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Abstract

We propose a novel time-varying parameter mixed-data sampling (TVP-MIDAS)

framework. Specifically, we decompose the MIDAS coefficients into a scalar pa-

rameter representing the overall impact of high-frequency variables and a vector of

weights, allowing both features to vary over time. Our study applies this framework

to real-time forecasting for US real GDP. Our analysis demonstrates that the TVP-

MIDAS model specifications produce superior point forecasts and are particularly

effective in capturing left tail risk compared to their time-invariant counterparts.

Additionally, our in-sample analysis reveals a significant negative trend in the influ-

ence of the National Financial Conditions Index (NFCI) on US real GDP, suggesting

a progressively adverse correlation over time. Conversely, the impact of the yield

curve slope on US real GDP exhibits minimal variation over time.
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1 Introduction

Mixed-data sampling (MIDAS) regressions have garnered significant attention in empir-

ical macroeconomics for their utility in nowcasting key macroeconomic indicators like

real GDP and inflation. A notable advantage of MIDAS lies in its straightforward and

parsimonious framework, enabling the sampling of left-hand and right-hand variables of

a time series regression at differing frequencies. For instance, a prevalent application

of MIDAS in the literature involves forecasting real GDP, a quarterly variable, utiliz-

ing high-frequency predictors such as monthly industrial production or employment (see

Marcellino and Schumacher, 2010; Kuzin, Marcellino, and Schumacher, 2011; Foroni and

Marcellino, 2014; Mogliani and Simoni, 2021). High-frequency predictors offer the ad-

vantage of timelier release compared to quarterly real GDP data. Leveraging a MIDAS

framework allows forecasters to exploit this timely information, enabling the production

of a nowcast of real GDP prior to the official release by the statistical agency. Moreover,

MIDAS has extended its prominence beyond empirical macroeconomics into financial set-

tings, particularly in forecasting stock price volatility (see Andreou, 2016; Wang, Ma, Liu,

and Yang, 2020).

Within the realm of MIDAS regressions, the standard approach is to assume constant

parameters. This is mostly due to necessity, as common parameterizations of the MIDAS

weighting function, such as exponential Almon lag and beta polynomials, are nonlinear

in the parameters. As such, extending them to time-varying settings typically involves

the estimation of nonlinear state space models, which tends to be computationally inten-

sive. On the other hand, assuming constant parameters in MIDAS regressions appears to

be overly restrictive given the documented importance of allowing for time-variation in

model parameters when forecasting macroeconomic variables (see Primiceri, 2005; Bar-

nett, Mumtaz, and Theodoridis, 2014; Koop and Korobilis, 2013; D’Agostino, Gambetti,

and Giannone, 2013; Chan and Eisenstat, 2018). Furthermore, macroeconomic variables

often demonstrate time-varying conditional distributions, reflecting fluctuations in govern-

ment policies, global economic conditions, technological advancements, and other socio-

economic factors. Comprehensive understanding and modeling of these time-varying dis-

tributions are imperative for accurate risk assessment, informed policy formulation, and

the anticipation of future economic trends.

To address the limitations inherent in existing approaches, we propose a novel MIDAS

framework that accommodates time-varying parameters, stochastic volatility and COVID-
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19 outliers. To that end, we first introduce a class of linear parameterizations that are

both flexible and conducive to fast estimation. The proposed setup can be motivated as

finite-dimensional approximations of weighting functions using suitable basis functions.

This setup includes the Almon polynomial, as well as many other basis functions, such

as Fourier series and B-splines. A key advantage is that all these basis functions can

be represented as linear regressions. As such, extending them to time-varying parameter

settings is relatively straightforward. In addition to the time-varying weighting function,

we also allow other coefficients, such as the scalar parameter representing the overall im-

pact of the lags of the high-frequency variable, to be time-varying. In order to separately

identify the overall impact parameter and the parameters in the weighting function, we

develop an alternative identification scheme that preserves linearity and facilitates esti-

mation. While normalization and identification are not strictly imperative in MIDAS

regressions, they can prove beneficial in certain applications, as exemplified in Ghysels,

Santa-Clara, and Valkanov (2005), where the overall impact coefficient has an interesting

economic interpretation.

In addition to time-varying parameters in the conditional mean, the proposed TVP-

MIDAS framework also includes stochastic volatility and an explicit outlier component

to address the extreme movements of many macroeconomic variables at the onset of

the COVID-19 pandemic. Furthermore, we also discuss how the proposed framework can

handle irregularly spaced mixed-frequency data and settings with multiple high-frequency

predictors.

Our research is related to a few recent MIDAS studies, each offering distinct insights

into modeling the dynamics between low- and high-frequency variables. Firstly, Potja-

gailo and Kohns (2023) propose a Bayesian MIDAS model incorporating a time-varying

trend and stochastic volatility for nowcasting UK real GDP. Their model is a restricted

variant of the proposed TVP-MIDAS model, as they solely permit time variation in the

intercept of the MIDAS regression, while maintaining a time-invariant structure for the

MIDAS weighting function. Secondly, Guérin and Marcellino (2013) extend the MIDAS

framework to accommodate parameter changes, albeit using a Markov switching model

with two regimes. Thirdly, Schumacher (2014) develops a MIDAS regression with time-

varying parameters, but the weighting function is parameterized using the exponential

Almon polynomial, which is nonlinear in the parameters. As such, the estimation of

the nonlinear state space model requires particle filtering techniques, which are compu-

tationally burdensome. Consequently, Schumacher (2014) only allows for time variation
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in a single high-frequency predictor in the MIDAS regression. In contrast, the proposed

approach uses linear parameterizations of the weighting function, each of which defines

a linear Gaussian state space model. As such, standard estimation approaches, such as

the precision-based method in Chan and Jeliazkov (2009), can be used to estimate the

proposed model. The computational efficiency and flexibility of this approach thus allow

the researcher to consider multiple high-frequency predictors, with different time-varying

weights and impact parameters.

We apply the proposed TVP-MIDAS framework to a real-time forecasting application for

quarterly US real GDP. Within this framework, we incorporate two high-frequency pre-

dictors: the daily interest rate spread, representing the slope of the yield curve (defined

as the difference between the 10-year and 3-month treasury yields), and a weekly national

financial condition index (NFCI). Our forecasting process involves generating three fore-

casts or nowcasts at the end of each month within the quarter, with our evaluation period

spanning from 1990Q1 to 2021Q2.

Our findings indicate that the TVP-MIDAS model specifications yield superior point

forecasts compared to their corresponding static counterparts. However, when assessing

density forecasts, we observe that the TVP-MIDAS model specifications with stochastic

volatility demonstrate similar performance to their static counterparts. Furthermore, we

explore the forecasting performance of our TVP-MIDAS model regarding the tail risk of

US real GDP. Specifically, our analysis reveals that TVP-MIDAS model specifications

with stochastic volatility outperform their static counterparts in forecasting the left tail

of US real GDP. Conversely, for the right tail of US real GDP, the static MIDAS models

exhibit superior forecasting ability compared to the TVP-MIDAS models. Therefore, our

results suggest that during periods of heightened volatility, the incorporation of time-

varying parameters and stochastic volatility is crucial for accurately forecasting the left

tail of US real GDP or recessionary events. This conclusion resonates with the findings

of Adrian, Boyarchenko, and Giannone (2019) and Estrella and Hardouvelis (1991), who

underscore the significance of financial conditions and the yield curve slope as predictors

for future recessions in the economy. In contrast, during tranquil periods, a static time-

invariant MIDAS model proves adequate for forecasting the right tail of US real GDP.

Finally, we estimate our TVP-MIDAS model with stochastic volatility using the final data

vintage of 2021Q2. Our in-sample analysis reveals that the influence of the NFCI exhibits

a significant negative trend, implying a progressively adverse correlation between US real

GDP and NFCI over time. This finding aligns with the conclusions drawn by Adrian,
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Boyarchenko, and Giannone (2019). Conversely, our analysis reveals that the impact of

the yield curve slope on US real GDP dynamics exhibits minimal significance over time.

The rest of the paper is organized as follows. Section 2 introduces and discusses the

proposed TVP-MIDAS framework. Section 3 outlines the posterior sampler. Section

4 presents the real-time out-of-sample application and the in-sample analysis. Finally,

Section 5 concludes.

2 The Econometric Framework

3 MIDAS Regressions

To illustrate the MIDAS approach, we start with a simple setting in which we are inter-

ested in forecasting the variable yt, which is observed only at discrete times t = 1, 2, . . . , T ,

using the history of another variable x
(m)
t , which is observed m times between the discrete

time periods. More specifically, the observations of the high-frequency variable between

t − 1 and t are denoted as x
(m)
t−k/m, k = 0, . . . ,m − 1, where x

(m)
t−(m−1)/m and x

(m)
t are, re-

spectively, the first and last available observations between the periods. An example is

the forecasting of monthly inflation yt using daily interest rates x
(m)
t with m = 22, if

we assume that there are 22 daily available observations within each month. In Subsec-

tion 3.3, we will consider more complex settings where the numbers of observations of the

high-frequency variable between discrete time periods are not constant.

3.1 MIDAS Weighting Functions

One challenge even in this simple setting is the proliferation of parameters when m is large.

A common approach is to use the average of the high-frequency variable observations

between t − 1 and t, 1
m

∑m−1
k=0 x

(m)
t−k/m, as a single predictor. More specifically, let h ≥ 1

denote the forecast horizon, and consider the following direct forecasting approach:

yt+h = α + β

(
1

m

m−1∑
k=0

x
(m)
t−k/m

)
+ εt+h. (1)
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Alternatively, one could use only the last observation of the high-frequency variable be-

tween periods t− 1 and t:

yt+h = α + βx
(m)
t + εt+h. (2)

Obviously, both approaches are ad hoc and application specific. The key feature of the

MIDAS regression is the use of a parsimonious and data-driven weighting function to

summarize the information of the high-frequency variable x
(m)
t for predicting yt. As a

simple example, consider the predictive regression

yt+h = α + βw′tx
(m)
t + εt+h,

where wt is an m×1 vector of weights and x
(m)
t = [x

(m)
t , x

(m)
t−1/m, . . . , x

(m)
t−(m−1)/m]′. It is easy

to verify that the predictive regressions in (1) and (2) are special cases with wt = 1
m

1m

and wt = [1, 0, . . . , 0]′, respectively.

Following Ghysels, Sinko, and Valkanov (2007) and Pettenuzzo, Timmermann, and Valka-

nov (2016), we consider a general MIDAS regression of the form

yt+h = α + ρ′yt + γ ′zt + βB
(
L1/m;θ

)
x
(m)
t + εt+h, (3)

where the scalar β captures the overall impact of the lagged values of x
(m)
t on yt+h, ρ is

the vector of autoregressive coefficients on yt = [yt, yt−1, . . . , yt−py ]′, and zt is a vector of

exogenous predictors. The MIDAS weighting function B
(
L1/m;θ

)
is parameterized as

B
(
L1/m;θ

)
=

K∑
k=0

B(k;θ)Lk/m,

where Lk/m is a lag operator such that Lk/mx
(m)
t = x

(m)
t−k/m and each component function

B(k;θ) depends on a low-dimensional vector of parameters θ.

Ghysels, Sinko, and Valkanov (2007) consider two parameterizations of the component

function B(k;θ): the exponential Almon lag and the beta polynomial. Both parameter-

izations are parsimonious, and yet flexible enough to model a wide variety of dynamic

patterns. However, they are nonlinear in the parameters, which makes estimation more

difficult, especially in time-varying parameter settings. A further challenge is the imposi-

tion of the conventional identification restriction: in order to separately identify β and θ,

one typically normalizes the weighting function B
(
L1/m;θ

)
, i.e., replacing the component
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function B(k;θ) by its normalized version

B̃(k;θ) =
B(k;θ)∑K
k=1B(k;θ)

. (4)

This type of normalization further complicates the estimation procedure.1

To tackle these challenges, we consider a class of parameterizations that are linear in

the parameters for fast estimation. They may also be motivated as finite-dimensional

approximations of weighting functions with desirable properties (e.g., smooth, bounded,

square-integrable). In addition, we develop an alternative identification scheme that fa-

cilitates estimation. These two features are vitally important when we generalize the

MIDAS model to time-varying parameter settings in the next section.

More specifically, suppose we wish to approximate a function B(s) using the finite-

dimensional approximation

B(s;θ) =

p∑
j=0

θjφj(s),

where φ0, . . . , φp are the basis functions and θ = [θ0, . . . , θp]
′ is the associated vector of

coefficients. By evaluating B(s;θ) at discrete values s = k = 0, . . . , K, it takes the form

B(k;θ) = θ′vk, (5)

where vk = [φ0(k), . . . , φp(k)]′. As an example, this formulation recovers the widely used

Almon lag polynomial by setting vk = [1, k, k2, . . . , kp]′, so that

B(k;θ) =

p∑
j=0

θjk
j. (6)

That is, the Almon lag polynomial may be viewed as using the polynomials φj(s) = sj, j =

0, 1, . . . , p, as basis functions.

While polynomial basis functions are simple and easy to use, they are not orthogonal

and do not provide an efficient basis system. An alternative is the set of Fourier basis

functions — i.e., φ0(s) = 1, φj(s) = cos(jωs) if j is odd and φj(s) = sin(jωs) if j is

1While the normalization and identification of β and θ are not necessary for our forecasting exercise,
they are useful for applications that focus on the economic interpretation of the impact of the high-
frequency variable on the low-frequency one. See Ghysels, Sinko, and Valkanov (2007) for some interesting
examples.
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even — that forms an orthonormal basis (for square-integrable functions). By setting

ω = 2π/(pm), B(k;θ) can be represented as

B(k;θ) = θ0 +

p∑
j=1

(
θj1 cos

(
2π

pm
jk

)
+ θj2 sin

(
2π

pm
jk

))
. (7)

This formulation opens up many possibilities as any basis functions, such as B-splines

or wavelets, can be represented using the linear parameterization in (5). Not only is

the linear parameterization flexible, it also makes estimation of the unknown parameter

vector θ straightforward.

Finally, instead of following the standard normalization approach that introduces ad-

ditional nonlinearities in θ, we directly impose the linear equality constraint that the

component functions sum to unity:

K∑
k=1

B(k;θ) =
K∑
k=1

θ′vk = 1.

While this identification assumption is equivalent to the standard normalization approach

given in (4), estimation following the former is much easier and it generalizes well to time-

varying parameter settings, as we will show in the following section.

3.2 Time-Varying Coefficients, Stochastic Volatility and Outlier

Adjustment

The conventional MIDAS regression in (3) assumes both a time-invariant weighting func-

tion B(L1/m;θ) and a constant overall impact of the high-frequency variable x
(m)
t on yt.

However, when forecasting macroeconomic variables, such as GDP or inflation, these

assumptions are overly restrictive. In fact, an extensive literature has highlighted the

significant benefits of accommodating parameter variations over time when forecasting

such macroeconomic variables (see Barnett, Mumtaz, and Theodoridis, 2014; Koop and

Korobilis, 2013; D’Agostino, Gambetti, and Giannone, 2013).

Consequently, we develop a novel TVP-MIDAS framework, wherein both the weighting

function and regression coefficients are permitted to evolve over time. This facilitates the

direct assessment of the evolving impact of high-frequency variable x
(m)
t on yt. Schumacher
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(2014) proposes a MIDAS regression with time-varying exponential Almon lag weights.

A limitation of this setup is that the exponential Almon lag polynomial is nonlinear in

the parameters, and extending it to a time-varying setting involves the estimation of

a nonlinear state space model. Schumacher (2014) considers an example with only one

high-frequency predictor, and estimates the model using the particle filter. The estimation

entails significant computational burden, rendering real-time forecasting using multiple

high-frequency predictors infeasible.2

In contrast, the proposed framework uses linear parameterizations for the weighting func-

tions and can be written as a linear Gaussian state space model. Therefore, estimation

can be done easily using either conventional Kalman-filter based sampling methods or

the more efficient precision-based methods developed in Chan and Jeliazkov (2009). The

proposed approach thus scales well to high-dimensional settings and allows the researcher

to consider multiple high-frequency predictors in real-time forecasting applications.

Another crucial aspect for modeling and forecasting macroeconomic time-series is the

incorporation of stochastic volatility. A large body of empirical research, such as those

conducted by Clark (2011), Clark and Ravazzolo (2015), Cross and Poon (2016) and

Chan and Eisenstat (2018), has underscored the significance of accommodating time-

varying volatility for both in-sample and out-of-sample applications. Furthermore, Car-

riero, Clark, and Marcellino (2015) and Pettenuzzo, Timmermann, and Valkanov (2016)

have emphasized the importance of incorporating stochastic volatility in the context of

MIDAS regressions for forecasting key macroeconomic variables. Finally, given the ex-

treme movements in many macroeconomic during the COVID-19 pandemic, the proposed

framework also explicitly includes an outlier component to address any potential outliers.

Specifically, we consider the following TVP-MIDAS model with stochastic volatility

yt+h = αt + ρ′tyt + γ ′tzt + βtB
(
L1/m;θt

)
x
(m)
t + εt+h, εt+h ∼ N (0, λte

gt), (8)

where the log-volatility gt follows a standard random walk process

gt = gt−1 + ηt, ηt ∼ N (0, σ2
g)

with the initial condition g1 ∼ N (0, Vg). The latent variable λt is introduced to model po-

tential outliers. Different distributional assumptions on λt imply different types of outlier-

2In addition, recent research by Cross, Hou, Koop, and Poon (2023) has highlighted potential short-
comings of particle filtering methods, such as poor mixing properties and path degeneracy issues.
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augmented specifications. An example is the mixture distribution considered in Stock and

Watson (2016) and Carriero, Clark, Marcellino, and Mertens (2022). In particular, let

λt = o2t , where ot follows a 2-part distribution: with probability 1− q, ot = 1; otherwise,

ot follows a uniform distribution on the interval (2, 10). The point mass at 1 represents

regular observations whose scale is normalized to 1; the second part captures outliers that

can have 2-10 times larger standard deviations relative to regular observations. Another

example is to assume a continuous distribution for λt, say, an inverse-gamma distribution

(λt | δ) ∼ IG(δ/2, δ/2).

This choice is motivated by the fact that a t distribution with degree of freedom δ can be

represented as a scale mixture of normals in which the mixing distribution is IG(δ/2, δ/2).

In the empirical application, we include this t specification for comparison, as it is found

to work well in forecasting applications involving post COVID-19 pandemic data (see,

e.g., Bobeica and Hartwig, 2023). We emphasize that the setup in (8) can accommodate

many other types of outlier-augmented specifications.

In addition to the stochastic volatility and the outlier component, another important fea-

ture of the MIDAS model in (8) is that the weighting function is time-varying: B
(
L1/m;θt

)
=∑K

k=0B(k;θt)L
k/m, where the component function takes the form B(k;θt) = θ′tvk for

some (p+ 1)-vector vk (that depends of the chosen basis functions). Since

B
(
L1/m;θt

)
x
(m)
t =

K∑
k=0

θ′tvkL
k/mx

(m)
t = θ′t

K∑
k=0

vkx
(m)
t−k/m = θ′tVx

(m)
t ,

where V = [v0,v1, . . . ,vK ] is a (p+1)×(K+1) matrix and x
(m)
t = [x

(m)
t , x

(m)
t−1/m, . . . , x

(m)
t−K/m]′

is a (K + 1)-vector, we can rewrite (8) as

yt+h = αt + ρ′tyt + γ ′tzt + βtθ
′
tVx

(m)
t + εt+h, εt+h ∼ N (0, λte

gt). (9)

Let bt denote the pb-vector of time-varying parameters bt = [αt,ρ
′
t,γ
′
t, βt]

′. Then, we

assume that the time-varying parameters bt and θt evolve according to the random walks:

bt = bt−1 + u1,t, u1,t ∼ N (0,Ω), (10)

θt = θt−1 + u2,t, u2,t ∼ N (0,Ξ), (11)

where Ω = diag(ω2
1, . . . , ω

2
pb

) and Ξ = diag(ξ21 , . . . , ξ
2
p+1), with the initial conditions b1 ∼
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N (0,Vb) and θ1 ∼ N (0,Vθ). Similar to the time-invariant case, to separately identify

βt and θt, for t = 1, . . . , T, we impose the conditions

θ′tV1K+1 = 1,

where 1K+1 is a (K + 1)-column of ones.

Finally, we assume the following priors on the time-invariant parameters

ω2
i ∼ IG(νω, Sω), i = 1, . . . , pb,

ξ2i ∼ IG(νξ, Sξ), i = 1, . . . , p+ 1,

σ2
g ∼ IG(νg, Sg),

with hyperparameters νω = νξ = νg = 5 and Sω = Sξ = Sg = 0.04. The hyperparameters

for the initial conditions are set to be Vb = 10Ipb , Vθ = 10Ip+1 and Vg = 10.

3.3 Irregularly Spaced Mixed-Frequency Data

In many MIDAS applications, such as those by Marcellino and Schumacher (2010), Kuzin,

Marcellino, and Schumacher (2011), Foroni and Marcellino (2014) and Mogliani and Si-

moni (2021), researchers use monthly predictors to forecast quarterly variables. Since ev-

ery quarter has exactly 3 months, these are examples of regularly spaced mixed-frequency

applications. However, for more complex applications, such as forecasting quarterly vari-

ables using weekly or daily predictors, we face two related but distinct challenges. Firstly,

the numbers of observations of the high-frequency variables can vary across time periods

(e.g., there are between 61 to 64 business days within a quarter). Secondly, the observa-

tions of the high-frequency variables might be irregularly spaced relative to the low fre-

quency one (e.g., two weekly observations are available 3 and 10 days before the release of

the monthly variable). These data issues become problematic when one attempts to align

the low-frequency dependent variable with the high-frequency predictors. In our applica-

tion, we nowcast quarterly GDP using both weekly and daily predictors. Consequently,

we need to adapt the proposed framework to allow for time-varying numbers of high-

frequency observations between discrete periods and irregularly spaced high-frequency

observations.

To tackle the first challenge, let mt denote the number of observations of the high-
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frequency variable x
(m)
t between periods t − 1 and t. Suppose for now that these obser-

vations are regularly spaced. That is, between the two periods, we observe x
(m)
t−k/mt

, k =

0, . . . ,mt − 1. The weighting function then becomes

B
(
L1/mt ;θt

)
x
(m)
t =

K∑
k=0

θ′tvkL
k/mtx

(m)
t = θ′t

K∑
k=0

vkx
(m)
t−k/mt

, (12)

where vk = [φ0(k), . . . , φp(k)]′ is the vector of functional values of the basis functions

φ0(s), . . . , φp(s) evaluated at s = k. Note that as long as we fix the number of basis

functions that determines the dimension of vk, the number of coefficients that need to be

estimated remains constant, even though the number of observations of x
(m)
t may vary

across t.

Now, suppose the number of observations between periods t − 1 and t remains to be

mt, but these observations are irregularly spaced. Even so, we maintain the notation

x
(m)
t−k/mt

, k = 0, . . . ,mt − 1 to denote the mt observations, but they are available at

times 0 ≤ st,0 < st,1 · · · < st,mt−1 < 1 from period t. That is, x
(m)
t−k/mt

is available

at time t − st,k. This formulation provides a very flexible framework to handle irregu-

larly spaced observations. Naturally, we can recover the regularly spaced case by setting

st,k = k/mt, k = 0, . . . ,mt − 1. Finally, the weighting function has exactly the same form

as in (12); one only needs to evaluate the basis functions at different points. Specifically,

we replace vk = [φ0(k), . . . , φp(k)]′ by vt,k = [φ0(st,k), . . . , φp(st,k)]
′.

3.4 Data in Multiple High Frequencies

The proposed framework can be generalized to the case of multiple high-frequency vari-

ables with different numbers of observations between discrete periods. More specifically,

suppose we have n high-frequency variables x
(m1)
t , . . . , x

(mn)
t , where x

(mj)
t is observed mj

times between time periods t−1 and t. Let Bj
(
L1/mj ;θj,t

)
denote the weighting function

for x
(mj)
t , which takes the form

Bj
(
L1/mj ;θj,t

)
=

Kj∑
k=0

θ′j,tvj,kL
k/mj ,

where θj,t is a (pj + 1)-vector of parameters and vj,k is the corresponding vector of basis

function values. If we define Vj = [vj,0,vj,1, . . . ,vj,Kj
] and x

(mj)
t = [x

(mj)
t , x

(mj)

t−1/mj
, . . . , x

(mj)

t−Kj/mj
]′,
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the TVP-MIDAS model in (9) can be extended to include multiple high-frequency pre-

dictors:

yt+h = αt + ρ′tyt + γ ′tzt +
n∑
j=1

βj,tθ
′
j,tVjx

(mj)
t + εt+h, εt+h ∼ N (0, λte

gt),

where βj,t captures the overall impact of x
(mj)
t on yt+h at time t. This formulation again

defines a linear Gaussian state space model in the time-varying parameters, and it can be

efficiently estimated.

4 Posterior Simulation

In this section, we outline the posterior sampler for estimating the proposed TVP-MIDAS

model. In particular, we derive the conditional posterior distributions of the time-varying

parameters b = (b′1, . . . ,b
′
T )′ and θ = (θ′1, . . . ,θ

′
T )′ and discuss efficient sampling from

these posterior distributions.

We start with the conditional posterior distribution of b. To that end, stack y =

(y1+h, . . . , yT+h)
′ and ε = (ε1+h, . . . , εT+h)

′, and rewrite (9) as

y = X1b + ε, ε ∼ N (0,Σ), (13)

where Σ = diag(λ1e
g1 , . . . , λT egT ) and X1 = diag(x′b,1, . . . ,x

′
b,T ) is a T ×pb matrix whose

t-th row is xb,t = [1,y′t, z
′
t,θ
′
tVx

(m)
t ]′.

Next, stacking the state equation (10) over t = 1, . . . , T yields

H1b = u1, u1 ∼ N (0,S1), (14)

where u1 = (u′1,1, . . . ,u
′
1,T )′, S1 = diag(Vb,Ω, . . . ,Ω), and H1 is a first-difference matrix

H1 =



Ipb Opb . . . . . . Opb

−Ipb Ipb
...

Opb

. . . . . .
...

. . . Ipb Opb

Opb · · · · · · −Ipb Ipb


.
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Since the determinant of H1 is one, it is invertible. By a change of variable, we have

b ∼ N (0, (H
′
1S
−1
1 H1)

−1). Combining (13) and (14) and using standard linear regression

results, the conditional posterior for b is then obtained as

(b |y,θ,Σ,Ω) ∼ N (µb,K
−1
b ),

where

Kb = H′1S
−1
1 H1 + X′1Σ

−1X1, µb = K−1b (X′1Σ
−1y).

Since the precision matrix Kb is a band matrix, sampling from (b |y,θ,Σ,Ω) can be

efficiently accomplished using the algorithm in Chan and Jeliazkov (2009).

The conditional posterior distribution of θ can be derived similarly. More specifically, let

ỹt = yt+h − αt − ρ′tyt − γ ′tzt and stack ỹt over t = 1, . . . , T to obtain ỹ = (ỹt, . . . , ỹT )′.

Then, (9) can be rewritten as

ỹ = X2θ + ε, ε ∼ N (0,Σ), (15)

where X2 = diag(β1x
(m)′
1 V′, . . . , βTx

(m)′
T V′). Furthermore, stacking the state equation

(11) over t = 1, . . . , T , we have

H2θ = u2, u2 ∼ N (0,S2), (16)

where u2 = (u′2,1, . . . ,u
′
2,T )′ and S2 = diag(Vθ,Ξ, . . . ,Ξ) and

H2 =



Ip+1 Op+1 . . . . . . Op+1

−Ip+1 Ip+1
...

Op+1
. . . . . .

...
. . . Ip+1 Op+1

Op+1 · · · · · · −Ip+1 Ip+1


.

Here H2 is a first-difference matrix with unit determinant. It follows that θ ∼ N (0, (H′2S
−1
2 H2)

−1).

Without imposing any restrictions on θ, its conditional posterior distribution is again

Gaussian. A slight complication is the imposition of the identification restrictions θ′tV1K+1 =

1 for t = 1, . . . , T . Specifically, let S denote the hyperplane defined by the T linear equal-

ity restrictions

S def
=
{
θ ∈ RT (p+1) : (IT ⊗ (1′K+1V

′))θ = 1T
}
.
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Then, the conditional posterior of θ is a Gaussian distribution truncated to the hyperplane

S:

(θ |y,b,Σ,Ξ) ∼ NS(µθ,K
−1
θ ),

where

Kθ = H′2S
−1
2 H2 + X′2Σ

−1X2, µθ = K−1θ (X′2Σ
−1ỹ).

There are efficient algorithms that can be used to sample from NS(µθ,K
−1
θ ), such as

Algorithm 2.6 in Rue and Held (2005) and Algorithm 2 in Cong, Chen, and Zhou (2017).

In particular, we can first sample θ̃ ∼ N (µθ,K
−1
θ ) using the algorithm in Chan and

Jeliazkov (2009). Then, we impose the identification restrictions Mθ = 1T , where M =

IT ⊗ (1′K+1V
′) by computing

θ = θ̃ + K−1θ M′(MK−1θ M′)−1(1T −Mθ̃).

Other steps of the posterior sampler are standard. For example, the log-volatility can be

sampled using the auxiliary mixture sampler of Kim, Shephard, and Chib (1998), with the

adjustment (for the latent variables λ1, . . . , λT ) outlined in Chan and Hsiao (2014). The

degree of freedom parameter δ can be sampled using a Metropolis-Hastings step described

in Chan and Hsiao (2014).

5 Empirical Application

5.1 Design of the Real-time Forecasting Exercise

To assess the performance of the proposed TVP-MIDAS model, we undertake a real-time

forecasting (nowcasting) exercise focusing on quarterly US real GDP. This evaluation

employs the real-time quarterly datasets of US real GDP sourced from the Philadel-

phia Federal Reserve Real-Time Datasets for Macroeconomists, spanning from 1990Q1

to 2021Q2. In our TVP-MIDAS model, we incorporate two high-frequency predictors

for forecasting US real GDP: the daily interest rate spread, representing the slope of the

yield curve (defined as the difference between the 10-year and 3-month treasury yields),

and a weekly NFCI. Building upon the seminal work of Estrella and Hardouvelis (1991),

empirical studies have consistently demonstrated the significant predictive capability of

the yield curve slope in forecasting future US real GDP (Estrella, Rodrigues, and Schich
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(2003); Rudebusch and Williams (2009)). Moreover, recent work by Adrian, Boyarchenko,

and Giannone (2019) suggests that tightening financial conditions are associated with a

notable increase in downside risk for US real GDP. Additionally, a recent study by Poon

and Zhu (2024) underscores the importance of financial conditions as crucial predictors

for forecasting recessions across various countries.

We acquire the daily interest rate spread data from the St. Louis FRED database. How-

ever, for the NFCI, weekly data vintages are exclusively accessible from the Archival

Federal Reserve Economic Data (ALFRED) database starting from 2011. To compen-

sate for this limitation, we utilize the weekly NFCI data compiled by Amburgey and

McCracken (2023), which includes weekly data vintages from 1988 onwards. Our fore-

casting design aligns with that of Guérin and Marcellino (2013), who conduct a real-time

forecasting exercise for quarterly US real GDP using a Markov-Switching MIDAS frame-

work. Our approach involves generating forecasts for US real GDP one quarter ahead

at the conclusion of each month of a quarter. Table 1 exemplifies our real-time forecast

for US real GDP in 2000Q1. Notably, US real GDP data exhibits a one-quarter release

delay. Consequently, when formulating a forecast at the conclusion of January 2000, our

information set only encompasses daily and weekly predictors up to the conclusion of the

first month of the quarter. Progressing to the end of February 2000, our information

set expands to include information on daily and weekly predictors up to the conclusion

of the second month of the quarter. By the conclusion of March 2000, our information

set encompasses daily and weekly predictors for the entire quarter. Formally, we denote

the forecasts at the conclusion of the first, second, and third months of the quarter as

h = 2/3, h = 1/3 and h = 0, respectively.

Our initial estimation sample for US real GDP spans from 1982Q1 to 1989Q4, with

recursive expansion continuing until the end of 2021Q1. This temporal progression is

mirrored in the timeframe for our daily and weekly predictors. The evaluation period for

forecasting US Real GDP ranges from 1990Q1 to 2021Q2. Finally, we exclusively apply

a data transformation to US real GDP, which involves multiplying the quarterly change

in the natural logarithm of US real GDP by a factor of 400.
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Table 1: Forecasting Scheme for 2000Q1

Actual Observed Dates

January 2000 February 2000 March 2000

Real GDP data up to month 1999Q4 1999Q4 1999Q4

Daily Interest Rate data up to month January 2000 February 2000 March 2000

Weekly NFCI data up to month January 2000 February 2000 March 2000

Forecast Horizon h = 2/3 h = 1/3 h = 0

5.2 Out-of-Sample Results

In this real-time forecasting exercise, we evaluate the predictive accuracy of six distinct

MIDAS specifications in comparison to a simple AR(1) model. Our analysis encompasses

various MIDAS configurations, including those with and without time-varying parameters,

as well as different error specifications. Each of these six MIDAS specifications are outline

upon in Table 2. Additionally, we explore the application of both Fourier and Almon lag

polynomials to define the functional form of the MIDAS weights B.

Table 2: Competing Models

Models Information

AR(1) Autoregressive model with one lag

MIDAS MIDAS with time-invariant parameters and constant volatility

MIDAS-SV MIDAS with time-invariant parameters and stochastic volatility

MIDAS-SVt MIDAS with time-invariant parameters and fat-tail stochastic volatility errors

TVP-MIDAS MIDAS with time-varying parameters and constant volatility

TVP-MIDAS-SV MIDAS with time-varying parameters and stochastic volatility

TVP-MIDAS-SVt MIDAS with time-varying parameters and fat-tail stochastic volatility errors

Table 3 presents the root mean squared forecast error (RMSFE) for six model specifi-

cations relative to a simple AR(1) model. Across all model specifications, the RMSFE

values remain consistently similar across three forecast horizons, indicating superior point

forecasting performance compared to the simple AR(1) model. Notably, there is no dis-

cernible enhancement in point forecasts when information is accumulated monthly within

17



each quarter, suggesting that the high-frequency nature of the predictors already con-

tains sufficient informational content for accurately predicting US real GDP regardless of

the timing within the quarter. Upon closer examination of specifications incorporating

constant volatility, the TVP-MIDAS model demonstrates superior point forecast accu-

racy compared to its time-invariant counterpart in both Fourier and Almon Lag cases.

This observation suggests that the inclusion of time-varying parameters within a static

MIDAS framework indeed leads to improved point forecasting accuracy. Furthermore,

the addition of SV within the model specification also contributes to enhanced point

forecasts. However, the point forecasts for both MIDAS-SV and TVP-MIDAS-SV models

exhibit minimal divergence, indicating that the inclusion of time-varying parameters offers

marginal improvement when SV is incorporated into the specification. Finally, it is note-

worthy that there is no observable improvement in forecast accuracy from incorporating

fat-tails within the SV specification.

Table 3: The RMSFE for the six models benchmarked against AR(1) model

Forecast Horizon MIDAS MIDAS-SV MIDAS-SV-t TVP-MIDAS TVP-MIDAS-SV TVP-MIDAS-SV-t

Fourier Series

h = 2/3 0.90 0.80 0.80 0.83 0.83 0.81

h = 1/3 0.90 0.81 0.80 0.86 0.84 0.82

h = 0 0.90 0.81 0.80 0.84 0.83 0.80

Average 0.90 0.80 0.80 0.85 0.83 0.81

Almon Lag

h = 2/3 0.94 0.82 0.82 0.87 0.87 0.84

h = 1/3 0.94 0.82 0.82 0.87 0.87 0.84

h = 0 0.94 0.82 0.82 0.87 0.86 0.90

Average 0.94 0.82 0.82 0.87 0.87 0.86

Notes: *,**,*** denotes the 10, 5, and 1 percent significant level of the Diebold-Mariano
predictability test.

We evaluate the performance of density forecasts using the Continuous Ranked Proba-

bility Score (CRPS) across six model specifications. Table 4 presents the average CRPS

values relative to the AR(1) model for each specification, revealing consistent CRPS val-

ues across the three forecast horizons. Notably, among the six specifications, the TVP-

MIDAS model emerges as the only one yielding density forecasts inferior to the simple
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AR(1) model. Conversely, incorporating SV within both the time-invariant and TVP-

MIDAS frameworks enhances density forecast precision. However, overall, the MIDAS

specifications with SV yield comparable CRPS values, suggesting that the inclusion of

time-varying parameters in the MIDAS framework does not significantly enhance density

forecast accuracy relative to the time-invariant case.

Given the significance of the proposed framework’s high-frequency predictors in fore-

casting and identifying future recessions in empirical studies, we delve deeper into the

forecasting performance of our six model specifications concerning the left and right tails

of the density forecasts. Drawing from the methodology outlined by Gneiting and Ranjan

(2011), we calculate the predictive quantile score for a given quantile τ , expressed as:

QSτ,t = (yt −Qτ,t)− (τ − I{yt ≤ Qτ,t}),

Here QSτ,t represents the predictive quantile for US Real GDP, where I{yt ≤ Qτ,t} takes

the value 1 if the realized value is at or below the predictive quantile and 0 otherwise.

We assess the performance of the quantile score in both left (10%) and right (90%)

tails by setting τ = 0.1 and τ = 0.9, respectively. We present the average quantile

scores for the left and right tails for each model relative to the AR(1) model in Table

5. Significantly, our analysis reveals that the time-varying parameter MIDAS model

outperforms the time-invariant case in forecasting the left tail, particularly evident in the

Almon Lag case. Conversely, for right tail risk, the static MIDAS model specifications

exhibit superior performance compared to the time-varying case. Both these results are

visually illustrated in Figure 1, which depicts the rolling average of CRPS and quantile

scores for h = 0 over time.
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Table 4: The Average CRPS for the six models benchmarked against AR(1) model

Forecast Horizon MIDAS MIDAS-SV MIDAS-SV-t TVP-MIDAS TVP-MIDAS-SV TVP-MIDAS-SV-t

Fourier Series

h = 2/3 0.96 0.91 0.91 1.06 0.95 0.94

h = 1/3 0.97 0.92 0.91 1.11 0.95 0.94

h = 0 0.97 0.92 0.92 1.08 0.95 0.92

Average 0.97 0.92 0.91 1.08 0.95 0.93

Almon Lag

h = 2/3 0.99 0.93 0.93 1.03 0.95 0.94

h = 1/3 0.99 0.93 0.93 1.04 0.96 0.96

h = 0 0.99 0.93 0.93 1.04 0.96 0.97

Average 0.99 0.93 0.93 1.04 0.96 0.96

Notes: *,**,*** denotes the 10, 5, and 1 percent significant level of the Diebold-Mariano
predictability test.
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Table 5: The Average Quantile Scores for the left (10%) and right (90%) tail for the six
models relative to the AR(1) model

Forecast Horizon MIDAS MIDAS-SV MIDAS-SV-t TVP-MIDAS TVP-MIDAS-SV TVP-MIDAS-SV-t

10 percent Quantile Scores (Left Tail)

Fourier Series

h = 2/3 0.98 1.04*** 1.04*** 1.01*** 0.93*** 0.93***

h = 1/3 0.99 1.05* 1.04* 1.00** 0.93*** 0.93***

h = 0 0.99 1.05 1.04 0.99*** 0.93*** 0.93***

Average 0.99 1.05 1.04 1.00 0.93 0.93

Almon Lag

h = 2/3 0.98** 1.05*** 1.05*** 0.91*** 0.92*** 0.92***

h = 1/3 0.98** 1.05*** 1.04*** 0.92*** 0.93*** 0.92***

h = 0 0.98*** 1.05*** 1.04*** 0.92*** 0.93*** 0.92***

Average 0.98 1.05 1.04 0.92 0.93 0.92

90 percent Quantile Scores (Right Tail)

Fourier Series

h = 2/3 0.92*** 0.92* 0.91* 1.12 1.07 1.07

h = 1/3 0.92*** 0.92** 0.91** 1.19 1.08 1.07

h = 0 0.92*** 0.92 0.92 1.14 1.08 1.06

Average 0.92 0.92 0.91 1.15 1.08 1.06

Almon Lag

h = 2/3 0.94*** 0.94** 0.92** 1.13 1.12 1.10

h = 1/3 0.94*** 0.93** 0.93** 1.13 1.12 1.10

h = 0 0.95*** 0.94 0.93 1.13 1.12 1.13

Average 0.94 0.94 0.93 1.13 1.12 1.11

Notes: *,**,*** denotes the 10, 5, and 1 percent significant level of the Diebold-Mariano
predictability test.

Consequently, our results suggest that during periods of heightened volatility, the incor-

poration of time-varying parameters and SV is essential for accurately forecasting the

left tail of US real GDP or recessionary events. This conclusion aligns with the findings

of Adrian, Boyarchenko, and Giannone (2019) and Estrella and Hardouvelis (1991), who
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emphasize the importance of financial conditions and the slope of the yield curve as pre-

dictors for future recessions in the economy. In contrast, during periods of tranquility, a

static time-invariant MIDAS model suffices for forecasting the right tail of US real GDP

or positive economic growth.

Figure 1: Plot of the Rolling Average CRPS and Quantile Scores for h = 0 across the six
models, relative to the AR(1) model, over the forecast evaluation period.

5.3 Time-Varying Impact of NFCI and Slope of the Yield Curve

The proposed TVP-MIDAS framework offers a notable advantage by facilitating the eval-

uation of the impact of the NFCI and the slope of the yield curve on US real GDP across

various time periods. Specifically, Figure 2 displays the posterior estimates of the time-

varying parameters derived from the TVP-MIDAS-SV model with the Fourier expansion

method, which showcases superior forecasting performance compared to alternative model

specifications in the preceding real-time forecasting section. These estimates are derived

from the final data vintage of 2021Q2, spanning from 1982Q2 to 2021Q1.
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Notes: The thick blue line represents the posterior mean estimates of the time-varying
parameters derived from the TVP-MIDAS-SV model. The shaded blue area indicates the
corresponding 68 percent credible interval.

Figure 2: Posterior estimates of the Time-Varying Parameters from the TVP-MIDAS-SV
model

The top panel of Figure 2 illustrates the time-varying intercept and autoregressive persis-

tence parameter of US real GDP. Remarkably, the persistence parameter of US real GDP

exhibits a declining trend over time, indicating a diminishing significance of past US real

GDP values in forecasting future trends. In the second panel of Figure 2, we observe the

evolving impact of the NFCI and the slope of the yield curve over time. Significantly, the

impact of NFCI demonstrates a notable negative trend, suggesting an increasingly nega-

tive correlation between US real GDP and NFCI over time, consistent with the findings

of Adrian, Boyarchenko, and Giannone (2019). However, the impact of the yield curve

slope appears to have minimal effect on US Real GDP over time, as evidenced by the

majority of uncertainty bands encompassing zero for much of the observed period.

6 Conclusion

In this study, we introduce a novel TVP-MIDAS framework developed with precision-

based methods. Through a comprehensive assessment, we evaluate the effectiveness of the

23



proposed framework in real-time forecasting applications for US real GDP. Leveraging two

high-frequency predictors, the daily interest rate spread and a weekly NFCI, our analysis

demonstrates that TVP-MIDAS model specifications incorporating stochastic volatility

consistently outperform their static counterparts. Specifically, our findings reveal that

our TVP-MIDAS framework yields superior forecasts, particularly in capturing the left

tail risk of US real GDP. Finally, our in-sample analysis unveils a significant negative

trend in the influence of the NFCI, implying a progressively adverse correlation between

US real GDP and NFCI over time.
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