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Abstract

We propose an easy technique to test for time-variation in coefficients and volatili-
ties. Specifically, by using a noncentered parameterization for state space models,
we develop a method to directly calculate the relevant Bayes factor using the Savage-
Dickey density ratio—thus avoiding the computation of the marginal likelihood al-
together. The proposed methodology is illustrated via two empirical applications.
In the first application we test for time-variation in the volatility of inflation in
the G7 countries. The second application investigates if there is substantial time-
variation in the NAIRU in the US.
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1 Introduction

A voluminous literature has demonstrated the importance of allowing for time-varying pa-
rameters and volatilities in modeling macroeconomic data. In fact, following the seminal
work of Cogley and Sargent (2005) and Primiceri (2005), the time-varying parameter vec-
tor autoregression (TVP-VAR) model with stochastic volatility has become a benchmark
in the literature (recent papers include Benati, 2008; Koop, Leon-Gonzalez, and Strachan,
2009; Koop and Korobilis, 2013; Liu and Morley, 2014, among many others). In addition,
models with time-varying parameters and stochastic volatility are often found to forecast
better than their constant-coefficient counterparts; see, e.g., Clark (2011), D’Agostino,
Gambetti, and Giannone (2013) and Clark and Ravazzolo (2015).

Despite the empirical success of these flexible time-varying models, an emerging literature
has highlighted concerns about their potential over-parameterization. In particular, a
variety of time-varying shrinkage methods—such as those in Chan, Koop, Leon-Gonzalez,
and Strachan (2012), Nakajima and West (2013), Belmonte, Koop, and Korobilis (2014),
Eisenstat, Chan, and Strachan (2015) and Kalli and Griffin (2014)—have been developed
to address this over-parameterization concern. One key feature of these methods is that
they a priori shrink each time-varying parameter to a constant—unless the data prefer
time-variation in that coefficient. In a formal model comparison exercise, Chan and
Grant (2014) find evidence that data favor a VAR where some coefficients are constant
while others are time-varying, relative to both a full-fledged TVP-VAR and a constant-
coefficient VAR.

These recent developments highlight the need for specification tests for time-varying
parameter models with stochastic volatility. In principle, this can be done by simply
computing the marginal likelihoods under a variety of models and selecting the model
with the largest marginal likelihood value. In practice, however, it is rarely done in
empirical macroeconomics because computing the marginal likelihoods for multivariate
models with stochastic volatility is typically difficult.1

The main contribution of this paper is to develop an easy method to compare time-
varying parameter models with stochastic volatility. Specifically, by using a noncentered
parameterization for state space models proposed in Frühwirth-Schnatter and Wagner
(2010), we directly compute the Bayes factor—the ratio of the marginal likelihoods of two
competing models—using the Savage-Dickey density ratio, thus avoiding the estimation
of the marginal likelihood altogether.

The proposed methodology is illustrated via two applications. In the first application

1Another popular model selection criterion is the deviance information criterion (DIC) introduced
by Spiegelhalter, Best, Carlin, and van der Linde (2002). It has been used to compare a wide variety
of stochastic volatility models (Berg, Meyer, and Yu, 2004; Abanto-Valle, Bandyopadhyay, Lachos, and
Enriquez, 2010; Vo, 2011; Brooks and Prokopczuk, 2013; Wang, Choy, and Chan, 2013). All of these
papers use a version of the DIC based on the conditional likelihood—the density of the data given the
parameters and the states—that can be readily evaluated. Recently, however, Chan and Grant (2016)
provide Monte Carlo evidence that shows this conditional DIC tends to pick overfitted models.
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we test if inflation in the G7 countries exhibits time-varying volatility. We find that for
all countries there is overwhelming support for stochastic volatility in either the trend
inflation or the transitory component. The second application investigates if there is
time-variation in the non-accelerating inflation rate of unemployment, or NAIRU, using
US inflation and unemployment data. We find strong evidence that the NAIRU is time-
varying.

The rest of the paper is organized as follows. Section 2 discusses the noncentered parame-
terization of Frühwirth-Schnatter and Wagner (2010) and how it can be used to compute
the relevant Savage-Dickey density ratio. Sections 3 and 4 illustrate the methodology
through two applications: the first tests for time-variation in inflation volatility in the
G7 countries; the second investigates time-variation in the NAIRU in the US.

2 Testing for Time-Variation

2.1 Bayes Factor and Savage-Dickey Density Ratio

We illustrate the proposed method using a simple unobserved components model with
stochastic volatility. It is straightforward to extend the approach to multivariate settings,
as shown in the second empirical application.

Consider the following model:

yt = τt + e
1

2
htεyt , (1)

τt = τt−1 + ωτε
τ
t , (2)

ht = ht−1 + ωhε
h
t , (3)

where εyt , ε
τ
t and εht are independent N (0, 1). The state equations (2) and (3) are initial-

ized with τ1 ∼ N (τ0, ω
2
τVτ ) and h1 ∼ N (h0, ω

2
hVh) respectively. We treat τ0 and h0 as

parameters to be estimated whereas the variances Vτ and Vh are known constants.2

It is often of interest to formally test if the time-variation in the intercept or the volatility
is needed. For concreteness, suppose we wish to test if there is indeed time-variation in
the variance. It amounts to comparing the model in (1)–(3) to a restricted version where
the variance is constant, i.e., h0 = h1 = · · · = hT . Denote the former model as M1 and
the latter as M2. To formally compare these two models, one popular model comparison

2We assume the log volatility ht follows a random walk process in (3), which is a popular specification
in empirical macroeconomics (see, e.g., Cogley and Sargent, 2005; Primiceri, 2005; Koop et al., 2009).
An alternative specification is a stationary autoregressive model that is commonly used in finance. Us-
ing US inflation, Eisenstat and Strachan (2015) compare the two specifications and conclude that the
estimates differ very little across the two volatility specifications. Since both our applications involve
macroeconomic series (inflation, GDP growth and unemployment), we expect both specifications would
give very similar results.
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criterion is the Bayes factor in favor of M1 against M2, defined as

BF12 =
p(y |M1)

p(y |M2)
,

where p(y |Mi) is the marginal likelihood for Mi, i = 1, 2, which is simply the marginal
data density under model Mi evaluated at the observed data y. It is related to the
posterior odds ratio as follows:

P(M1 |y)

P(M2 |y)
=

P(M1)

P(M2)
× BF12,

where P(M1)/P(M2) is the prior odds ratio. Thus, under equal prior model probabilities,
i.e., P(M1) = P(M2), the posterior odds ratio in favor of M1 reduces to the Bayes factor
BF12. In that case, if, for example, BF12 = 10, then model M1 is 10 times more likely
than model M2 given the data.

The Bayes factor has a natural interpretation and is commonly used to compare models.
However, in our settings where we wish to test for time-variation, one key difficulty is
the computation of the marginal likelihood of the model with time-varying parameters.
Marginal likelihood estimation has generated a large literature; see, e.g., Friel and Wyse
(2012) and Ardia, Baştürk, Hoogerheide, and van Dijk (2012) for a recent review. There
are several papers dealing specifically with marginal likelihood estimation for Gaussian
and non-Gaussian state space models using importance sampling (Frühwirth-Schnatter,
1995; Chan and Eisenstat, 2015) or auxiliary mixture sampling (Frühwirth-Schnatter
and Wagner, 2008). In particular, Chan and Grant (2016) and Kastner (2015) discuss
marginal likelihood computation for various univariate stochastic volatility models.

Despite recent advances, marginal likelihood computation for nonlinear state space mod-
els with multiple states remains a nontrivial task. The main challenge is to evaluate the
integrated likelihood that involves integrating out all the states. For example, to compute
the integrated likelihood for the model in (1)–(3), one needs to integrate out both τ and
h. For models in the applications with three or four types of states, the computation of
the integrated likelihood is even more difficult.3 That perhaps explains why despite the
popularity of state space models, there are few empirical studies that explicitly test for
time-variation.

Fortunately, one much simpler approach is available when one wants to compute the
Bayes factor for nested models. Specifically, for nested models, the Bayes factor can
be calculated using the Savage-Dickey density ratio (Verdinelli and Wasserman, 1995),

3 One could in principle compute the marginal likelihood using the conditional likelihood instead
of the integrated likelihood. For instance, one could estimate the marginal likelihood using the Chib’s
method (Chib, 1995) based on the conditional likelihood. However, Frühwirth-Schnatter and Wagner
(2008) find that “this estimator is extremely inaccurate” and “an upward bias seems to be present”. Chan
and Grant (2015) reach a similar conclusion when the marginal likelihood is estimated using a modified
harmonic mean (Gelfand and Dey, 1994) of the conditional likelihood—they find that this approach does
not work well in practice, as the resulting estimates have substantial bias and tend to select the wrong
model.
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which requires only the estimation of the unrestricted model. More importantly, no
explicit computation of the marginal likelihood is needed. This approach has been used
to compute the Bayes factor in many empirical applications, including Koop and Potter
(1999), Deborah and Strachan (2009), Koop, Leon-Gonzalez, and Strachan (2010) and
Chan (2013).

For concreteness, suppose we wish to compare the unobserved components model with
stochastic volatility in (1)–(3) (M1) against a version where the variance is constant over
time (M2). Formally, the latter is a restricted version of the former model with ω2

h = 0,
then the variance becomes eh0 . Ignoring some technical difficulties (which are discussed
below), the Bayes factor in favor of the unrestricted model M1 can be obtained using the
Savage-Dickey density ratio as

BF12 =
p(ω2

h = 0)

p(ω2
h = 0 |y)

,

where the numerator is the marginal prior density of ω2
h evaluated at 0 and the denom-

inator is the marginal posterior evaluated at 0.4 Intuitively, if ω2
h is more unlikely to be

zero under the posterior density relative to the prior density, then it is viewed as evidence
in favor of the time-varying model. Hence, to compute the relevant Bayes factor, one
only needs to evaluate two univariate densities at a point, which is often easy to do.

Nevertheless, this easier approach cannot be directly applied in our setting due to two
related issues. First, the value 0 is at the boundary of parameter space of ω2

h—therefore
the Savage-Dickey density ratio approach is not applicable. Second, one typically as-
sumes an inverse-gamma prior for ω2

h, which has zero density at zero. Our proposed
approach overcomes these two difficulties by using the noncentered parameterization of
Frühwirth-Schnatter and Wagner (2010)—instead of the error variance ω2

h, we work with
the standard derivation ωh that is defined to have support on the whole real line. With
these modifications, one can use the Savage-Dickey density ratio to compute the relevant
Bayes factor. We discuss the details in the next section.

2.2 Noncentered Parameterization

Following Frühwirth-Schnatter and Wagner (2010), we first define τ̃t = (τt − τ0)/ωτ and

h̃t = (ht − h0)/ωh. Then the state space model in (1)–(3) can be rewritten as follows:

yt = τ0 + ωτ τ̃t + e
1

2
(h0+ωhh̃t)εyt , (4)

τ̃t = τ̃t−1 + ετt , (5)

h̃t = h̃t−1 + εht , (6)

4For the Savage-Dickey density ratio identity to hold, the priors under the restricted and unre-
stricted models need to satisfy a certain condition. Throughout we assume the sufficient condition
that the restricted and unrestricted parameters are independent a priori. In our example it implies
p(τ0, h0, ω

2

τ , ω
2

h) = p(ω2

h)p(τ0, h0, ω
2

τ ).
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where εyt , ε
τ
t and εht are independent N (0, 1). The state equations (5) and (6) are initial-

ized with τ̃1 ∼ N (0, Vτ ) and h̃1 ∼ N (0, Vh) respectively. Frühwirth-Schnatter and Wagner
(2010) consider a normal prior centered at 0 for ωτ , say, ωτ ∼ N (0, Vωτ

). This normal
prior on the standard deviation ωτ has two main advantages over the usual inverse-gamma
prior on the variance ω2

τ .

First, by a change of variable (see, e.g., Kroese and Chan, 2014, Section 3.5), it can
be shown that the implied prior for ω2

τ is G(1
2
, 1
2Vωτ

), where G(α, β) denotes the Gamma

distribution with mean α/β. Compared to the conventional inverse-gamma prior, this
gamma prior has more mass concentrated around small values of ω2

τ . Hence, this prior
provides shrinkage—a priori it favors the more parsimonious constant-coefficient model.

The second advantage is that it is a conjugate prior for ωτ under the noncentered
parameterization—it therefore facilitates computation. We note that the sign of ωτ is
not identified—the prior of ωτ is symmetric around 0 and changing both the signs of ωτ

and τ̃t does not alter the likelihood value.

Frühwirth-Schnatter and Wagner (2010) only consider a noncentered parameterization
for the unobserved components with constant variance and develop a Gibbs sampler to
estimate the model. Kastner and Frühwirth-Schnatter (2014) later extend this approach
to the case where the stochastic volatility is also in the noncentered parameterization.
In addition, they provide an efficient algorithm for drawing the log volatilities and ωh by
adopting the auxiliary mixture sampler in Kim, Shepherd, and Chib (1998). Specifically,
letting y∗t = log[(yt − τ0 − ωτ τ̃t)

2], then (4) becomes

y∗t = h0 + ωhh̃t + εy∗t , (7)

where εy∗t = log[(εyt )
2]. Using a mixture of Gaussian distributions to approximate the

distribution of εy∗t , (6) and (7) define a conditionally linear Gaussian state space model.

As such, standard algorithms can be used to sample h̃ = (h̃1, . . . , h̃T )
′. In addition, given

h̃ and other model parameters, the full conditional distribution of ωh is Gaussian. Note
that similar to ωτ , the sign of ωh is not identified and its density can be bimodal. To fully
explore this possibly bimodal density, Frühwirth-Schnatter and Wagner (2010) suggest

performing a random sign switch for ωh and h̃: with probability 0.5, the draws of ωh and
h̃ remain unchanged; they are substituted by −ωh and −h̃ with the same probability.

Since the conditional distribution of ωh is Gaussian, its density p(ωh |y) can be easily es-
timated using Monte Carlo methods; see Appendix A for details. Hence, we can estimate
the Bayes factor in favor of the stochastic volatility model against the constant-variance
model using the Savage-Dickey density ratio p(ωh = 0)/p(ωh = 0 |y).5

5Another approach to estimate posterior model probabilities without explicit computation of the
marginal likelihoods is the stochastic model specification search approach proposed in Frühwirth-
Schnatter and Wagner (2010). The key step of this approach is to sample the model indicators.
Frühwirth-Schnatter and Wagner (2010) recommend sampling the indicators jointly, and those parame-
ters for which the variable selection is carried out should be integrated out to improve efficiency. This
can be done in linear Gaussian state space models, but it is more difficult for nonlinear models, such as
the one in (4)–(6).

6



2.3 Computational Issues

Next, we discuss some computational issues that arise in estimating the Bayes factor using
the Savage-Dickey density ratio p(ωτ = 0)/p(ωτ = 0 |y).6 If one assumes the Gaussian
prior ωτ ∼ N (0, Vωτ

) as suggested, then p(ωτ = 0) can be evaluated analytically, and it
suffices to estimate only p(ωτ = 0 |y). In Appendix A we consider a Monte Carlo esti-
mator for approximating the latter quantity. Even though that estimator is simulation-
consistent, its numerical accuracy with finite simulation size is not guaranteed. In fact,
in the context of marginal likelihood estimation, some simulation-consistent estimators
are known to perform poorly in practice (see the discussion in footnote 3). Hence, it
is crucial to understand under what conditions the proposed method is likely to yield
unreliable results.

Since the Monte Carlo estimator depends on the full conditional density of ωτ evaluated
at 0, the estimator is likely to be unstable if the density has little mass at 0—when
the restricted model is unlikely compared to the unrestricted model. In those cases,
the Savage-Dickey density ratio would tend to be large, but the exact value is unlikely
to be accurately estimated. Reporting numerical standard errors would help gauge the
accuracy. In addition, we can also corroborate the conclusion by visually inspecting the
prior and posterior densities of ωτ . For example, if the posterior density has little mass
around 0 relative to the prior density, this can be viewed as evidence against the restricted
model.

In the next two sections we illustrate the proposed methodology through two empirical
applications. The first involves testing for time-variation in inflation volatility in the G7
countries. The second investigates if there is substantial time-variation in the NAIRU in
the US.

3 Application 1: Time-Varying Volatility in Inflation

In the first application we revisit the unobserved components model considered in Stock
and Watson (2007) for modeling inflation. Specifically, they decompose the inflation series
into a trend and transitory component, where each component follows an independent
stochastic volatility process. A large and growing literature has shown that allowing for
stochastic volatility substantially improves forecasts (see, e.g., Clark, 2011; Koop and
Korobilis, 2012; Chan, 2013, among many others). Here we evaluate the in-sample fit
and formally test if both stochastic volatility processes are needed for trend inflation in
the G7 countries.

To that end, we first rewrite the unobserved components model in the noncentered pa-

6We thank an anonymous reviewer for raising some of the issues discussed in this section.
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rameterization as follows:

πt = τt + e
1

2
(h0+ωhh̃t)επt ,

τt = τt−1 + e
1

2
(g0+ωg g̃t)ετt ,

h̃t = h̃t−1 + εht ,

g̃t = g̃t−1 + εgt ,

(8)

where πt is the inflation rate, επt , ε
τ
t , ε

h
t and εgt are independent N (0, 1), and the state

equations are initialized with τ1 ∼ N (τ0, Vτ exp(g0 + ωgg̃1)), h̃1 ∼ N (0, Vh) and g̃1 ∼
N (0, Vg). We set Vτ = Vh = Vg = 10 and τ0 = 0. The model parameters are h0, g0, ωg

and ωh.

Hence, using this setup, we can turn off the stochastic volatility in the trend and the
transitory component by assuming that ωg = 0 and ωh = 0 respectively. In their analysis,
Stock and Watson (2007) fix the parameters ω2

h = ω2
g = 0.2. In a recent study, Moura

and Turatti (2014) estimate the two parameters while maintaining the assumption that
ω2
h = ω2

g = ω2. Using inflation in the G7 countries, they find that the estimates of ω2

are statistically different from the calibrated value of 0.2 for a few countries. Here we
estimate both ω2

h and ω2
g and allow them to be different.

The data are the quarterly consumer price indices (CPI) for the G7 countries from 1955Q1
to 2013Q4 obtained from the OECD statistics database. We transform the indices to
annualized growth rates. Due to space constraint, in Figure 1 we only plot the CPI
inflation for Germany and the US. It is evident from the figure that compared to the US,
inflation in Germany is relatively low and more stable.
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Figure 1: CPI inflation for Germany (left) and the US (right) from 1955Q1 to 2013Q4.

As discussed above, we assume normal priors for ωg and ωh: ωg ∼ N (0, Vωg
) and ωh ∼

N (0, Vωh
). We set Vωh

= Vωg
= 0.2 so that the implied prior means are Eω2

h = Eω2
g = 0.2,

which are the same as the calibrated value in Stock and Watson (2007). We further
assume that h0 ∼ N (b0, Vh0

) and g0 ∼ N (c0, Vg0) with b0 = c0 = 0, and Vh0
= Vg0 = 10.

Posterior results are based on 100000 draws after a burn-in period of 10000.
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We report in Figure 2 the estimated time-varying standard deviations of the transitory
and trend components for Germany inflation. As the figure shows, the variance of the
transitory component has been decreasing since the 1960s, which is only interrupted
briefly following the unification of West and East Germany in 1990. On the other hand,
the variance of the trend component exhibits much less movement, and has been low and
stable throughout the sample period.
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Figure 2: The estimates of exp(ht/2) (left panel) and exp(gt/2) (right panel) for Germany
inflation. The shaded areas represent the 90% credible intervals.

In contrast, the corresponding estimates for US inflation, reported in Figure 3, depict
a very different inflation experience. In particular, there is more time-variation in the
standard deviations of both the transitory and trend components. For instance, the
standard deviation of the trend component doubles in late 1970s compared to a decade
earlier. It is also interesting to note that the negative spike in US inflation in late 2008 is
accommodated by a sharp rise in the variance of the transitory component, whereas the
variance of the trend component remains stable.
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Figure 3: The estimates of exp(ht/2) (left panel) and exp(gt/2) (right panel) for US
inflation. The shaded areas represent the 90% credible intervals.
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Posterior means of ω2
h and ω2

g , as well as the associated 90% credible intervals are reported
in Table 1. The estimated posterior means of ω2

h are all much smaller than 0.2, the
calibrated value used in Stock and Watson (2007). In fact, most of the 90% credible
intervals exclude 0.2. On the other hand, the estimates of ω2

g are larger, and with the
exception of Germany, all the 90% credible intervals include 0.2. Moreover, it is more
difficult to accurately estimate ω2

g compared to ω2
h. This is not surprising as ω2

h controls
the stochastic volatility of the inflation πt, whereas ω2

g controls the stochastic volatility
of the underlying trend τt, which is not observed.

Table 1: Posterior means and 90% credible intervals of ω2
h and ω2

g .

ω2
h ω2

g

Canada 0.07 0.15
(0.017, 0.170) (0.018, 0.405)

France 0.03 0.15
(0.004, 0.086) (0.037, 0.362)

Germany 0.02 0.03
(0.002, 0.046) (0.001, 0.101)

Italy 0.13 0.15
(0.020, 0.315) (0.014, 0.384)

Japan 0.04 0.18
(0.004, 0.121) (0.009, 0.515)

UK 0.04 0.13
(0.007, 0.091) (0.011, 0.362)

US 0.11 0.11
(0.033, 0.229) (0.029, 0.266)

The estimates of ω2
h and ω2

g are always positive and provide little information on the poste-
rior mass near zero. In fact, some results even look puzzling. For example, the 90% cred-
ible intervals of ω2

h and ω2
g for Germany are respectively (0.002, 0.046) and (0.001, 0.101),

even though the estimates of exp(ht/2) and exp(gt/2) in Figure 2 suggest that there is
more time-variation in ht relative to gt. To shed some light on this issue, we plot the
posterior densities of ωh and ωg in Figures 4 and 5.7

Since the signs of both ωh and ωg are not identified, the posterior densities are symmetric
with respect to the origin; see also the discussion in Frühwirth-Schnatter and Wagner
(2010). For Germany, the posterior density of ωh is clearly bimodal. In addition, it has
little mass around 0 compared to the prior density. Since the Bayes factor in favor of
the unrestricted model against the restricted version where ωh = 0 is simply the ratio
p(ωh = 0)/p(ωh = 0 |y), this suggests that the relevant Bayes factor is very large. In
contrast, the posterior density of ωg looks almost unimodal and has more mass around
0 relative to the prior density, corroborating the relatively flat estimates of exp(gt/2)
reported in Figure 3. Given these results, the reason why the 90% credible interval of ω2

g

7We thank an anonymous reviewer for this suggestion.
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is wider than that of ω2
h seems to be mainly due to the higher posterior uncertainty for

ωg. For US data, the posterior densities of ωh and ωg are clearly bimodal and have little
mass near 0, suggesting that both stochastic volatility processes are important.
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Figure 4: The prior and posterior densities of ωh (left panel) and ωg (right panel) for
Germany inflation.

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

 

 

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

 

 
posterior
prior

Figure 5: The prior and posterior densities of ωh (left panel) and ωg (right panel) for US
inflation.

Next, we formally test if both stochastic volatility processes are necessary. To that end,
let Mu denote the unrestricted model in (8), and let Mh and Mg represent respectively the
restricted versions where ωh = 0 and ωg = 0. Moreover, we also consider the restricted
model with only homoscedastic innovations, i.e., both ωh = ωg = 0, and we call this
version Mhg. Note that the Bayes factor in favor of Mu against Mhg can be obtained using
the Savage-Dickey density ratio p(ωh = ωg = 0)/p(ωh = ωg = 0 |y). Its computation is
discussed in Appendix A. The estimated log Bayes factors are reported in Table 2; the
numerical standard errors are computed using 10 parallel chains, each of which is of length
100000 with a burn-in of 10000.
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Table 2: The estimated log Bayes factors and the numerical standard errors.

Canada France Germany Italy Japan UK US
log BFuh 5.96 2.90 6.21 2.88 7.89 6.15 67.09

(0.33) (0.06) (0.14) (0.18) (0.32) (0.26) (10.36)
log BFug 3.13 29.47 -0.82 2.60 1.81 2.73 11.35

(0.04) (4.45) (0.02) (0.10) (0.10) (0.13) (2.28)
log BFu,hg 20.36 71.16 8.00 234.94 75.69 76.69 195.34

(2.45) (7.71) (0.50) (7.32) (3.57) (2.26) (4.53)

Notes: BFuh and BFug are the Bayes factors in favor of having the stochastic volatility
process in the transitory and trend components, respectively. BFu,hg is the Bayes factor
in favor of having both stochastic volatility processes against the restricted version without
any stochastic volatility.

Recall that a positive log Bayes factor represents evidence in support of the unrestricted
model against the restricted version—i.e., the model with some form of stochastic volatil-
ity is preferred. Table 2 shows that all the estimated log Bayes factors log BFu,hg are
large and positive, indicating that the data generally prefer having at least one stochas-
tic volatility component. Also note that when the log Bayes factor estimate is large,
the associated numerical standard error also tends to be large—since in those cases it is
more difficult to accurately estimate the relevant posterior density at 0 as discussed in
Section 2.3.

In general, there is stronger evidence in favor of having stochastic volatility in the tran-
sitory component than in the trend component (except for France). For example, for
Canada the Bayes factors in favor of the stochastic volatility in the transitory and trend
components are respectively e5.96 ≈ 388 and e3.13 ≈ 23. In addition, Germany presents
the only example where the stochastic volatility in the trend component is not favored
by the data, though the evidence is weak.8 These results are in line with the conclusions
drawn from the densities of ωh and ωg given in Figures 4 and 5.

4 Application 2: Time Variation in the NAIRU

Since the seminal work of Milton Friedman, there has been considerable interest in the es-
timation of the NAIRU, or non-accelerating inflation rate of unemployment. The NAIRU
is typically treated as a constant parameter, but a few studies have found evidence that
it might be time-varying; see, e.g., Staiger, Stock, and Watson (1997) and Morley, Piger,
and Rasche (2013). Here we formally assess if there is substantial time-variation in the
NAIRU. Following Chan, Koop, and Potter (2015), consider the following bivariate model

8It is worth noting that log BFu,hg is not simply the sum of log BFuh and log BFug. For example, for
Italy both log BFuh and log BFug are less than 3, but log BFu,hg is about 235. This can happen if the
marginal densities of ωh and ωg have nonnegligible mass around 0, but the joint density of ωh and ωg

has little mass around (0,0)—it is highly unlikely that both ωh and ωg take on small values jointly.
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for inflation, πt, and unemployment, ut:

(πt − τt) = λ(ut − νt) + επt , (9)

(ut − νt) = εut , (10)

where τt and νt are respectively the underlying inflation trend and the NAIRU. We assume
επt ∼ N (0, eht) and the underlying inflation trend τt follows a random walk process with
stochastic volatility described below. The innovation εut follows an AR(2) process:

εut = φ1ε
u
t−1 + φ2ε

u
t−2 + ζt, (11)

where ζt ∼ N (0, σ2
u) and εu0 = εu

−1 = 0.

The inflation equation (9) states that πt−τt, the deviation of the inflation from its underly-
ing trend, depends on the “gap” between the unemployment rate and the NAIRU—when
the unemployment rate is at the NAIRU, the inflation equals its underlying trend plus
a transitory shock. The unemployment equation (10) models the deviation of the unem-
ployment rate from the NAIRU as an AR(2) process. In addition, the NAIRU νt follows
the following random walk process:

νt = νt−1 + ωνε
ν
t ,

where ενt ∼ N (0, 1) and the process is initialized with ν1 ∼ N (ν0, ω
2
νVν).

Our focus is to assess whether the NAIRU is time-varying. To that end, we rewrite the
system (9)–(10) in the noncentered parameterization with νt = ν0 + ων ν̃t as follows:

(πt − τt) = λ(ut − ν0 − ων ν̃t) + επt , (12)

(ut − ν0 − ων ν̃t) = εut . (13)

There are altogether four state equations, which are:

ν̃t = ν̃t−1 + ενt (14)

τt = τt−1 + e
1

2
(g0+ωg g̃t)ετt ,

h̃t = h̃t−1 + εht ,

g̃t = g̃t−1 + εgt ,

where ενt , ε
τ
t , ε

h
t and εgt are independent N (0, 1) random variables. The states are initial-

ized by ν̃1 ∼ N (0, Vν), τ1 ∼ N (τ0, Vτ exp(g0 + ωgg̃1)), h̃1 ∼ N (0, Vh) and g̃1 ∼ N (0, Vg)
with Vν = Vτ = Vh = Vg = 10 and τ0 = 0. Then, the Bayes factor in favor of a time-
varying NAIRU against its constant counterpart can be evaluated using the Savage-Dickey
density ratio BFuν = p(ων = 0)/p(ων = 0 |π,u).

The data consist of the CPI inflation rate and the civilian unemployment rate from
1948Q1 to 2013Q4 obtained from the Federal Reserve Bank of St. Louis economic
database. The priors and the estimation details are given in Appendix B. Posterior
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analysis is based on 10 parallel chains each of which is of length 100000 after a burn-in
period of 10000. The posterior means and the associated 90% credible intervals of the
main parameters are reported in Table 3.

Table 3: Posterior means and 90% credible intervals of selected parameters.

posterior mean 90% credible interval
λ -0.57 (-0.855, -0.304)
φ1 1.64 (1.557, 1.715)
φ2 -0.70 (-0.779, -0.615)
σ2
u 0.07 (0.056, 0.089)

ω2
h 0.27 (0.101, 0.506)

ω2
g 0.12 (0.022, 0.312)

ω2
ν 0.01 (0.005, 0.025)

The estimate of λ is −0.57 with a 90% credible interval that excludes 0, indicating a
downward sloping Philips curve. In particular, if the unemployment rate is 1% below the
NAIRU, the inflation rate would be on average 0.57% above its underlying trend. The
deviation of the unemployment rate from the NAIRU seems to be highly persistent—the
AR coefficients φ1 and φ2 are estimated to be 1.64 and −0.70, respectively.

1950 1960 1970 1980 1990 2000 2010
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12

Figure 6: The estimated time-varying NAIRU (solid line) and the unemployment rate
(dashed line). The shaded area represents the 90% credible intervals of the NAIRU.

Figure 6 plots the estimated time-varying NAIRU and the associated 90% credible inter-
vals. The figure shows a gradual increase in the NAIRU from about 4% in 1950 to about
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6.5% in the early 1980s. Then, it drops steadily throughout the 1980s and 1990s, until
it picks up again since the 2000s. Seemingly, the NAIRU has experienced considerable
variation in the past six decades.

Next, we report in Figure 7 the estimate of the marginal posterior density p(ων |π,u).
It is evident from the figure that this posterior density is bimodal and has little mass
around 0 compared to the prior density, which can be viewed as evidence in support of a
time-varying NAIRU.
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Figure 7: The prior and posterior densities of ων .

To formally test if there is substantial time-variation in the NAIRU, we compute the
Bayes factor in favor of the unrestricted model against the restricted version where the
NAIRU is a constant (ων = 0). The log Bayes factor is estimated to be 2.7 with a
numerical standard error of 0.18. That is, the Bayes factor in favor of the time-varying
NAIRU model is about 15. In other words, if we assume a priori that it is equally likely
that the NAIRU is time-varying and time-invariant, given the data the former possibility
is 15 times more likely than the latter.

5 Concluding Remarks and Future Research

We have developed an easy technique to test for time-variation in coefficients and volatil-
ities. The proposed method was used to address two questions: does inflation display
time-varying volatility? Is the NAIRU time-varying or is it constant? This technique
is especially useful in the model building stage, where the modeler is faced with many
different modeling choices—various specification tests can be done by simply estimating
one unrestricted model.

To test for time-variation in multiple coefficients, the proposed approach involves estimat-
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ing the quantity of the form p(ω = 0 |y). In Application 1 we showed an example where
ω = (ωh, ωg)

′ is two-dimensional. In cases where the dimension of ω is high, estimating
the quantity p(ω = 0 |y) accurately presents a challenge. In those cases, one might need
to consider alternative methods to compute the relevant Bayes factor.
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Appendix A: Evaluating Marginal and Joint Densities

In this appendix we first outline the auxiliary mixture sampler to jointly sample the
transformed log volatilities h̃. We next describe how one can evaluate the densities
p(ωh |y) and p(ωh, ωg |y) at zero.

First, it follows from εyt ∼ N (0, 1) that εy∗t = log[(εyt )
2] has a log χ2

1 distribution. Kim
et al. (1998) show that the log χ2

1 distribution can be well approximated using a seven-
component Gaussian mixture density with fixed parameters. By introducing the mixture
component indicators st ∈ {1, . . . , 7} for t = 1, . . . , T , (7) can be approximated by a
conditionally linear Gaussian state space model:

y∗ = h01+ ωhh̃+ εy∗, (15)

where y∗ = (y∗1, . . . , y
∗

T )
′, εy∗ = (εy∗1 , . . . , εy∗T )′, 1 is a T×1 column of ones, εy∗ ∼ N (ds,Ωs)

with ds and Ωs being constant matrices—depending on s = (s1, . . . , sT )
′—obtained from

the Gaussian mixture approximation of the log χ2
1 distribution. We then use the precision

sampler of Chan and Jeliazkov (2009) to sample h̃.

Next, we outline how one can evaluate the marginal density p(ωh |y) at 0. To that end,
rewrite (15) as

y∗ = Xγ + εy∗,

where γ = (h0, ωh)
′ and

X =



1 h̃1
...

...

1 h̃T


 .

Recall that the prior for ωh is ωh ∼ N (0, Vωh
) and we further assume that h0 ∼ N (b0, Vh0

).
Let γ0 = (b0, 0)

′ and Vγ = diag(Vh, Vωh
). Then by standard linear regression results (see,

e.g., Koop, Poirier, and Tobias, 2007, pp. 191-193), we have

(γ |y, s, h̃) ∼ N (γ̂,Dγ),

where

Dγ =
(
V−1

γ +X′Ω−1
s
X
)
−1

, γ̂ = Dγ(V
−1
γ γ0 +X′Ω−1

s
(y∗ − ds)).

It follows that the marginal distribution of ωh given y, s and h̃ is N (γ̂2,Dγ,22), where
γ̂2 is the second element of γ̂ and Dγ,22 is the (2,2) element of Dγ . Hence, the density

p(ωh |y, τ , s, h̃) can be evaluated exactly. Finally, p(ωh = 0 |y) can be estimated using
the Monte Carlo average:

p̂(ωh = 0 |y) =
1

R

R∑

i=1

p(ωh = 0 |y, τ (i), s(i), h̃(i)),

where (τ (1), s(1), h̃(1)), . . . , (τ (R), s(R), h̃(R)) are posterior draws.
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Next, we describe how one can evaluate p(ωh, ωg |y) at (0, 0). Let s denote the vector of

label indicators for h̃ as before. Similarly, let r denote the label indicators associated with
g̃. Note that ωh and ωg are conditional independent given the parameters and states, i.e.,

p(ωh, ωg |y, τ , s, h̃, r, g̃) = p(ωh |y, τ , s, h̃)p(ωg |y, τ , r, g̃).

In addition, both densities on the right-hand side are univariate Gaussian, and they can
be evaluated at 0 easily. Then, we can estimate p(ωh = 0, ωg = 0 |y) using the Monte
Carlo average:

p̂(ωh = 0, ωg = 0 |y) =
1

R

R∑

i=1

p(ωh = 0 |y, τ (i), s(i), h̃(i))p(ωg = 0 |y, τ (i), r(i), g̃(i)),

where (τ (1), s(1), h̃(1), r(1), g̃(1)), . . . , (τ (R), s(R), h̃(R), r(R), g̃(R)) are posterior draws.
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Appendix B: Estimation Details

In this appendix we provide the details of the priors and estimation for the bivariate
unobserved components model with a time-varying NAIRU in Section 4. For notational
convenience, stack π = (π1, . . . , πT )

′ and u = (u1, . . . , uT )
′, and similarly define τ , h̃, g̃,

φ, ν̃, επ, εu, εν and ζ.

Priors

We assume the following independent priors:

ν0 ∼ N (a0, Vν0), h0 ∼ N (b0, Vh0
), g0 ∼ N (c0, Vg0),

ων ∼ N (0, Vων
), ωh ∼ N (0, Vωh

), ωg ∼ N (0, Vωg
),

φ ∼ N (0,Vφ), λ ∼ N (0, Vλ), σ2
u ∼ IG(νu, Su).

We set a0 = b0 = c0 = 0 and Vν0 = Vh0
= Vg0 = 10 so that the initial states are

all centered at 0 with relatively large variances. Moreover, we assume Vων
= 0.1 and

Vωh
= Vωg

= 0.2, so that the implied prior means are Eω2
ν = 0.1 and Eω2

h = Eω2
g = 0.2.

We assume relatively large variances for φ and λ: Vφ = I2, Vλ = 10. Finally, we set
νu = 5 and Su = 0.1, which imply Eσ2

u = 0.025.

Likelihood

To derive the (conditional) likelihood, we first rewrite (12) and (13) as

π = τ + λ(u− ν01)− λωνν̃ + επ (16)

u = ν01+ ωνν̃ + εu, (17)

where επ ∼ N (0,Sπ) and Sπ = diag(eh0+ωhh̃1 , . . . , eh0+ωhh̃T ).

The first measurement equation (16) implies that the log density of π given u, the states
and other parameters is given by

log p(π |u, τ , ν̃, h̃, λ, ν0, ων) ∝ −
1

2
1′(h01+ ωhh̃)

−
1

2
(π − τ − λ(u− ν01) + λωνν̃)

′S−1
π (π − τ − λ(u− ν01) + λωνν̃).

(18)

Next, we derive the joint density of u. To that end, let

Hφ =




1 0 0 0 · · · 0
−φ1 1 0 0 · · · 0
−φ2 −φ1 1 0 · · · 0
0 −φ2 −φ1 1 · · · 0
...

. . . . . . . . . . . . 0
0 · · · 0 −φ2 −φ1 1




.
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Note that Hφ is a T×T band matrix with unit determinant, and therefore it is invertible.
Then, we rewrite the AR(2) process in (11) as

Hφε
u = ζ,

where ζ ∼ N (0, σ2
uIT ). Hence, we have εu ∼ N (0, σ2

u(H
′

φHφ)
−1). It follows that the

second measurement equation (17) implies

log p(u | ν̃, σ2
u, ν0, ων ,φ, σ

2
u) ∝ −

T

2
log σ2

u−
1

2σ2
u

(u−ν01−ωνν̃)
′H′

φHφ(u−ν01−ωνν̃). (19)

Posterior Sampler

Given the priors and the (conditional) likelihood derived in the previous section, posterior
draws can be obtained by sequentially sampling from:

1. p(ν̃ |π,u, τ , h̃, λ, ν0, ων ,φ, σ
2
u);

2. p(τ |π,u, ν̃, h̃, g̃, λ, ν0, ων , ωg, g0,φ);

3. p(h̃, g̃ |π,u, τ , ν̃, λ, g0, h0, ν0, ωg, ωh, ων) = p(h̃ |π,u, τ , ν̃, λ, h0, ν0, ωh, ων)p(g̃ | τ , g0, ωg);

4. p(h0, g0, ν0, ωg, ωh, ων |π,u, τ , ν̃, h̃, g̃, λ,φ, σ
2
u) = p(ν0, ων |π,u, τ , ν̃, h̃, λ,φ, σ

2
u)

× p(h0, ωh | ν0, ων ,π,u, τ , ν̃, h̃, λ)p(g0, ωg | τ , g̃);

5. p(φ |u, ν̃, ν0, ων , σ
2
u);

6. p(λ |π,u, τ , ν̃, h̃, ν0, ων);

7. p(σ2
u |u, ν̃, ν0, ων ,φ).

To implement Step 1, note that

p(ν̃ |π,u, τ , h̃, λ, ν0, ων ,φ, σ
2
u) ∝ p(π |u, τ , ν̃, h̃, λ, ν0, ων)p(u | ν̃, σ2

u, ν0, ων ,φ, σ
2
u)p(ν̃).

The first two densities on the right-hand side are given in (18) and (19), respectively.
Next, we derive the prior density p(ν̃). To that end, we rewrite (14) in matrix form:

Hν̃ = εν ,

where εν ∼ N (0,Sν), Sν = diag(Vν , 1, . . . , 1) and

H =




1 0 0 · · · 0
−1 1 0 · · · 0
0 −1 1 · · · 0
...

. . . . . . . . . 0
0 · · · 0 −1 1
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Hence, the prior density of ν̃ is given by

log p(ν̃) ∝ −
1

2
ν̃
′

H′S−1
ν Hν̃. (20)

Hence, it follows from (18), (19) and (20) that

log p(ν̃ |π,u, τ , h̃, λ, ν0, ων ,φ, σ
2
u)

∝ log p(π |u, τ , ν̃, h̃, λ, ν0, ων) + log p(u | ν̃, σ2
u, ν0, ων ,φ, σ

2
u) + log p(ν̃)

∝−
1

2

(
λ2ω2

νν̃
′

S−1
π ν̃ + 2λωνν̃

′

S−1
π (π − τ − λ(u− ν01))

)

−
1

2σ2
u

(ω2
νν̃

′

H′

φHφν̃ − 2ωνν̃
′

H′

φHφ(u− ν01))−
1

2
ν̃
′

H′S−1
ν Hν̃

∝−
1

2
(ν̃ − ν̂)′Kν̃(ν̃ − ν̂),

where

Kν̃ = λ2ω2
νS

−1
π +

ω2
ν

σ2
u

H′

φHφ +H′S−1
ν H,

ν̂ = K−1
ν̃

(
ων

σ2
u

H′

φHφ(u− ν01)− λωνS
−1
π (π − τ − λ(u− ν01))

)
.

In other words, (ν̃ |π,u, τ , h̃, λ, ν0, ων ,φ, σ
2
u) ∼ N (ν̂,K−1

ν̃
). Since Sπ, Sν , Hφ and H are

all band matrices, so is the precision matrix Kν̃ . Hence, the precision sampler of Chan
and Jeliazkov (2009) can be used to sample ν̃ efficiently.

To implement Step 2, note that

p(τ |π,u, ν̃, h̃, g̃, λ, ν0, ων , ωg, g0,φ) ∝ p(π |u, τ , ν̃, h̃, λ, ν0, ων)p(τ | g̃),

where the first density on the right-hand side is given in (18). The state equation for τ
can be written as

Hτ = α̃+ ετ ,

where α̃ = (τ0, 0, . . . , 0)
′, ετ ∼ N (0,Sτ ) with Sτ = diag(Vτe

g0+ωg g̃1 , eg0+ωg g̃2 , . . . , eg0+ωg g̃T ).
Using a similar argument as before, it can be shown that the conditional distribution of
τ is N (τ̂ ,K−1

τ ), where

Kτ = S−1
π +H′S−1

τ H, τ̂ = K−1
τ

(
H′S−1

τ α̃+ S−1
π (π − λ(u− ν01− ωνν̃))

)
.

Once again, since the precision matrix Kτ is a band matrix, the precision sampler of
Chan and Jeliazkov (2009) can be applied to sample τ efficiently.

Steps 3 and 4 can be carried out as described in Appendix A. The remaining steps are
standard and involve drawing from standard distributions.
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