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1 Introduction

This paper develops a flexible multivariate econometric model of a time-varying joint

distribution of asset returns. The useful features of the model are that it allows for

regime switching and for the set of assets to follow a joint skew-normal distribution.

The model is referred to as a regime switching skew-normal (RSSN) model and is an

extension of Hamilton (1989), as the multivariate skew normal distribution assumption

allows for non-normality, better reflecting the characteristics of high frequency financial

market data. Although the model is suitable for a variety of applications, it is partic-

ularly suited to the study of financial market contagion. A feature of the framework

is that it is able to estimate the emergence of new linear and non-linear comovements

between asset returns that are likely to emerge during a switch to a crisis regime. Since

the proposed RSSN model is a high dimensional latent variable model, estimation and

inference using the classical approach is diffi cult. Instead, the model is estimated us-

ing Bayesian methods, particularly Markov Chain Monte Carlo (MCMC) algorithms.

The model is illustrated through an application to US and European equity markets

during the Global Financial Crisis. The majority of papers examining financial market

contagion during the recent crisis focus on sovereign debt markets, making the paper

complementary to this literature (also see Bekaert et al., 2014).

Table 1 motivates the use of the skew normal-distribution by depicting summary

statistics including higher order moments and comoments of the daily equity returns for

the US and selected European countries over two periods.1 The periods are from 2005

to mid 2007 and from March 2008 to the end of 2014, and are loosely labeled the Great

Moderation and the Global Financial Crisis respectively.2 The table shows evidence

of non-normality in the asset returns of each country in both periods. However, the

statistics are very different. In the crisis period, mean returns are lower and negative

for all countries compared to those for the Great Moderation. The magnitudes of the

minimum, maximum and standard deviation of returns are also larger. Of note are

1This paper takes a parametric approach and uses the skew normal-distribution to model asset
returns. An alternative is to consider a nonparametric approach, such as using the Dirichlet process
mixture model (see for examples, Escobar, 1994; Escobar and West, 1995; Chan et al., 2017). The
parametric approach is more convenient for our purpose since higher order moments and comoments
of the skew normal-distribution are simple functions of the parameters. By contrast, they are more
diffi cult to define under the Dirichlet process mixture model.

2Note that the dates are indicative and arbitrarily chosen, loosely corresponding to events signaling
the end of the Great Moderation period and the beginning of the Global Financial Crisis period as
discussed in Section 5.2.
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Table 1:
Preliminary statistics for the equity returns of selected markets in Europe and the US

in the Great Moderation and the Global Financial Crisis periods.
France Germany Greece Italy US

Great Moderation: January 4, 2005 to July 25, 2007
Mean 0.065 0.107 0.090 0.043 0.038
Minimum -4.037 -4.931 -5.262 -3.364 -3.349
Maximum 3.698 4.492 5.015 3.069 2.069
Std. dev. 0.925 1.057 1.101 0.875 0.634
Skewness -0.234 -0.564 -0.371 -0.279 -0.333
Correlation 0.413 0.346 0.178 0.384
Coskewness -0.113 -0.157 -0.151 -0.151
Global Financial Crisis: March 3, 2008 to November 28, 2014
Mean -0.084 -0.092 -0.146 -0.118 -0.066
Minimum -11.737 -11.326 -11.366 -10.864 -8.201
Maximum 12.143 11.887 12.084 12.381 10.508
Std. dev. 2.718 2.760 2.673 2.793 2.193
Skewness 0.250 0.087 -0.193 0.169 0.165
Correlation 0.533 0.520 0.350 0.485
Coskewness -0.098 -0.116 -0.189 -0.132
Notes: The comoment statistics of correlation and coskewness are
calculated for each country with the US. The coskewness
statistic is assumed to be symmetric.

the statistics of market comovement for the European returns with those of the US,

which show that not only does correlation with the US rise in the Global Financial

Crisis period for all European countries, but coskewness becomes more positive. It is

natural to expect a significant increase in cross market correlation, or contagion, as

is the definition adopted in Forbes and Rigobon (2002).3 This is commonly referred

to as shift-contagion, emphasizing the change component. However, the change in the

coskewness statistics illustrate that the linear correlation coeffi cient may not reflect all

changes in market dependence.

Our definition of contagion extends the concept to include changes in higher order

comoments of returns. The RSSN model is able to specifically capture changes in the

joint distribution of equity returns occurring through correlation contagion, as well as

through coskewness contagion, as is alluded to by the descriptive statistics.4 Fry et

3See King and Wadhwani (1990) for the first application of a correlation based approach to crises
in financial markets.

4The model could easily be adapted to handle even higher order comoments such as cokurtosis (see
Fry-McKibbin and Hsiao, 2018).
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al., (2010) examine bivariate coskewness statistics for contagion analogous to those of

the Forbes and Rigobon correlation statistic. This work is extended in this paper to a

multivariate setting and to a joint testing framework. An additional feature is that the

model also captures structural breaks in the moments of the asset returns of the mean,

variance and skewness. Disentangling changes in the asset returns distribution due to

comoment or to moment changes has implications in determining the appropriate focus

of portfolio allocation decisions and international shock mitigation policies, in being

domestically oriented, internationally oriented or both.5

In addition to the empirical stylized facts relating to the changing nature of higher

order comoments during crisis periods, there is a rich theoretical literature on the

role of higher order comoments linking asset returns. Often the capital asset pricing

model forms the basis of the framework. This includes Harvey and Siddique (2000)

where asset pricing models featuring skewness induce coskewness into expected returns.

Smith (2007) and Guidolin and Timmerman (2008) show that higher order comoments

that are time varying are important for pricing asset returns, while Potì and Wang

(2010) show that coskewness risk is a partial explanation for differences in returns

on portfolios. Lambert and Hübner (2013) focus on the US market, and find that

differences in coskewness across regimes can explain the equity home bias, and that

comoment risk is significantly priced by the US market. Such adjustments can occur

as risk averse agents alter their skewness and coskewness preferences, as well as their

portfolio allocation depending on the regime. Guidolin and Timmerman (2008) and Fry

et al., (2010) show that as risk aversion increases, investors prefer positive skewness and

positive coskewness. The latter authors provide an explicit expression for risk prices

and quantities in terms of higher order comoments. This is consistent with changes

in the joint distribution of asset returns such as through contagion and structural

breaks. Several papers suggest a role for investor behavior in crisis periods such as

herd behavior, wake up calls, sudden stops, wealth effects, portfolio rebalancing, credit

contractions, self fulfilling expectations and information asymmetry. See the classic

articles by Krugman (1998), Kaminsky and Schmukler (1999), Calvo and Mendoza

(2000), Kyle and Xiong (2001), Loisel and Martin (2001) and Yuan (2005). These

models are not mutually exclusive to those based on higher order comoments, and all

are consistent with the increasing risk aversion of investors inherent in crisis periods.

5Fry-McKibbin et al., (2014) show that mispricing of asset returns can undermine hedging strategies
if risk reflected in higher order moments is ignored during crisis episodes.
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There is some evidence of a flight to safety, liquidity or quality during crisis periods.

Baur and Lucey (2009), Baele et al., (2013) and Adrian et al., (2015) examine flights

between stocks and bonds. During the European sovereign debt crisis, Allegret et

al., (2017) find that the US banking sector may have benefitted, while Ehrmann and

Fratscher (2017) find evidence of a flight to quality in Europe in bond markets. We

examine the concept of flight to safety in equity markets across countries in terms of

the moments and comoments across the regimes. As Adrian et al., (2015) show, there

are possibly non-linearities in the flight to safety relationship, in their case between

stocks and bonds.

An appealing feature of the RSSN model is that the switching between regimes is

endogenous. Crisis duration is usually the choice of the researcher and exogenously

imposed on the model (see Gravelle et al., 2006 for an exception). Figure 1 illustrates

the potential arbitrariness of the crisis dating choice and how this could lead to mal-

leable conclusions. The figure shows rolling bivariate test statistics of contagion based

on changes in correlation between the US and each of the European equity returns

shown in Table 1. A value of the test statistic above the critical value line is evidence

of contagion in the previous 30 days compared to the non-crisis period. The figure

shows that contagion is not significant on every crisis day, particularly for Greece, and

also highlights that the test results depend on the crisis dating. The RSSN model

circumvents these problems as it embeds the flexibility to switch between crisis and

non-crisis days. Further, crisis days are not necessarily consecutive in time.

Dungey et al., (2015) specify an alternative approach to endogenously model crisis

periods using smooth transition functions in conjunction with a GARCH model, while

others such as Contessi et al., (2014) and Guidolin and Tam (2013) use break point

tests. Ang and Bekaert (2002), Billio and Caporin (2005), Gravelle et al., (2006),

Pelletier (2006), Kim et al., (2008), Guo et al., (2011) and Kasch and Caporin (2013)

use regime switching models to test for market dependence, but most of these assume

a normally distributed error term. Few papers specify a regime switching model with

higher order moments. Harvey and Siddique (2000), Ang and Timmermann (2011)

and Grothe et al., (2014) are examples, but they do not focus on contagion. However,

the label of contagion adopted in this paper could equally apply.

The empirical results show that several patterns emerge. The transition to a crisis

period is volatile in terms of switching between the non-crisis and crisis regimes. Eq-

uity markets show evidence of a shift towards a crisis state before the key trigger of the
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Figure 1: Bivariate test statistics of contagion based on changes in correlation between
the equity returns of selected markets in Europe and the US. The statistics are calcu-
lated with respect to a fixed non-crisis period from January 5, 2005 to July 25, 2007.
The crisis period is a 30 day rolling window from July 26, 2008 to August 31, 2009.
The horizontal line represents the χ2

1 critical value of 3.84. The data is prefiltered using
a VAR(5).
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collapse of Bear Stearns in March 2008. When in a crisis regime, contagion through

traditional correlation dominates coskewness contagion, with correlation contagion be-

ing significant for all of the asset returns of the European countries in the sample when

paired with the US. Coskewness contagion is significant only for the Greece-US pair,

confirming the use of the correlation coeffi cient as a first measure of contagion. In com-

parison with the Asian Financial Crisis between Hong Kong and several Asian countries

similar qualitative results emerge. There is volatility in the regime while transitioning

from the non-crisis to the crisis period. Correlation based contagion is significant for

all countries with Hong Kong. Coskewness contagion is significant for the one case of

the Malaysia-Hong Kong pair. Greece and Malaysia have abrupt changes to policies

affecting international investors in common, with Greece defaulting on their sovereign

debt, and Malaysia responding to the crisis through the imposition of capital controls.

The results also validate the importance of considering contagion and structural breaks

in a multivariate setting as evident by their joint significance.

In both crises there is a clear flight to safety in the moment break tests. The US in

the Global Financial Crisis and Japan in the Asian Financial Crisis are the only asset

markets showing breaks in all three moments of the mean, variance and skewness. The

skewness coeffi cient in particular is the most relevant for risk averse investors. In both

models, the skewness coeffi cients of all markets become more positive, as is consistent

with the needs of risk averse investors. The exception is for skewness in the US which

becomes more negative, indicating investors lower risk aversion in the US market, and

greater risk appetite for US assets relative to those in Europe. This is despite the US

being a source of shocks during the crisis period.

The rest of the paper is organized as follows. Section 2 presents the multivariate

RSSN model of asset returns. Section 3 documents the Bayesian estimation approach

including the Markov Chain Monte Carlo (MCMC) sampling scheme. Section 4 out-

lines the hypotheses and testing methods for the contagion and structural break tests.

Section 5 presents the empirical analysis for the Global Financial Crisis including a

comparison to the Asian Financial Crisis. Section 6 concludes.

2 An RSSN Model of Asset Returns

An RSSN model is specified in this section to provide a general framework to analyze

linear and non-linear contagion between asset markets and structural breaks in the
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moments of asset markets across regimes. Section 2.1 sets out the details of the multi-

variate skew-normal distribution that underlies the regime switching model described

in Section 2.2. The skew-normal assumption combined with the regime switching al-

lows the correlation and coskewness contagion parameters in a crisis regime to change.

In comparison to other models of contagion, there is also an allowance for structural

breaks in asset moments that have no associated transmission to other asset markets

such as in the mean, variance and skewness.

2.1 Skew-normal Distribution

The skew-normal distribution as developed by Sahu et al., (2003) has the following

latent variable representation

yt = µ+ ΩZt + εt, (1)

εt
iid∼ N (0,Σ) , (2)

Zt
iid∼ N (c1m, Im) 1 (Zjt > c, j = 1, . . . ,m) , (3)

where yt = (y1t, . . . , ymt)
′ is an m-dimensional random vector with t = 1, . . . , T , µ

is an m × 1 vector of constants, Ω is an m × m skewness coskewness matrix, Zt =

(Z1t, . . . , Zmt)
′ is an m-dimensional random vector, εt is an m × 1 innovation vector,

Σ is an m ×m variance covariance matrix, 1m is an m × 1 column of ones, Im is the

identity matrix, and 1(·) is a (scalar) indicator function which takes a value of 1 if all

Zjt are greater than c and 0 otherwise.6

The inclusion of the vector of latent variables Zt allows for skewness in the distrib-

ution which enriches the dependence between the components of yt. Sahu et al., (2003)

assume that Ω is a diagonal skewness-coskewness matrix. However, this assumption is

restrictive in the context of modeling comovements since it does not allow for coskew-

ness between the components of yt. Coskewness for yt is introduced by relaxing the

assumption that Ω is diagonal. Specifically, Ω = (ωij) is a full m×m coskewness ma-

trix with i, j = 1, . . . ,m. The off-diagonal elements of Ω are the coskewness parameters

which control asymmetric dependence between the components of yt.7

6The constant term c is set to be −
√

2/π, so that the latent variables Zt do not affect the uncon-
ditional expectation of yt.

7An alternative identification strategy is to assume that Ω is triangular. Here, we assume that Ω is
symmetric. Since the two assumptions leave the same number of free parameters in Ω, both solutions
are essentially the same. The latter restriction is chosen as it gives an easier interpretation of the
parameters.
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The probability density function of yt marginally of Zt is

fSN (yt;µ,Σ,Ω) =
2m

det (Σ + Ω2)1/2
fN

((
Σ + Ω2

)− 1
2 (yt − µ)

)
Pr (V > 0) , (4)

where

V ∼ N
(

Ω
(
Σ + Ω2

)−1
(yt − µ) , Im − Ω

(
Σ + Ω2

)−1
Ω
)
. (5)

fN (yt) is the density function of the standard multivariate normal distribution with

mean 0 and identity covariance matrix Im evaluated at yt. If Ω = 0, then the skew-

normal distribution in equations (1) to (3) reduces to the usual multivariate normal

specification with the density given by

fN (yt;µ,Σ) =
1

det (Σ)1/2
fN

(
Σ−

1
2 (yt − µ)

)
. (6)

Figure 2 plots the contours of the bivariate skew-normal density in equation (4) with

zero mean (µ = 0), identity scale matrix (Σ=I2) and various patterns of asymmetric

dependence (Ω = (ωij), i, j = 1, 2). The center panel of Figure 2 illustrates the case of

a symmetric bivariate normal distribution with ω11 = ω22 = ω12 = ω21 = 0. The off-

centre panels of the figure emphasize the skewness and heavy tails generated compared

to the bivariate distribution in the centre panel as skewness and coskewness of the

distribution interact as the parameters ωij change. These plots reflect the relationships

in high frequency financial market data across the varying regimes as illustrated in

Table 1.

2.2 Regime Switching with the Skew-normal Distribution

The RSSN model of asset returns extends the regime switching model of Hamilton

(1989) by assuming that under each regime, yt has a multivariate skew-normal distri-

bution. This extension is useful as it not only captures the stylized behavior of asset

returns including asymmetry, heavy tails, heteroskedasticity, time-varying linear and

non-linear comoments among the asset markets, but also controls parameters which

are allowed to differ across the states.

Consider the multivariate skew-normal distribution of a set of asset returns yt of

Section 2.1, but allow for the model parameters to be state dependent as follows

yt = µst + ΩstZt + εt, (7)

εt
iid∼ N (0,Σst) , (8)

Zt
iid∼ N (c1m, Im) 1 (Zjt > c, j = 1, . . . ,m) . (9)

8



Figure 2: Contour plots of the bivariate skew-normal density. The plots are of equa-
tion (4) with zero mean (µ = 0), identity scale matrix (Σ = I2) and differing values
of coskewness ωij. The central panel corresponds to a symmetric bivariate normal
distribution with ω11 = ω22 = ω12 = ω21 = 0.

The regime st at time t is a binary variable that takes the values of 0 or 1, or

st ∈ {0, 1}. There are two sets of regime-dependent parameters, (µ0,Ω0,Σ0) and

(µ1,Ω1,Σ1). To emphasize the regime, the set of parameters (µl,Ωl,Σl) is sometimes

written as (µst=l,Ωst=l,Σst=l) for l = 0, 1.

The flexibility of the RSSN model allows the parameters including the means, µst,

coskewness, Ωst , and the error cross-covariances, Σst in equations (7) to (9) to change

in regime st = 1 compared to regime st = 0. Changes in the parameters controlling

market linkages of correlation and coskewness during the second regime are contagion.

Changes in the moment parameters of the mean, variance and skewness in the second

regime are structural breaks.

For estimation purposes, equations (7) to (9) are rewritten as

yt = Xtβst + εt, (10)

εt
iid∼ N (0,Σst) , (11)

where

Xt = (Im, Im ⊗ Z ′t) , βst =
(
µ′st , ω

′
st

)′
, ωst = vec

(
Ω′st
)
.

The dimensions of µst, ωst and βst are m, k and (m+ k) respectively with k = m2.
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To complete the model, the process governing the underlying state of the regime,

st, needs to be specified. Assume the standard Markov transition

Pr (st = 1|st−1 = i) = pit, (12)

for i = 0 and 1, where the probabilities pit are fixed constants that vary with time.

The parameters of the RSSN model are

Θ = (β0, β1,Σ0,Σ1) . (13)

For later reference, stack y = (y′1, . . . , y
′
T )′, Z = (Z ′1, . . . , Z

′
T )′ and s = (s1, . . . , sT )′.

For convenience, let µi,l denote the i-th element of µl, l = 0, 1, and similarly define Σij,l

and Ωij,l.

Notably, the correlation coeffi cient ρij,st can also be estimated and is

ρij,st =
Σij,st√

Σii,st

√
Σjj,st

, st = 0, 1. (14)

For convenience, ρij,st is sometimes labeled as ρij,l with l = 0, 1.

3 Bayesian Estimation of the RSSN Model

A Bayesian approach is used to estimate the model parameters.8 MCMC methods

are used to obtain draws from the posterior distribution required for the analysis as

documented in this Section.

Likelihood Function and Priors The complete-data likelihood function of the

RSSN model in equations (10) to (11) is given by

f (y|Z,Θ,s) = (2π)−
mT
2

T∏
t=1

|Σst|
− 1

2 exp

{
−1

2

T∑
t=1

[
yt −Xtβst

]′
Σ−1
st

[
yt −Xtβst

]}
,

(15)

where Θ = (β0, β1,Σ0,Σ1) and st ∈ {0, 1}.
The priors for the model parameters are specified as

βst ∼ N
(
β, V β

)
, (16)

Σst ∼ IW (τΣ, SΣ) , (17)

Pr (st = 1|st−1 = i) = pit, Pr (st = 0|st−1 = i) = 1− pit, (18)

8The model was estimated using MATLAB. The code is available at
http://joshuachan.org/code.html.
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where IW (τΣ, SΣ) denotes the inverse-Wishart distribution with degree of freedom τΣ

and scale matrix SΣ. The prior mean for βst is set to β =
(
µ′, ω′

)′
, and the prior

covariance matrix for βst is set to V β =

[
φµIm 0

0 φωIk

]
, where k = m2.

Posterior Analysis The Gibbs sampler is used for estimating the RSSN model.

It follows from Bayes rule that the joint posterior distribution is proportional to the

product of the complete-data likelihood function and the joint prior density, as follows

π (Θ, Z,s|y) ∝ f (y|Z,Θ,s) f (Z) f (s|Θ) π (Θ) , (19)

where f (Z) and f (s|Θ) are given in equations (9) and (18) respectively. Note that the

notation π denotes the prior and posterior density functions. The likelihood function

f (y|Z,Θ,s) is given in equation (15). By assuming prior independence between β and
Σ, the joint prior density is given by

π (Θ) = π(β0)π(β1)π(Σ0)π(Σ1). (20)

Posterior draws from the joint posterior distribution can be obtained via the fol-

lowing Gibbs sampler:

• Step 1: Specify starting values for Θ(0) =
(
β

(0)
0 , β

(0)
1 ,Σ

(0)
0 ,Σ

(0)
1

)
and Z(0), where

β
(0)
l =

(
µ

(0)′

l , ω
(0)′

l

)′
with l = 0, 1. Set counter loop = 1, ...n.

• Step 2: Generate s(loop) from π
(
s|y, Z(loop−1),Θ(loop−1)

)
whereΘ(loop) =

(
β(loop),Σ(loop)

)
.

• Step 3: Generate β(loop)
l from π

(
βl|y, Z(loop−1),Σ

(loop−1)
l , s(loop)

)
.

• Step 4: Generate Σ
(loop)
l from π

(
Σl|y, Z(loop−1), β

(loop)
l , s(loop)

)
.

• Step 5: Generate Z(loop) from π
(
Z|y,Θ(loop), s(loop)

)
.

• Step 6: Set loop = loop+ 1 and go to Step 2.

The number of iterations set for Steps 2 to 5 is n. The first n0 of these are dis-

carded as burn-in draws, and the remaining n1 are retained to compute the parameter

estimates, where n = n0 + n1. The full conditional distributions are given below, and

their derivations are presented in Appendix A.
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The posterior distribution for βl, l = 0, 1, conditional on y, Z,Σ0,Σ1 and s is a

q-variate normal distribution with q = m+ k given by

(βl|y, Z,Σl, s) ∼ Nq

(
β̂l, Dβl

)
, l = 0, 1, (21)

whereDβl =

(
V −1
β +

T∑
t=1

1(st = l)X ′tΣ
−1
st Xt

)−1

and β̂l = Dβl

[
V −1
β β +

T∑
t=1

1(st = l)X ′tΣ
−1
st yt

]
.

The posterior distribution for Σl, l = 0, 1, conditional on y, Z, β0, β1 and s has an

inverse-Wishart distribution

(Σl|y, Z, βl, s) ∼ IW (τΣl , SΣl) , (22)

where τΣl = τΣ +
T∑
t=1

1(st = l) and SΣl = SΣ +
T∑
t=1

1(st = l)
(
yt −Xtβst

) (
yt −Xtβst

)′
.

Next, the latent variables Z1, . . . , ZT are conditionally independent given y, β0, β1,Σ0,Σ1

and s. In fact, each Zt has an independent truncated multivariate normal distribution

(Zt|y,Θ, s)
ind∼ N

(
Ẑt, DZt

)
1 (Zjt > c, j = 1, . . . ,m) , (23)

where DZt =
(
Im + δ

′

stΣ
−1
st δst

)−1

and Ẑt = DZt

(
c1m + δ

′

stΣ
−1
st

(
yt − µst

))
. A fea-

sible sampling approach to obtain the draws from the above truncated multivariate

normal distribution is to draw Zt component by component, where each component

follows a truncated univariate normal distribution where all other components are given

(Geweke, 1991 and Robert, 1995). Draws from the truncated univariate normal dis-

tribution are generated by using the inverse transform method (Kroese et al., 2011,

p.45).

To generate the regime variable st, a multi-move Gibbs sampling method is used. In

particular, the success probabilities are computed using standard filtering and smooth-

ing algorithms for hidden Markov models, such as the algorithms described in Chib

(1996) and Frühwirth-Schnatter (2006).

4 Testing for Contagion and Structural Breaks

This section sets out the procedure for testing for contagion and structural breaks. For

reference, the restrictions on the RSSNmodel parameters for the tests for contagion and

structural breaks and the method used to evaluate each hypothesis are summarized in

Table 2. Details describing the methods used to evaluate the hypotheses are contained

in Section 4.1, while Sections 4.2 to 4.4 outline the hypothesis tests.
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Table 2:
Summary of the restrictions on the model parameters and the hypothesis evaluation

methods for the tests for contagion and structural breaks.
Method Restrictions

Tests (DR) market i ∀i
Contagion tests (i 6= j)
Correlation p ρij,0 < ρij,1 Υ0 < Υ1

Coskewness BF ωij,0 = ωij,1 Ω0 = Ω1

Corr. BF ρij,0 = ρij,1, ωij,0 = ωij,1 Υ0 = Υ1,Ω0 = Ω1

&coskew.
Structural break tests (i)
Mean p µi,0 > µi,1 µ0 > µ1

Variance p Σii,0 < Σii,1 Σ0 < Σ1

Skewness BF ωii,0 = ωii,1 ω0 = ω1

Mean,var. BF µi,0 = µi,1,Σii,0 = Σii,1, ωii,0 = ωii,1 µ0 = µ1,Σ0 = Σ1, ω0 = ω1

&skew.
Joint contagion (i 6= j) and structural break tests (i)
All BF µi,0 = µi,1,Σii,0 = Σii,1, ωii,0 = ωii,1 µ0 = µ1,Σ0 = Σ1, ω0 = ω1,

& ρij,0 = ρij,1, ωij,0 = ωij,1 Υ0 = Υ1,Ω0 = Ω1

Notes: The tests are for a change in each parameter in the crisis period st = 1 compared to
a non-crisis period st = 0. The method of hypothesis evaluation (DR) for each test is indicated
in the table. p denotes that a decision is probability based. BF denotes that a decision is based on
the log of the Bayes factor using the model selection evidence categories in Table 3.
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The RSSN model is the unrestricted model (Mu) with two sets of regime-specific

parameters. These are the regime-specific mean vectors µ0 and µ1 (each of dimension

m × 1), covariance matrices Σ0 and Σ1 (each of dimension m × m) and coskewness

matrices Ω0 and Ω1 (each of dimension m × m). Recall that µi,l denotes the i-th

element of µl, and similarly, for Σij,l and Ωij,l. Notably, the correlation coeffi cient

ρij,l is estimated by the covariance (Σij,l) divided by the product of the square root of

the variances Σii,l and Σjj,l. For later reference Υl denotes the sum of the individual

correlation coeffi cients Υl =
m∑
i=1

m∑
j 6=i
ρij,l used in the joint tests for correlation contagion.

4.1 Hypothesis Test Evaluation Methods

Two decision rules (DR) are available for evaluating the hypotheses depending upon

the form that the hypothesis for contagion or structural breaks takes.

Hypotheses with inequality restrictions If the hypothesis contains an inequality

restriction then the probability of contagion or a structural break is simply calculated

using the proportion that the hypothesis is true in the MCMC draws and is denoted

by p.

Hypotheses with equality restrictions If the tests involve equality restrictions,

Bayesian model comparison methods using the natural logarithm of the Bayes factor

are conducted, and is denoted by BF . Bayesian model comparison provides a unified

approach for comparing non-nested models, and is an alternative to classical hypothesis

testing. Consider comparing models Mr and Mu. Evidence in favor of model Mr can

be measured by the Bayes factor, defined as

BFru =
p (y|Mr)

p (y|Mu)
, (24)

where p (y|Mr) and p (y|Mu) are the marginal likelihoods of the data under models

Mr and Mu respectively. Intuitively, the marginal likelihood p(y|Mr) is simply the

marginal distribution of y under model Mr evaluated using the data. If the data are

improbable under model Mr, the marginal likelihood will be small and vice versa.

Hence, the Bayes factor BFru, which is the ratio of the marginal likelihoods of the two

models shows which model better predicts the data. The marginal likelihood of the

data under model i can be defined as

p (y|Mi) =
f(y|Θ)π (Θ)

π (Θ|y)
, i = r, u, (25)
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Table 3:
Model selection evidence categories for the log of the Bayes factor.

Value of ln (BFru) Evidence categories
(0,∞) Evidence in support of model Mr

(−1.15, 0) Very slight evidence in support of model Mu

(−2.30,−1.15) Slight evidence in support of model Mu

(−4.60,−2.30) Strong evidence in support of model Mu

(−∞,−4.60) Decisive evidence in support of model Mu

Notes: The log of the Bayes factor (ln (BFru) = ln (p (y|Mr))− ln (p (y|Mu))
is used for model selection following Jeffrey’s rule (Jeffreys, 1961).

where Θ is a parameter set in the model, f(y|Θ) is a likelihood and π (Θ|y) is a

posterior density. The prior density can easily be evaluated, whereas the evaluation

of the likelihood and the posterior density requires Monte Carlo simulation methods.

Chib’s method is used to compute the marginal likelihoods when required (Chib, 1995;

Chib and Jeliazkov, 2001).

The posterior odds ratio for model Mr against model Mu is related to their Bayes

factor which is as follows

POru =
π (Mr)

π (Mu)
BFru, (26)

where π (Mr) and π (Mu) are the prior probabilities of models Mr and Mu. Clearly, if

both models have an equally likely prior, then the Bayes factor is also the posterior

odds ratio of the two models. If the two models under comparison are nested, then

the Bayes factor can be calculated using the Savage-Dickey density ratio which is often

much simpler to compute (Verdinelli and Wasserman, 1995). Since hypothesis testing

can be framed as comparing nested models, the density ratio can be used to compute

the relevant Bayes factor. The details of the Savage-Dickey density ratio are contained

in Appendix B.9

Model Mr is chosen over model Mu if the Bayes factor in favor of Mr (BFru) is

suffi ciently large. The choice of threshold on which this decision is made is based on

the scale of evidence for model selection as proposed by Jeffreys (1961), shown in Table

3.
9This approach can only be utilized when the two models are nested, so that there exists at least

one point in the parameter space of the unrestricted model where its likelihood is equivalent to that
of the restricted model.
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4.2 Contagion

The first type of test for contagion between markets is based on an increase in the

correlation coeffi cient in st = 1 compared to st = 0 (Forbes and Rigobon, 2002). That

is,

ρij,st=1 > ρij,st=0, i 6= j. (27)

The prior is that the correlation parameters are expected to rise as markets move

together more closely during a crisis. The relevant form of the correlation change

test between asset markets i and j is ρij,1 − ρij,0 > 0. The probability of correlation

contagion between markets i and j is

Pr(ρij,1 − ρij,0 > 0|y,Mu), (28)

which can be calculated from the MCMC draws.

The test for joint correlation contagion between them−1 pairs of asset returns with

market j is also considered. The relevant restriction for testing for joint correlation

contagion is Υ0 ≤ Υ1 where Υl is the sum of the individual correlation coeffi cients

Υl =
m∑
i=1

m∑
j 6=i
ρij,l. As before, the joint probability of correlation contagion across the

m− 1 markets with market j can be calculated from the MCMC draws.

The coskewness contagion test is given by

ωij,st=0 6= ωij,st=1 , i 6= j. (29)

The test is for a change in the asymmetric dependence of returns i and j in regime

st = 0 compared with regime st = 1. The restricted model for the coskewness change

test is ωij,0 = ωij,1, i 6= j. This hypothesis is compatible with the bivariate coskewness

statistics for contagion of Fry et al., (2010). The joint test for contagion through

shifts in coskewness across all m asset markets is an extension of that paper with the

restriction on the model
m∑
i=1

m∑
j 6=i
ωij,0 = ωij,1, alternatively expressed as ω0 = ω1. The

relevant Bayes factors are computed using the marginal likelihoods.

4.3 Structural Breaks

The hypothesis for a structural break in the mean for asset market i during st = 1

compared to st = 0 is based on a reduction in the mean as in financial crisis periods it

is expected that returns are lower. The probability for market i is

Pr(µi,1 − µi,0 < 0|y,Mu) (30)
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and is calculated from the MCMC draws.

A joint version of a test for a structural break in the mean across allm asset markets

is also considered. While the test for a structural break in an individual market uses

the elements specific to market i (µi,0 and µi,1), the joint test for a mean break for all

m markets utilizes the whole mean vectors µ1 and µ0 in the computation. The relevant

probability has the form

Pr(
m∑
i=1

µi,0 − µi,1 ≥ 0|y,Mu), (31)

which is calculated from the MCMC draws.

The second type of test for a structural break is a for a change in the variance of

the returns of market i in the crisis period compared with the non-crisis period,

Σii,st=1 6= Σii,st=0.

This test for a structural break in the variance has the form Σii,1 − Σii,0 > 0 as in

the financial crisis regime it is expected that the variance of returns will increase. The

probability is

Pr(Σii,1 − Σii,0 > 0|y,Mu). (32)

This is calculated from the MCMC draws. The joint test for a structural break in the

variance for all m asset markets is based on the restriction
m∑
i=1

(Σii,1 > Σii,0) , and is

estimated by calculating the proportion of times Σ1 − Σ0 > 0 in the MCMC draws.

The last type of structural break captures a change in tail behavior, or the third

order moment of asset returns i in regime st = 1 compared to regime st = 0 and is

given by

ωii,st=0 6= ωii,st=1 . (33)

Yuan (2005) shows that borrowing constraints and information asymmetry can change

the distribution of returns especially during downturns. While it is clear that in a

crisis mean asset returns are expected to fall and volatility to rise, the direction of

skewness change is less obvious. Ingersoll (1987), Shleifer and Vishney (1997), Harvey

and Siddique (2000), Fry et al., (2010) and Conrad et al., (2013) suggest that skewness

should change positively, while Black (1972), Bekaert and Wu (2000), Das and Uppal

(2004) and Yuan (2005) suggest the opposite. Although our expectation is for positive

skewness in a crisis, we recognize that both cases are possible so remain agnostic to

the direction of change in the empirical work in Section 5.
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To examine the evidence for a structural break in the skewness for market i, across

regimes st = 0 and st = 1, consider the hypothesis that ωii,1 = ωii,0. This hypothesis

can be recast to compare the unrestricted model Mu and restricted Mr models where

ωii,1 = ωii,0 is imposed. InMu all regime-specific parameters are free to vary across the

two periods. Mr features no shift in the return skewness for the asset market i between

the two regimes. This implies that under the restricted model return skewness in the

two periods remains the same. Clearly, Mr is nested within Mu by setting ωii,1 = ωii,0.

The Bayes factor comparingMr toMu for the skewness structural break is computed

using the Savage-Dickey density ratio

BFru =
π (ωii,1 − ωii,0 = 0|y,Mu)

π (ωii,1 − ωii,0 = 0|Mu)
, (34)

where π (ωii,1 − ωii,0 = 0|y,Mu) and π (ωii,1 − ωii,0 = 0|Mu) are respectively the poste-

rior and prior densities of ωii,1−ωii,0 evaluated at point 0. Since the priors for ωii,0 and

ωii,1 are assumed to be normal, with mean zero and variance φω (equation (16)), the

denominator of equation (34) can be calculated, since the induced prior for ωii,1−ωii,0 is
normal with mean zero and variance 2φω. The numerator of this expression is estimated

by averaging the quantity π (ωii,1 − ωii,0 = 0|y, Z,Σ0,Σ1, s) in the MCMC draws.

The restricted model for the joint version of the test for the skewness break in all

m asset markets is ωii,0 = ωii,1, i = 1, . . . ,m, alternatively expressed as ω0 = ω1. The

Bayes factor is computed using the Savage-Dickey density ratio.

4.4 Joint Contagion and Structural Breaks

The flexibility of the RSSN model enables the testing of the joint contagion and struc-

tural breaks across all asset markets. The complete set of restrictions on the RSSN

model for each case are summarized in the last row of each panel of Table 1.

In all of the joint tests, the RSSN model is the unrestricted model, with the sets

of regime-specific parameters of µ0 and µ1, Σ0 and Σ1, and Ω0 and Ω1. The choice of

restricted model Mr for use in the calculation of the Bayes factor depends on which

parameters have been constrained. For example, the restricted model for a joint struc-

tural break test based on shifts in the mean, variance and skewness is constructed by

imposing the conditions µi,0 = µi,1, Σii,0 = Σii,1 and ωii,0 = ωii,1. In this case the Bayes

factor for comparing model Mr with the unrestricted model Mu is given by

BFru =
π
(
µi,1 − µi,0 = 0,Σii,1 − Σii,0, ωii,1 − ωii,0 = 0|y,Mu

)
π
(
µi,1 − µi,0 = 0,Σii,1 − Σii,0, ωii,1 − ωii,0 = 0|Mu

) , (35)
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where π
(
µi,1 − µi,0 = 0,Σii,1 − Σii,0, ωii,1 − ωii,0 = 0|y,Mu

)
and

π
(
µi,1 − µi,0 = 0,Σii,1 − Σii,0, ωii,1 − ωii,0 = 0|Mu

)
are the posterior and prior densities

for µi,1 − µi,0, Σii,1 − Σii,0 and ωii,1 − ωii,0 evaluated at point 0.

Equation (35) is slightly more diffi cult to evaluate. This is because although the

prior for µ is normal (equation (16)) and Σ0 is an inverse-Wishart density (equa-

tion (22)), π
(
µi,1 − µi,0 = 0,Σii,1 − Σii,0, ωii,1 − ωii,0 = 0|y,Mu

)
is not a known density.

Gaussian kernel estimates are used to approximate the two quantities

π
(
µi,1 − µi,0 = 0,Σii,1 − Σii,0, ωii,1 − ωii,0 = 0|y,Mu

)
and

π
(
µi,1 − µi,0 = 0,Σii,1 − Σii,0, ωii,1 − ωii,0 = 0|Mu

)
. The details of the Geweke’s (2010)

Gaussian kernel method for evaluating the densities are contained in Appendix C.

5 Empirical Example

This section applies the RSSN model of contagion to the Great Moderation and Global

Financial Crisis periods.10 The data is outlined in Section 5.1. Details of the estima-

tion of the RSSN model are contained in Section 5.2 and the results of the contagion

and structural break tests are in Section 5.3. Sensitivity to the prior specification is

undertaken in Section 5.4. Finally, the application is compared to the model for the

Asian Financial Crisis in Section 5.5.

5.1 US and European Data

The data consists of US and European equity returns between January 4, 2005 to

November 28, 2014 (T = 2585).11 Daily percentage returns are computed as the

difference of the natural logarithms of the daily price indices, multiplied by 100. All

data series are denominated in US dollars. To account for time zone differences the US

series is lagged by one period in comparison to the European data, and as is standard

10We have compared the proposed RSSN model to four popular time-varying volatility models using
the marginal likelihood. The purpose of comparing the RSSN model to other models common in the
literature is to demonstrate that the RSSN model provides a reasonable fit to the data relative to
models which do not assume normality such as various GARCH models including the factor-GARCH,
factor-ARCH, diagonal-vector-GARCH (DVEC-GARCH) and diagonal-vector-ARCH (DVEC-ARCH)
models. The results confirmed the advantages of the RSSN model. In particular, the across-regime
(crisis and non-crisis) comparisons can legitimately be emphasized.
11The data source is Datastream. The mnemonics are: France - France CAC 40 price index (FR-

CAC40); Germany - MDAX Frankfurt price index (MDAXIDX); Greece - Athex Composite price
index (GRAGENL); Italy - FTSE MIB price index (FTSEMIB); US - Dow Jones Industrial price
index (DJINDUS).
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Figure 3: Daily percentage equity returns of selected markets in Europe and the US.
Notes: The sample period is January 4, 2005 to November 28, 2014.

in the contagion literature the residuals of a VAR(5) are used as the data in the model.

Time series plots of the returns are contained in Figure 3.

5.2 RSSN Model Estimation

As is customary, the prior hyperparameters in equations (16) to (18) are assumed to

be known and are set to be β = 0, φµ = 0.01, φω = 1, τΣ = 20 + m + 1, SΣ =

(τΣ −m − 1) × Im with m = 5. The prior variances are chosen to be relatively small

so that the prior distributions are proper and relatively informative. Non-dogmatic

beliefs about the likelihoods of a change in regime from the Great Moderation to the

Global Financial Crisis occurring are incorporated formally via the prior probabilities

pit = Pr(st = 1|st−1 = i) for i = 0 and 1. To facilitate prior elicitation the simplifying

assumption is that

Pr (st = 1|st−1 = 0) = Pr (st = 1|st−1 = 1) = pt.

Specification of the prior makes it easy to incorporate information about the timing

of a regime change. Specifically, the initial value for the probability of being in regime

0 is set to Pr (st = 0) = 0.99 during the period from January 5, 2005 to July 25, 2007.

Mid 2007 is when vulnerabilities in the subprime mortgage markets first arose with

the Fed’s first policy response to the crisis in August with the provision of liquidity to

financial markets as money and credit markets began experiencing dislocation (Board
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Figure 4: Probability of being in the Global Financial Crisis regime. Notes: The sample
period is January 4, 2005 to November 28, 2014.

of the Governors of the Federal Reserve System, 2007). The probability of being in

regime 1 is set to Pr (st = 1) = 0.99 during the period between March 3, 2008 and

November 27, 2014. March 2008 coincides with the bail out of Bear Stearns. The

probability of being in regime 0 decreases linearly from 0.99 on July 26, 2007 to 0.01

on March 3, 2008, by a margin of
(

1
157
× (0.99− 0.01)

)
per day. For instance, the

probability of being in regime 0 on July 2, 2007 is 0.99 −
(

1
157
× (0.99− 0.01)

)
where

there are 157 days between July 25, 2007 and March 3, 2008. Robustness to the choice

of prior is explored in Section 5.4.

For estimation purposes, the coskewness matrix Ω in equation (1) is restricted to

be a symmetric matrix, which means the dimension of ω reduces from k = m2 to

k = m(m + 1)/2. Furthermore, the constant term c in equation (3) is set to −
√

2/π

so that E (Zt) = 0 and V (Zt) = (π − 2) /π, and the inclusion of the latent variables

Zt does not affect the (unconditional) expectation of yt. In the original specification of

Sahu et al., (2003), c is set to be zero.

The Gibbs-sampling described in Appendix A is applied to the RSSN model. The

first 20, 000 draws are discarded in order to allow the Markov Chain to converge to a

stationary distribution. To reduce sample autocorrelation and to avoid biased Monte

Carlo standard errors, every 10 draws for the next 200, 000 iterations are recorded for a

total of 20, 000 draws which are used to calculate the posterior summaries. The criteria

for choosing independent draws is based on the ineffi ciency factors of the switching

parameters with the details shown in Appendix D. The MCMC algorithm is well
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behaved for the RSSNmodel with Table 8 in the Appendix showing that the ineffi ciency

factors are low for all switching parameters.

Figure 4 presents the probability that the model is in a particular regime over the

sample period. Inspection of the figure shows that equity markets briefly attempted

to transition to a new regime in mid January 2006, perhaps reflecting the emerging

pressures in the subprime market. However, the regime change becomes increasingly

evident in January of 2007, and consistently so by the February of 2008. The transition

between the regimes is volatile as the regime switches between the alternatives, even

before the key crisis trigger of the collapse of Bear Stearns in March 2008 before finally

settling into the Global Financial Crisis regime.

Table 3 presents the posterior means of the regime-switching parameters when

innovations are fitted to the RSSN model of contagion. The first panel of the table

presents the results for regime st = 0, while the second panel presents the results for

regime st = 1. The parameters for correlation and coskewness all appear to change

across the regimes. The correlation of the pairs of markets is higher when st = 1

than when st = 0 for all pairs of markets. For coskewness two patterns emerge.

First, coskewness between almost all pairs of markets becomes less negative in the

Global Financial Crisis period compared to the Great Moderation regime, reflecting

the preference of risk averse investors for positive coskewness in a crisis period (Guidolin

and Timmerman, 2008 and Fry et al., 2010). The anomaly is for the value of coskewness

for the Greece-Italy pair which falls from −0.383 to −0.472. This combination is the

only pair to exhibit an increase in negative coskewness across the regimes.

Second, the coskewness statistics of the US returns with all of the European returns

change the most, with a switch from negative values ranging between −0.187 for the

Germany-US pair to −0.156 for the Italy-US pair when st = 0, to mainly positive

values of 0.018 for France-US, 0.105 for Italy-US, and 0.898 for Greece-US which is

the largest coeffi cient. The exception is for the Germany-US pair when st = 1 which

remains negative at -0.009, reflecting that investors are less risk averse in the German

market relative to the US than they are in the other European markets.

In terms of the moments, mean returns are positive for all markets in the Great

Moderation, while in the Global Financial Crisis they are negative for France, Greece

and Italy, but positive for the larger economies of Germany and the US. The variances

of equity returns for the European markets are higher by a factor of around 10 in

the Global Financial Crisis regime. The variance of the US returns increase as well
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Table 4:
Posterior means of the switching parameters.

Parameters Markets France Germany Greece Italy US
Great Moderation regime (st = 0)
Covariance (Σij,0) Germany 0.299

Greece 0.150 0.193
Italy 0.288 0.246 0.148
US 0.109 0.067 -0.013 0.089

Correlation (ρij,0) Germany 0.681
Greece 0.319 0.380
Italy 0.743 0.580 0.329
US 0.280 0.157 -0.032 0.236

Coskewness (ωij,0) Germany -0.653
Greece -0.423 -0.569
Italy -0.536 -0.593 -0.383
US -0.168 -0.187 -0.158 -0.156

Mean (µi=0) 0.044 0.079 0.066 0.025 0.031
Variance (Σii,0) 0.399 0.469 0.525 0.368 0.367
Skewness (ωii,0) -0.586 -0.761 -0.880 -0.488 -0.072

Global Financial Crisis regime (st = 1)
Covariance (Σij,1) Germany 3.257

Greece 2.850 2.799
Italy 3.611 3.366 3.037
US 1.530 1.468 1.515 1.611

Correlation (ρij,1) Germany 0.929
Greece 0.660 0.656
Italy 0.938 0.886 0.649
US 0.824 0.800 0.672 0.800

Coskewness (ωij,1) Germany -0.016
Greece -0.403 -0.398
Italy 0.036 -0.047 -0.472
US 0.018 -0.009 0.898 0.105

Mean (µi=1) -0.017 0.020 -0.074 -0.037 0.018
Variance (Σii,1) 3.551 3.463 5.253 4.172 0.971
Skewness (ωii,1) 0.061 -0.230 -0.655 -0.253 -1.018

Notes: posterior means of the covariance, correlation, coskewness, mean, variance
and skewness in the Great Moderation and Global Financial Crisis regimes for the equity
returns of selected markets in Europe and the US. The sample period is January 4, 2005
to November 27, 2014.
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but by a smaller magnitude. Interestingly, the skewness parameters of the equity

returns of Europe are all negative in regime st = 0 but become smaller in magnitude

as skewness reduces. Skewness falls from −0.761 to −0.230 for Germany, −0.880 to

−0.655 for Greece, and −0.488 to −0.253 for Italy. The direction of change is the same

for France although skewness for France changes sign (−0.586 to 0.061). Skewness in

the US becomes more negative in the Global Financial Crisis, changing from −0.072

to −1.018 as investors see the US as relatively safe compared to Europe.

5.3 Contagion and Breaks During the Global Financial Crisis

Table 5 presents the empirical results for the tests for contagion and structural breaks

that are summarized in Table 2 between the US equity returns and the selected equity

returns of the European countries. The table consists of three panels: the first examines

the evidence of contagion between the US and Europe through the correlation and

coskewness parameters; the second examines evidence of the moment structural breaks

in the mean, variance and skewness parameters of each asset return; and the third

considers a joint test of all of the contagion and structural break parameters.

Evidence of Contagion The first panel of Table 4 shows that the probability of

contagion as reflected by an increase in the traditional correlation coeffi cient between

all combinations of the US and European returns is 100% in the Global Financial Crisis

compared to the Great Moderation. The correlation channel of contagion dominates

the coskewness channel as the coskewness change is not significant for almost all of the

countries in the sample. There is decisive support for coskewness contagion occurring

between the US and Greek returns, with the value of the log of the Bayes factor

ln (BFru) being −127.06. This result reveals the preferences of risk averse investors in

moving away from Greek to US assets when in the crisis regime. The asset returns of

the remaining European countries of France, Germany and Italy are relatively stable

across the regimes, indicating the relative severity of contagion in Greece compared to

the rest of Europe. The joint tests for contagion between the US and all European

markets through each of the correlation and the coskewness comoments are contained

in the last column of Table 5. The probability of contagion occurring jointly through

the correlation channel is 100%, while there is decisive evidence of contagion through

coskewness with a value of the log of the Bayes factor ln (BFru) of −39.68.

The bottom row of the first panel of the Table presents the results for the test
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Table 5:
Empirical results of the contagion and structural break tests for the equity returns of

selected markets in Europe and the US in the Global Financial Crisis.
Tests Method

(DR) France Germany Greece Italy US ∀i
Contagion tests (i 6= j)
Correlation p 1.00 1.00 1.00 1.00 1.00
Coskewness BF 1.31 1.33 -127.06 0.73 -39.68
Corr. BF -105.86 -97.27 -166.87 -102.72 -56.17
&coskew.

Structural break tests (i)
Mean p 0.86 0.85 0.12 0.89 0.99 1.00
Variance p 1.00 1.00 1.00 1.00 1.00 1.00
Skewness BF 0.09 0.33 0.31 -0.59 -34.92 -69.21
Mean,var. BF -2182.60 -1524.20 -2877.30 -1627.60 -188.30 -8279.30
&skew.

Joint contagion (i 6= j) and structural break tests (i)
All BF -231.99 -196.79 -456.55 -199.70 -8335.50

Notes: The sample period is January 4, 2005 to 27 November, 2014. Contagion is
measured with respect to the US. See Table 2 for a summary of the tests and Section 4
for details. The method of hypothesis evaluation (DR) for each test is indicated in
the table. p denotes that a decision is probability based. BF denotes that a decision
is based on the Bayes Factor using the model selection evidence categories in
Table 3. Evidence of contagion or a structural break is indicated by bold font
in the table.
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that contagion occurs jointly through both the correlation and coskewness parameters.

This is the case for all country pairs with decisive evidence of contagion through the

two channels, with the log of the Bayes factor ln (BFru) ranging between −166.87 for

the Greece-US pair to −97.27 for the Germany-US pair. When considering the joint

test for ∀i, the value of the natural logarithm of the Bayes factors ln (BFru) is −56.17

showing decisive evidence of joint correlation and coskewness based contagion.

Evidence of Structural Breaks The result that stands out for the structural break

tests shown in the first panel of Table 5 is that there is evidence for a structural break

in all of the moments of the mean, variance and skewness for the US in the Global

Financial crisis period. The US is the only country in the sample with decisive evidence

of a structural break in the skewness parameter with the value of natural log of the

Bayes factor ln (BFru) of −34.92. As shown in Table 4 containing the posterior means

of the parameters, the skewness parameter in the US becomes more negative in the

Global Financial Crisis, changing from −0.072 to −1.018. The tests indicate a flight

to safety of risk averse investors that is independent of the comoments of the asset

returns of Europe with the US. Investors display relatively more risk appetite for US

assets during the Global Financial Crisis period.

The probabilities of a structural break in the mean for France, Germany and Italy

are 86, 85 and 89% respectively, while for Greece the probability of a change in the

mean is only 12%. Further, there is no evidence of a structural break in skewness for

the European countries considered individually. Although France, Germany, Greece

and Italy are not affected by a structural break in the first or third moments, they are

affected by structural breaks in the second order moment. The European markets are

individually affected by a break in the variance with probabilities for all markets of

100%.

Considering all m markets jointly, there is evidence for a structural break in the

mean in the Global Financial Crisis regime compared to the Great Moderation with

a probability of 100%. The higher order moment breaks are also evident jointly. The

probability of the joint structural break in the variance is 100%, and there is decisive

evidence of a structural break in skewness with the value of natural log of the Bayes

factor ln (BFru) of −69.21. The joint test of the mean, variance and skewness structural

breaks for each country and for the countries considered jointly show decisive evidence

of structural breaks. Overall, the results for the moment break tests show that it is
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the structural break in the variance which is most important for all markets, followed

equally by the mean and skewness break just for the US. However, when considered

jointly all moment break tests are significant.

Evidence of Joint Contagion and Structural Breaks The third panel of Table

5 provides evidence on the significance of the operation of contagion and structural

breaks simultaneously for each market i as well as for all of the markets jointly. The

bottom row, and particularly the last column of the bottom row can be thought of as

a test of all channels of comoment and moment change and can be thought of as an

overall test for a crisis and contagion. For the individual markets the evidence of joint

contagion and structural breaks is decisive in all cases with the value of the natural

logarithm of the Bayes factor ranging between −456.55 for Greece, to −196.79 for

Germany. For the combined markets ln (BFru) is −8335.50 indicating the importance

of examining contagion and structural breaks jointly.

5.4 Sensitivity to Priors

The priors of the dates of when the Great Moderation ends and when the Global

Financial Crisis begins are chosen to be strong given the dramatic nature of the events

in financial markets first originating in the US. This section examines the sensitivity

of the model by reducing the priors of being in the Great Moderation and Global

Financial Crisis regimes respectively. If the priors are set up as Pr (st = 0) = 0.80

before July 25, 2007 rather than Pr (st = 0) = 0.99 and if Pr (st = 1) = 0.80 rather

than Pr (st = 1) = 0.99 for the period March 3, 2008 to November 27, 2014, then there

is more volatility in the probability of being in a particular regime as shown in Figure

5. The results of reestimating the contagion and structural break tests in the RSSN

model with the relaxed priors are contained in Table 6. Comparison of Table 6 with

the original results in Table 5 shows that the tests for contagion and structural breaks

are almost qualitatively the same, with the differences being that the structural break

in the mean is no longer significant for the US or for ∀i markets.

5.5 Comparison to the Asian Financial Crisis

Most financial market crises of the past three decades are of short duration, sometimes

only being days or weeks (see Fry-McKibbin et al., 2014 for a comparison of crisis

duration for those occurring in the last 20 years). The exception is the Asian Financial
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Figure 5: Probability of being in the Global Financial Crisis regime with relaxed priors.
Notes: The sample period is January 4, 2005 to November 28, 2014.

Table 6:
Empirical results of the contagion and structural break tests for the equity returns of
selected markets in Europe and the US in the Global Financial Crisis with relaxed

priors outlined in Section 5.4.
Tests Method

(DR) France Germany Greece Italy US ∀i
Contagion tests (i 6= j)
Correlation p 1.00 1.00 1.00 1.00 1.00
Coskewness BF 0.68 0.46 -7.60 0.33 -38.03
Corr. BF -79.11 -76.55 -55.07 -75.29 -41.22
&coskew.

Structural break tests (i)
Mean p 0.08 0.00 0.00 0.07 0.71 0.34
Variance p 1.00 1.00 1.00 1.00 1.00 1.00
Skewness BF 0.22 0.03 0.47 -0.73 -3.10 -14.76
Mean,var. BF -1337.60 -786.30 -3196.00 -746.70 -187.20 -6077.80
&skew.

Joint contagion (i 6= j) and structural break tests (i)
All BF -159.41 -136.22 -250.27 -128.50 -6119.00

Notes: The sample period is January 4, 2005 to 27 November, 2014. Contagion is
measured with respect to the US. See Table 2 for a summary of the tests and Section 4
for details. The method of hypothesis evaluation (DR) for each test is indicated in
the table. p denotes that a decision is probability based. BF denotes that a decision
is based on the Bayes Factor using the model selection evidence categories in
Table 2. Evidence of contagion or a structural break is indicated by bold font
in the table.
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Crisis which is the second longest in duration after the Global Financial Crisis. Most

authors define the Asian Financial Crisis period of at least six months and up to a year

making it a relevant comparator.

The model described in equations (7) to (9) is applied to the Asian equity markets

of Hong Kong, Japan, Korea, Malaysia and Thailand around the time of the speculative

attack on Hong Kong currency and equity markets. The sample period extends from

January 11, 1995 to December 31, 1998. The prior for the crisis regime is set to

Pr (st = 1) = 0.99 during the period between October 20, 1997 and December 31,

1998. October 20 is the date of the speculative attack.12 The prior of the non-crisis

regime Pr(st = 0) = 0.99 from January 11, 1995 to December 31, 1996. The probability

of being in regime st = 0 decreases linearly from 0.99 on January 1, 1997 to 0.01 on

October 19, 1997.

Figure 6 presents the probability of the Asian equity markets being in a non-crisis

regime or the Asian Financial Crisis regime while Table 7 presents the contagion and

structural break tests.13 Inspection of Figure 6 shows that the regime change is evident

by mid 1997 and is consistently in the crisis regime by the time of the speculative

attack. Like the case for the Great Moderation and the Global Financial Crisis period,

transitioning between the two regimes is by no means smooth, reflecting the uncertainty

in financial markets even before the speculative attack.

The results for the Asian Financial Crisis validate those for Europe and the US dur-

ing the Global Financial Crisis. The channels of contagion and structural breaks that

are significant during the Asian Financial Crisis are similar to those for the Global Fi-

nancial Crisis. Correlation based contagion is significant for all markets and dominates

coskewness based contagion which is only significant for Malaysia. Unlike other coun-

tries affected by the Asian Financial Crisis, Malaysia made abrupt changes to policies

affecting international investor by instituting capital controls as a way to contain the

crisis. The change in policies affecting investors is perhaps a reason for the significance

of coskewness for Malaysia with respect to Hong Kong. Japan has a similar role of

being the destination of a flight to safety of risk averse investors to that of the US in

the first application as shown by the significance of each moment of the mean, variance

and skewness. Changes in these parameters are significant with 99% and 100% proba-

12An alternative starting date would be July 2, 1997 corresponding to the devaluation of the Thai
baht, however the equity focus of this paper makes the Hong Kong speculative attack the relevant
date and is consistent with Forbes and Rigobon (2002).
13The posterior means of the regime switching parameters are available on request.
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Figure 6: Probability of being in the Asian Financial Crisis Regime. Notes: The sample
period is September 12, 1995 to December 31, 1998.

bility respectively for the mean and the variance, while there is decisive evidence of a

structural break in skewness with a value of natural log of the Bayes factor ln (BFru) of

−29.51. As it is for the application to the Global Financial Crisis the structural break

in the variance is significant across the board, with less evidence for a structural break

in the mean with the exception of Korea in addition to Japan. The evidence again

suggests that it is important to account for joint contagion and structural breaks.

6 Conclusions

In crisis periods, policy makers and investors are challenged by the need to understand

how asset return comovements might change compared to normal times. Decisions

need to be made relating to portfolio allocation and shock mitigation in being domesti-

cally oriented, internationally oriented or both. This paper develops a regime switching

skew-normal (RSSN) model of crisis and contagion by building upon Hamilton (1989)

by relaxing the assumption of multivariate normality with a multivariate skew-normal

distribution in its place. Contagion is defined through changes in the comoments of cor-

relation and coskewness in the non-crisis regime compared to a crisis regime. Tests for

structural breaks in the moments of the mean, variance and skewness are also specified.

Including higher order moments and comoments better reflects the characteristics of

financial returns data observed in both crisis periods and normal times. The extensions
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Table 7:
Empirical results of the contagion and structural break tests for the equity returns of

selected Asian markets in the Asian Financial Crisis.

Tests Method
(DR) Japan Korea Malay. Thai. HK. ∀i

Contagion tests (i 6= j)
Correlation p 0.96 1.00 0.96 0.95 1.00
Coskewness BF 0.52 0.33 -1.22 -0.88 -345.90
Corr&coskew BF -0.84 -9.87 -0.48 -0.50 -369.84

Structural break tests (i)
Mean p 0.96 0.99 0.12 0.86 0.61 0.49
Variance p 1.00 1.00 1.00 1.00 1.00 1.00
Skewness BF -29.51 -0.29 -0.26 -0.10 -0.09 -39.46
Mean,var, BF -49.77 -89.78 -434.25 -187.89 -54.39 -782.84
& skew.

Joint contagion (i 6= j) and structural break tests (i)
All BF -41.87 -72.33 -67.96 -40.67 -1147.70

Notes: The sample period is January 4, 2005 to 27 November, 2014. Contagion is
measured with respect to Hong Kong. See Table 2 for a summary of the tests and Section 4
for details. The method of hypothesis evaluation (DR) for each test is indicated in
the table. p denotes that a decision is probability based. BF denotes that a decision
is based on the Bayes Factor using the model selection evidence categories in
Table 3. Evidence of contagion or a structural break is indicated by bold font
in the table.
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of the model to include coskewness based contagion and structural breaks in skewness

are important as risk averse investors prefer positive coskewness and positive skewness,

making these moments relevant to the crisis regime. Compared to other frameworks of

contagion which are often conducted on a bivariate basis, evidence of joint contagion

or structural breaks across the m asset returns is also assessed.

The regime switching nature of the model allows the crisis timing to be endogenous

to the model, eliminating the problems inherent in the a priori specification of the

crisis period by researchers, and the distributional assumption allows the specification

of both linear and non-linear features of contagion and structural breaks. The model

is estimated and hypotheses evaluated using Bayesian model estimation techniques.

The model is applied to the regimes of the Great Moderation and the Global Financial

Crisis for the US and selected European equity returns, and is compared to the Asian

Financial Crisis which is of a long duration and the best comparator for the Global

Financial Crisis.

The empirical results for the model applied to European and US equity markets

from 2005-2014 as well as to the model applied to the Asian equity markets from 1995-

1998 have qualitatively similar results. First, the transition between the non-crisis

regime to the crisis regime is volatile for both applications. Equity markets show ev-

idence of a shift towards a crisis state before the key triggers of the collapse of Bear

Stearns in March 2008 and the speculative attack on the Hong Kong equity market in

October 1998. Second, contagion measured through the traditional correlation coeffi -

cient is significant in all cases, validating the use of the correlation coeffi cient as a first

measure of contagion. Third, coskewness contagion is significant for one country pair

in each case. These are the Greece-US pair for the Global Financial Crisis and the

Malaysia-Hong Kong pair for the Asian Financial Crisis. Greece and Malaysia have

in common that their policy responses changed the circumstances for international in-

vestors investing in the respective countries, Greece through their sovereign default,

and Malaysia through the imposition of capital controls. Fourth, inspection of the

moment statistics suggests a flight to safety to the major markets of the US during

the Global Financial Crisis, and to Japan during the Asian Financial Crisis. While all

markets were affected by a significant change in volatility in the crisis periods, only the

US and Japan also showed evidence of breaks in the mean and skewness moments. The

results indicate that risk averse investors had more risk appetite for US and Japanese

assets during the crisis regimes, compared to their counterparts in either Europe or
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Asia. The flight to safety is true even when the US is a source of crisis in the first

place. Finally, all channels of contagion and structural breaks are significant when con-

sidered jointly, reinforcing the need to consider contagion and structural breaks during

crises in a multivariate setting.
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A The Gibbs Sampler for the RSSN Model
The details of the MCMC algorithm are as follows. By assuming prior independence
between β and Σ, the joint prior density π (Θ) is given by multiplying equations (16)
and (17)

π (Θ) =
1∏
l=0

π(βl)× π(Σl) (36)
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To calculate the posterior density, the complete-data likelihood function is combined
with the joint prior density via Bayes rule. It is given as

π (Θ, Z, s|y) ∝ f (y|Z,Θ,s) f (Z) f (s|Θ)π (Θ) , (37)
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′
T )′, Z = (Z ′1, . . . , Z

′
T )′ and s = (s1, . . . , sT )′. f (Z) and f (s|Θ) are

provided in equations (9) and (18), respectively. Posterior draws can be obtained using
the Gibbs sampler. Specifically, we sequentially draw from π (β0, β1|y, Z,Σ0,Σ1, s),
π (Z|y, β0, β1,Σ0,Σ1, s), π (Σ0,Σ1|y, Z, β0, β1, s) and π(s|y, β0, β1,Σ0,Σ1, Z).
In the first step, π (βl|y, Z,Σ, s) , l = 0, 1, is a normal density. To see this, write

log π (βl|y, Z,Σ0,Σ1, s) = log f (y|Z,Θ, s) + log π (Θ) + constant (38)
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)′
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(
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)
−1
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[
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[
yt −Xtβst

]
,
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2
β′l

(
V −1
β +

T∑
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1(st = l)X ′tΣ
−1
st Xt

)
βl

+β′l

[
V −1
β β +

T∑
t=1

1(st = l)X ′tΣ
−1
st yt

]
,

where

Dβl =

(
V −1
β +

T∑
t=1

1(st = l)X ′tΣ
−1
st Xt

)−1

, β̂l = Dβl

[
V −1
β β +

T∑
t=1

1(st = l)X ′tΣ
−1
st yt

]
,
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which is the kernel of a q-variate normal density with mean vector β̂l and covariance

matrix Dβl . In other words, (βl|y, Z,Σ0,Σ1, s) ∼ Nq

(
β̂l, Dβl

)
with q = m+ k.

Next, following a similar argument, π (Z|y,Θ, s) is a normal density. To see this,
using equations (15) and (9)

log π (Z|y,Θ, s) = log f (y|Z,Θ, s) + log f (Z) + constant, (39)

∝ −1

2

T∑
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(yt − µst − ΩstZt)
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−1

2
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)
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+
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tΩstΣ
−1
st

(
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)
+ Z ′tc1m.

That is, (Zt|y,Θ, s) ∼ Nm

(
Ẑt, DZt

)
with

DZt =
(
Im + Ω

′

stΣ
−1
st Ωst

)−1

, Ẑt = DZt

(
c1m + Ω′stΣ

−1
st

(
yt − µst

))
.

Finally, the log conditional density π (Σl|y, Z, β0, β1, s) is derived and given by

log π (Σl|y, Z, β0, β1, s) = log f (y|Z,Θ, s) + log π (Θ) + constant (40)
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T∑
t=1

[
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l ,

which is the kernel of an inverse-Wishart distribution. In fact, (Σl|y, Z, β0, β1, s) ∼
IW (τΣl , SΣl), where

τΣl = τΣ +

T∑
t=1

1(st = l), SΣl = SΣ +

T∑
t=1

1(st = l)
(
yt −Xtβst

) (
yt −Xtβst

)′
.
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B The Savage-Dickey Density Ratio
The Savage-Dickey density ratio of Dickey (1971) is a specific representation of the
Bayes factor for comparing nested models. Suppose θ = (ψ, δ) is the vector of model
parameters in the unrestricted model Mu. The likelihood and prior for this model are
denoted as f (y|ψ, δ,Mu) and π (ψ, δ|Mu). Suppose the restricted model Mr can be
characterized as ψ = ψ0, where ψ0 is a constant vector, while the parameter vector δ
is free to vary. The likelihood and prior for the restricted model are then denoted as
f (y|δ,Mr) and π (δ|Mr). Suppose the priors for the two models satisfy

π (δ|ψ = ψ0,Mu) = π (δ|Mr) . (41)

Under this condition, Verdinelli and Wasserman (1995) show that the Bayes factor
comparing Mr to Mu has the form

BFru =
p (ψ = ψ0|y,Mu)

p (ψ = ψ0|Mu)
, (42)

where p (ψ = ψ0|y,Mu) and p (ψ = ψ0|Mu) are respectively the posterior and prior
densities for ψ under the unrestricted model evaluated at the point ψ0. Equation (42)
is referred to as the Savage-Dickey density ratio.

C A Gaussian Copula for Evaluating Probability
Densities

The approach of using a Gaussian copula for approximating a probability density func-
tion at a specified point as developed by Geweke (2010) follows. Consider the random
vector u with q components

u = (u1, . . . , uq) . (43)

Suppose u(1), . . . , u(B) are independent and identically distributed draws from the prob-
ability density function p(u). Then p(u0), the density function is evaluated at the point
u0, which can be approximated using the following steps:

• Step 1: Use a Gaussian kernel to compute the approximations

pi (ui) = c−1 1

B

B∑
b=1

φ

(
ui − u(b)

i

c

)
, Pi (ui) = c−1 1

B

B∑
b=1

Φ

(
ui − u(b)

i

c

)
, (44)

for i = 1, . . . , q, where φ(·) and Φ(·) are respectively the probability density
function and cumulative distribution function of

the standard normal distribution. This approximation is computed at each draw,
i.e., ui = u

(b)
i , b = 1, . . . , B.

• Step 2: Using this approximation, transform the sampled u
(b)
i to the normal

distribution w(b)
i ,

w
(b)
i = fi

(
u

(b)
i

)
, (45)
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where fi (·) = Φ−1 [Pi (·)], and define

w(b) =
(
w

(b)
1 , . . . , w(b)

q

)
, (46)

where l = 1, . . . , L.

• Step 3: Approximate the variance as a (q × q) matrix,

Σ =
1

B

B∑
b=1

w(b)w(b)′. (47)

since the mean vector 1
B

B∑
b=1

W (b) ≈ 0.

• Step 4: Estimate the value of function fi (·) at the specified point u0 similarly to
step 2.

w0
i = fi

(
u0
i

)
, f ′i
(
u0
i

)
(48)

for i = 1, . . . , q.

• Step 5: Finally, compute

p(u0) = φ
(
w0; 0,Σ

) q

Π
i=1
f ′i
(
u0
i

)
. (49)

D Effi ciency of the MCMC Algorithm
A common diagnostic of MCMC effi ciency is the ineffi ciency factor, defined as

IF = 1 + 2
L∑
l=1

ρ (l) ,

where ρ (l) is degree of correlation, quantified by the autocorrelation function given by

ρ (l) =
1

T

T∑
t=1

XtXt−l,

whereXt is a sequence for dates t = 1, . . . , T and l represents the lags. L is chosen to be
large enough so that the autocorrelation tapers off. To interpret the ineffi ciency factor,
note that independent draws from the posterior would give the ineffi ciency factor of 1.
Ineffi ciency factors indicate how many extra draws need to be taken in order to give the
results equivalent to independent draws. For instance, if 50, 000 draws of a parameter
are taken and an ineffi ciency factor of 100 is found, then the draws are equivalent to
500 independent draws from the posterior. The ineffi ciency factors for the RSSN model
in this paper are contained in Table 8.
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Table 8:
Ineffi ciency factors of the parameters. The parameters are estimated based on the

RSSN model with two regimes denoted by st = 0 and st = 1.
Parameters µi Σij ωij

st = 0 st = 1 st = 0 st = 1 st = 0 st = 1
France 1.00 1.00 5.50 6.12 53.27 96.53
Germany 1.00 1.00 5.74 5.97 28.74 89.57
Greece 1.00 1.00 5.15 34.81 109.98 45.40
Italy 1.00 1.00 5.57 7.07 57.06 100.80
US 1.00 1.11 3.99 27.50 7.50 67.65
France-Germany - - 5.21 16.19 5.36 80.08
France-Greece - - 5.05 25.69 65.10 34.40
France-Italy - - 5.75 10.86 24.69 122.74
France-US - - 3.69 35.94 6.48 63.58
Germany-Greece - - 4.59 3.27 116.85 5.04
Germany-Italy - - 5.01 29.28 106.81 61.96
Germany-US - - 3.69 5.70 20.62 11.15
Greece-Italy - - 5.29 28.02 36.98 130.78
Greece-US - - 3.87 38.24 5.02 71.44
Italy-US - - 3.12 20.20 6.79 31.77
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