
2 e

−
1

2σ2
τ

∑T
t=1(u

τ
t )

2

((1− ρ2)σ2
c )

−
T
2 e

−
1

2(1−ρ2)σ2
c

∑T
t=1(uc

t−
ρσc
στ

uτ
t )

2

,

= ((1− ρ2)σ2
cσ

2
τ )

−
T
2 e

−
1

2σ2
τ
k3−

1

2(1−ρ2)σ2
c

(

k1−
2ρσc
στ

k2+
ρ2σ2

c

σ2
τ

k3

)

, (13)

where k1 =
∑T

t=1(u
c
t)

2, k2 =
∑T

t=1 u
c
tu

τ
t and k3 =

∑T

t=1(u
τ
t )

2. It follows from (13) that

p(σ2
c |y, τ ,φ, σ

2
τ , ρ, τ0, τ−1) ∝ p(σ2

c )× (σ2
c )

−
T
2 e

−
1

2(1−ρ2)σ2
c

(

k1−
2ρσc
στ

k2+
ρ2σ2

c

σ2
τ

k3

)

,

where p(σ2
c ) is the uniform prior specified above. This full conditional density of σ2

c is

not a standard density and we sample from it using a Griddy-Gibbs step. That is, we

evaluate the full conditional density on a fine grid, and obtain a draw from the density

using the inverse-transform method (see, e.g., Kroese, Taimre, and Botev, 2011, pp. 45–

47). Steps 4 and 5 can be similarly implemented by noting that

p(σ2
τ |y, τ ,φ, σ

2
c , ρ, τ0, τ−1) ∝ p(σ2

τ )× (σ2
τ )

−
T
2 e

−
1

2σ2
τ
k3−

1

2(1−ρ2)σ2
c

(

k1−
2ρσc
στ

k2+
ρ2σ2

c

σ2
τ

k3

)

p(ρ |y, τ ,φ, σ2
c , σ

2
τ , τ0, τ−1) ∝ p(ρ)× (1− ρ2)−

T
2 e

−
1

2(1−ρ2)σ2
c

(

k1−
2ρσc
στ

k2+
ρ2σ2

c

σ2
τ

k3

)

,

where p(σ2
τ ) and p(ρ) are the priors for σ2

τ and ρ respectively.

Lastly, to jointly sample τ0 and τ−1, note that we can write α = Xδδ, where δ = (τ0, τ−1)
′
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and

Xδ =




2 −1

3 −2
...

...

T + 1 −T




.

It follows from (12) that the conditional distribution of τ given uc and other parameters

is

(τ |uc, σ2
c , σ

2
τ , ρ, τ0, τ−1) ∼ N

(
Xδδ +

ρστ

σy

H−1
2 uc, (1− ρ2)σ2

τ (H
′

2H2)
−1

)
.

Then, by standard regression results, we have

(τ0, τ−1 |y, τ , σ
2
c , σ

2
τ , ρ,φ) ∼ N (δ̂,K−1

δ ),

where

Kδ = V−1
δ +

1

(1− ρ2)σ2
τ

X′

δH
′

2H2Xδ,

δ̂ = K−1
δ

(
V−1

δ δ0 +
1

(1− ρ2)σ2
τ

X′

δH
′

2H2

(
τ −

ρστ

σy

H−1
2 uc

))
,

where Vδ = diag(Vτ , Vτ ) and δ0 = (τ00, τ00)
′.

Appendix B: HP Filter as an UC Model

In this appendix we show that one can recover the HP trend τ̂HP as a posterior mean of

τ under the model defined in (1), (2) and (7).4 To that end, first note that

T∑

t=1

(∆τt −∆τt−1)
2 = (H2τ − α̃)′(H2τ − α̃) = (τ −α)′H′

2H2(τ −α),

4It is unclear whether Hodrick and Prescott (1980, 1997) had a statistical model in mind when they
proposed the Hodrick-Prescott decomposition. On the one hand, they realized that their minimization
problem can be solved by the Kalman filter—hence, it has a state space form. On the other hand, they
explicitly stated that “[o]ur statistical approach does not utilize standard time series analysis. Our prior
knowledge concerning the process generating the data is not of the variety that permits us to specify a
probability model as required for application of that analysis.”

The Bayesian interpretation of the HP filter as a posterior mean under a certain prior for τ has a
long history. For example, papers by Kitagawa and Gersch (1984) and Gersch (1993) derive an explicit
expression for a smoothing prior for τ that gives the HP trend.
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where α = H−1
2 α̃ and α̃ = (2τ0 − τ−1,−τ0, 0, . . . , 0)

′. Hence, the minimization problem

can be rewritten as

τ̂HP ≡ argmin
τ

[(y − τ )′(y − τ ) + λ(τ −α)′H′

2H2(τ −α)] .

By differentiating the objective function with respect to τ , we obtain the following first-

order condition:

∂

∂τ
[τ ′τ − 2τ ′y + λτ ′H′

2H2τ − 2λτ ′H′

2H2α)] = 2(IT + λH′

2H2)τ − 2(y + λH′

2H2α).

Setting the first-order condition to zero and solving for τ , we obtain

τ̂HP = (IT + λH′

2H2)
−1(y + λH′

2H2α). (14)

Since the Hessian is 2(IT +λH′

2H2), which is always positive definite provided that λ > 0,

τ̂HP is the unique minimizer. Also, the expression (14) provides a quick way to compute

the HP trend as all T ×T matrices are banded. See also Weinert (2007) for an alternative

way to compute the HP trend.

Next, we show that τ̂HP is the mean of the conditional distribution of τ given in (11).

To see that, set ρ = 0 and φ = 0. Then, the posterior mean of τ becomes

τ̂ =

(
1

σ2
τ

H′

2H2 +
1

σ2
c

IT

)
−1(

1

σ2
τ

H′

2H2α+
1

σ2
c

y

)

=

(
σ2
c

σ2
τ

H′

2H2 + IT

)
−1(

σ2
c

σ2
τ

H′

2H2α+ y

)
= τ̂HP

with λ = σ2
c/σ

2
τ .

Appendix C: Additional Empirical Results

In this appendix we present additional estimation results. Specifically, Figure (5) plots

the prior and posterior densities of ρ under UCUR-2M. Even though the posterior is

relatively flat, it has more mass around 0 and less mass at the boundaries compared to

the prior.
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Figure 5: Prior and posterior densities of ρ under UCUR-2M.
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